Problem Set for Hadron Collider Physics 2015
 Prof. Dr. Karl Jakobs, Dr. Karsten Köneke
 Problem Set 3

Your solutions have to be handed in by 10:10 am on Tuesday, May $19^{\text {th }} 2015$. Please drop them into the mailbox number 1 on the ground floor of the Gustav-Mie building!

1. Kinematic variables

At a hadron collider, if a massive particle decays into a lepton and a neutrino, its invariant mass cannot be reconstructed, as the longitudinal component of the neutrino momentum cannot be measured.
(a) How is the transverse momentum of the neutrino measured?
[1 point]
A useful variable to consider is the transverse mass m_{T}, defined as:

$$
\begin{equation*}
m_{T}^{2}=\left(E_{T}(1)+E_{T}(2)\right)^{2}-\left(\mathbf{p}_{T}(1)+\mathbf{p}_{T}(2)\right)^{2} \tag{1}
\end{equation*}
$$

(b) Derive a simplified formula for the transverse mass in the approximation $m_{1}=m_{2}=0$
[1 point]
We now consider a W boson with mass $m_{W}=80 \mathrm{GeV}$ and its decay $W \rightarrow e \nu$ (there is no need here to distinguish the $W^{+} \rightarrow e^{+} \nu$ and the $\left.W^{-} \rightarrow e^{-} \bar{\nu}\right)$. Assume that the W is produced at rest.
(c) Determine the differential distribution $d N / d m_{T}$ and its dependency on m_{W}. Show that the distribution has an end point at $m_{T}=m_{W}$
[3 points]
[HINT: the following identity

$$
\begin{equation*}
\frac{d N}{d m_{T}}=\frac{d N}{d \Omega} \frac{d \Omega}{d m_{T}} \tag{2}
\end{equation*}
$$

can be useful.]

2. Minimum bias interactions

Using what you have learned in the previous problem set, you can now generate with Pythia events and store them in ROOT ntuples. First, generate 10^{5} events of nondiffractive proton-proton collisions at a center-of-mass energy of 900 GeV . Save the final state particles into your ROOT ntuple. Repeat the same thing, but this time, set the center-of-mass energy to 7 TeV . Save these events into a different ROOT ntuple. For each of these two files:
(a) Write down the cross section for this process. You can find it in the log file that Pythia produced.
[1 point]
(b) What integrated luminosity do the 10^{5} events correspond to in each case? [1 point]
(c) Investigate the particle spectrum. What is the average composition of particles with $p_{T}>100 \mathrm{MeV}$?
[2 points]
(d) Where do all those photons come from mainly? Is the fraction of $\pi^{ \pm}$with respect to π^{0} roughly in agreement with what you expect from isospin symmetry? [2 points]
(e) Plot the following distribution of charged particles with $p_{T}>100 \mathrm{MeV}$ and $|\eta|<2.5$ (be careful with the normalization):

$$
\begin{equation*}
\frac{1}{N_{e v}} \frac{d N_{c h}}{d \eta} \quad \frac{1}{N_{e v}} \frac{1}{2 \pi p_{T}} \frac{d^{2} N_{c h}}{d p_{T} d \eta} \quad \frac{1}{N_{e v}} \frac{d N_{e v}}{d n_{c h}} \tag{3}
\end{equation*}
$$

where $N_{e v}$ is the number of event, $N_{c h}$ is the number of charged particles, $n_{c h}$ is the number of charged particles per event.
[2 points per distribution]
[Bonus questions:] Address also the following items:
(f) What is the average charged particle multiplicity (with $p_{T}>100 \mathrm{MeV}$) at $\eta=0$ in each center-of-mass point? Produce the relevant figures to answer this question.
[2 bonus points]
(g) Compare the results with those shown in http://arxiv.org/pdf/1012.5104v2 and briefly discuss possible sources of differences between these published results and your own results.
[2 bonus points]

