Problem Set for Hadron Collider Physics 2015 Prof. Dr. Karl Jakobs, Dr. Karsten Köneke Problem Set 3

Your solutions have to be handed in by 10:10 am on Tuesday, May 19th 2015. Please drop them into the mailbox number 1 on the ground floor of the Gustav-Mie building!

1. Kinematic variables

At a hadron collider, if a massive particle decays into a lepton and a neutrino, its invariant mass cannot be reconstructed, as the longitudinal component of the neutrino momentum cannot be measured.

(a) How is the transverse momentum of the neutrino measured? [1 point]

A useful variable to consider is the transverse mass m_T , defined as:

$$m_T^2 = (E_T(1) + E_T(2))^2 - (\mathbf{p}_T(1) + \mathbf{p}_T(2))^2$$
(1)

(b) Derive a simplified formula for the transverse mass in the approximation $m_1 = m_2 = 0$ [1 point]

We now consider a W boson with mass $m_W = 80$ GeV and its decay $W \to e\nu$ (there is no need here to distinguish the $W^+ \to e^+\nu$ and the $W^- \to e^-\bar{\nu}$). Assume that the W is produced at rest.

(c) Determine the differential distribution dN/dm_T and its dependency on m_W . Show that the distribution has an end point at $m_T = m_W$ [3 points] [HINT: the following identity

$$\frac{dN}{dm_T} = \frac{dN}{d\Omega} \frac{d\Omega}{dm_T} \tag{2}$$

can be useful.]

2. Minimum bias interactions

Using what you have learned in the previous problem set, you can now generate with Pythia events and store them in ROOT ntuples. First, generate 10⁵ events of nondiffractive proton-proton collisions at a center-of-mass energy of 900 GeV. Save the final state particles into your ROOT ntuple. Repeat the same thing, but this time, set the center-of-mass energy to 7 TeV. Save these events into a different ROOT ntuple. For each of these two files:

- (a) Write down the cross section for this process. You can find it in the log file that Pythia produced. [1 point]
- (b) What integrated luminosity do the 10^5 events correspond to in each case? [1 point]
- (c) Investigate the particle spectrum. What is the average composition of particles with $p_T > 100 \text{ MeV}$? [2 points]
- (d) Where do all those photons come from mainly? Is the fraction of π^{\pm} with respect to π^{0} roughly in agreement with what you expect from isospin symmetry? [2 points]
- (e) Plot the following distribution of charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$ (be careful with the normalization):

$$\frac{1}{N_{ev}}\frac{dN_{ch}}{d\eta} \qquad \frac{1}{N_{ev}}\frac{1}{2\pi p_T}\frac{d^2N_{ch}}{dp_Td\eta} \qquad \frac{1}{N_{ev}}\frac{dN_{ev}}{dn_{ch}}$$
(3)

where N_{ev} is the number of event, N_{ch} is the number of charged particles, n_{ch} is the number of charged particles per event. [2 points per distribution]

[Bonus questions:] Address also the following items:

(f) What is the average charged particle multiplicity (with $p_T > 100$ MeV) at $\eta = 0$ in each center-of-mass point? Produce the relevant figures to answer this question.

[2 bonus points]

(g) Compare the results with those shown in http://arxiv.org/pdf/1012.5104v2 and briefly discuss possible sources of differences between these published results and your own results.
 [2 bonus points]