5. Production of high P_T jets

- 5.1 Introduction
- 5.2 Reminder: the structure of QCD, calculation of matrix elements
- 5.3 Jet production at hadron colliders
- 5.4 Impact on parton distribution functions
- 5.5 Direct photon production
- 5.6 Measurements of α_s

5.1 Introduction

Leading order

- Hard scattering processes at hadron colliders are dominated by jet production
- QCD process, originating from qq, qg and gg scattering
- Cross sections can be calculated in QCD (perturbation theory)

Comparison between experimental data and theoretical predictions constitutes an important test of the theory.

Deviations?

→ Problem in the experiment ?
 Problem in the theory (QCD) ?
 New Physics, e.g. quark substructure ?

- Large cross sections....
- Fast rising with \sqrt{s} _

Leading order

Cross sections for important hard scattering Standard Model processes at the Tevatron and the LHC colliders

Jets from QCD production: Tevatron vs LHC

- Rapidly probe perturbative QCD in a new energy regime (at a scale above the Tevatron, large cross sections)
- Experimental challenge: understanding of the detector
 main focus on jet energy scale
 resolution
- Theory challenge:
 - improved calculations... (renormalization and factorization scale uncertainties)
 - pdf uncertainties

5.2 Reminder: structure of QCD, matrix element calculation

Theory	Interaction	charge	Gauge boson
QED	electromagnetic	electric charge	Photon
QCD	strong	colour charge	Gluons

SU3:	$ 1\rangle = (r\bar{b} + b\bar{r})/\sqrt{2}$ $ 2\rangle = -i(r\bar{b} - b\bar{r})/\sqrt{2}$ $ 3\rangle = (r\bar{r} - b\bar{b})/\sqrt{2}$
Color Octet	$ 5\rangle = (r\bar{g} + g\bar{r})/\sqrt{2}$ $ 4\rangle = (r\bar{g} + g\bar{r})/\sqrt{2}$ $ 5\rangle = -i(r\bar{g} - g\bar{r})/\sqrt{2}$ $ 6\rangle = (b\bar{g} + g\bar{b})/\sqrt{2}$ $ 7\rangle = -i(b\bar{g} - g\bar{b})/\sqrt{2}$ $ 8\rangle = (r\bar{r} + b\bar{b} + 2g\bar{g})/\sqrt{6}$
Color Singlet	$ 9\rangle = -i(r\bar{r} + b\bar{b} + g\bar{g})/\sqrt{3}$

Color Singlet gluons do not exist. Since the gluons have m=0, this would give a strong gravity force.

Quark and gluon states:

$a^{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, a^{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \dots$

Gluons carry color charge, therefore they can couple to each other. This is not possible for photons. The Gell-Mann λ -matrices are the generators of SU3, equivalent to the Pauli matrices for SU2.

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda^{5} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda^{7} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

The commutators of the λ -matrices define the structure constants of SU3.

 $\begin{bmatrix} \lambda^{\alpha}, \ \lambda^{\beta} \end{bmatrix} = 2if^{\alpha\beta\gamma}\lambda^{\gamma}$ with $f^{\beta\alpha\gamma} = f^{\alpha\gamma\beta} = -f^{\alpha\beta\gamma}$ completely antisymmetric

There are $8 \times 8 \times 8 = 512$ structure constants. Most are zero, except for the following and their antisymmetric permutations.

$$\begin{aligned} f^{123} &= 1\\ f^{147} &= f^{246} = f^{257} = f^{345} = f^{516} = f^{637} = \frac{1}{2}\\ f^{458} &= f^{678} = \sqrt{\frac{3}{2}} \end{aligned}$$

Feynman rules for QCD:

- 4. Internal Loop Diagrams More complicated than in QED. Not treated here.
- 5. δ-function for momentum conservation

Example: invariant amplitude for u dbar \rightarrow u dbar scattering

Like in QED also in QCD the charge is conserved.

Thus diagrams have continuous flow of color.

Matrix elements are like in QED, but they contain a color factor.

$$-i\mathcal{M} = \bar{u}(3)c_3^+ \left[-i\frac{g_s}{2}\lambda^{\alpha}\gamma^{\mu} \right] u(1)c_1 \frac{-ig_{\mu\nu}\delta^{\alpha\beta}}{q^2} \bar{v}(2)c_2^+ \left[-i\frac{g_s}{2}\lambda^{\beta}\gamma^{\nu} \right] v(4)c_4$$
$$\mathcal{M} = \frac{-g_s^2}{4q^2} \left[\bar{u}(3)\gamma^{\mu}u(1) \right] \left[\bar{v}(2)\gamma_{\mu}v(4) \right] \left[c_3^+\lambda^{\alpha}c_1 \right] \left[c_2^+\lambda^{\alpha}c_4 \right]$$

Example (ii): u ubar \rightarrow gg

$$\mathcal{M}_{2} = \frac{-g_{s}^{2}}{8} \frac{1}{p_{1} \cdot p_{4}} \left\{ \overline{v}(2) [\not e_{3}(\not p_{1} - \not p_{4} + mc) \not e_{4}] u(1) \right\} a_{3}^{\alpha} a_{4}^{\beta} (c_{2}^{\dagger} \lambda^{\alpha} \lambda^{\beta} c_{1})$$

colour flow in hard processes:

One Feynman graph can correspond to several possible colour flows, e.g. for $qg \rightarrow qg$:

while other $qg \rightarrow qg$ graphs only admit one colour flow:

Quarks and gluon loops, running of α_s :

Quark loops: increase $\alpha_s(|q^2|)$ with $|q^2|$ Gluon loops: decrease $\alpha_s(|q^2|)$ with $|q^2|$

$$\alpha_s(|q^2|) = \frac{\alpha_s(\mu^2)}{1 + [\alpha_s(\mu^2)/12\pi](11n - 2f)\ln(|q^2|/\mu^2)} \quad (|q^2| \gg \mu^2)$$

 n:# of colors(=3)
f:# of flavors,
which are open
at |q^2|

Leading log approximation. This formula gives the running of $\alpha_s(|q^2|)$. If we know it at $|q^2|=\mu$, we can calculate in for every $|q^2|$.

Running of α_s :

$$\alpha_s(|q^2|) = \frac{\alpha_s(\mu^2)}{1 + [\alpha_s(\mu^2)/12\pi](11n - 2f)\ln(|q^2|/\mu^2)} \quad (|q^2| \gg \mu^2)$$

The energy scale μ must be chosen such that $\alpha_s(|q^2|) < I$, otherwise the power expansion does not converge and perturbation theory is not valid.

One can define the Λ - Parameter:

$$\ln \Lambda^2 = \ln \mu^2 - \frac{12\pi}{[(11n - 2f)\alpha_s(\mu^2)]}$$

Then the single parameter Λ determines the running of α

$$\alpha_{s}(|q^{2}|) = \frac{12\pi}{(11n - 2f)\ln(|q^{2}|/\Lambda^{2})} \quad (|q^{2}| \gg \Lambda^{2})$$

From experimental measurements on finds: 100 MeV < Λ < 350 MeV

One usually choses $\mu = m_Z$ as a reference scale, since $\alpha_s(m_z^2)$ has been measured very precisely at LEP. With the formula above, values measured at other energies can be extrapolated to m_Z .

Running of α_s :

The renormalization scale dependence of the effective QCD coupling $\alpha_s = g_s^2/4\pi$ is controlled by the β -function:

$$\begin{split} \mu \frac{\partial \alpha_s}{\partial \mu} &= 2\beta(\alpha_s) = -\frac{\beta_0}{2\pi} \alpha_s^2 - \frac{\beta_1}{4\pi^2} \alpha_s^3 - \frac{\beta_2}{64\pi^3} \alpha_s^4 - \cdots ,\\ \beta_0 &= 11 - \frac{2}{3} n_f ,\\ \beta_1 &= 51 - \frac{19}{3} n_f ,\\ \beta_2 &= 2857 - \frac{5033}{9} n_f + \frac{325}{27} n_f^2 , \end{split}$$

If one solves the differential equation an integration constant appears, which is the value of α s at a fixed reference scale μ_0 . One often chooses $\mu_0=M_Z$ as mentioned earlier.

The value of $\alpha s(\mu)$ can then be calculated from:

$$\log(\mu^2/\mu_0^2) = \int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} \frac{d\alpha}{\beta(\alpha)}$$

Experimental measurements of α_s :

Summary of measurements of $\alpha_s (m_Z^2)$, used as input for the world average value (from Particle Data Group).

Summary of measurements of α_s as a function of the respective energy scale Q (from Particle Data Group).

5.3 Jet production at hadron colliders

A two jet event at the Tevatron (CDF)

5.3.1 Theoretical calculations

Leading order ...some NLO contributions

$$\begin{aligned} \frac{d\sigma}{d\hat{t}}(ab \to cd) &= \frac{|M||}{(16\pi\hat{s}^2)} \\ \\ \hline Subprocess & |\mathcal{M}|^2/g_s^4 & |\mathcal{M}(90^\circ)|^2/g_s^4 \\ \hline qq' \to qq' \\ q\bar{q}' \to q\bar{q}' \\ q\bar{q}' \to q\bar{q}' \\ q\bar{q} \to q\bar{q} & \frac{4}{9}\left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2}\right) - \frac{8}{27}\frac{\hat{s}^2}{\hat{u}\hat{t}} & 3.3 \\ q\bar{q} \to q\bar{q} & \frac{4}{9}\left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{s}^2} + \frac{\hat{s}^2 + \hat{u}^2}{\hat{u}^2}\right) - \frac{8}{27}\frac{\hat{s}^2}{\hat{u}\hat{t}} & 0.2 \\ q\bar{q} \to q\bar{q} & \frac{4}{9}\left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}\right) - \frac{8}{27}\frac{\hat{u}^2}{\hat{s}\hat{t}} & 2.6 \\ q\bar{q} \to q\bar{q} & \frac{4}{9}\left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} - \frac{8}{3}\frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}\right) - \frac{8}{27}\frac{\hat{u}^2}{\hat{s}\hat{t}} & 2.6 \\ q\bar{q} \to gg & \frac{32}{27}\frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}} - \frac{8}{3}\frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2} & 1.0 \\ gg \to q\bar{q} & \frac{1}{6}\frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}} - \frac{3}{8}\frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2} & 0.1 \\ qg \to qg & \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} - \frac{4}{9}\frac{\hat{s}^2 + \hat{u}^2}{\hat{u}\hat{s}} & 6.1 \\ gg \to gg & \frac{9}{4}\left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} + \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2} + 3\right) & 30.4 \\ \hline \end{cases}$$

1^

- Right: Results of the LO matrix elements for the various scattering processes, expressed in terms of the Mandelstam variables s, t and u. (Kripfganz et al, 1974);
- gg scattering is the dominant contribution under η = 0;
 (sensitivity to gluons, sensitivity to gluon self-coupling, as predicted by QCD)
- NLO predictions have meanwhile been calculated (2002).

The composition of the partons involved as function of the p_T of the jet at the Tevatron:

Tevatron, ppbar, $\sqrt{s} = 1.96$ TeV, central region $|\eta| < 0.4$

- qq scattering dominates at high p_T
- However, gluons contribute over the full range

5.3.2 Experimental issues

$d^{2}\sigma / dp_{T} d\eta = N / (\epsilon \cdot L \cdot \Delta p_{T} \cdot \Delta \eta)$

- In principle a simple counting experiment
- However, steeply falling p_T spectra are sensitive to jet energy scale uncertainties and resolution effects (migration between bins)
 → corrections (unfolding) to be applied
- Sensitivity to jet energy scale uncertainty: DØ: 1% energy scale error
 - \rightarrow 10% cross section uncert. at $|\eta|$ <0.4

Jet reconstruction and energy measurement

- A jet is NOT a well defined object (fragmentation, gluon radiation, detector response)
- The detector response is different for particles interacting electromagnetically (e,γ) and for hadrons

 \rightarrow for comparisons with theory, one needs to correct back the calorimeter energies to the "particle level" (particle jet)

Common ground between theory and experiment

- One needs an algorithm to define a jet and to measure its energy conflicting requirements between experiment and theory (exp. simple, e.g. cone algorithm, vs. theoretically sound (no infrared divergencies))
- Energy corrections for losses of fragmentation products outside jet definition and underlying event or pileup energy inside

Time

Infrared and collinear safetiness

• To compare an experimental result with theory, often jet counting is involved (for example, inclusive jet cross section

•Need to have a jet reconstruction algorithm which is "collinear" and "infrared" safe

•Collinear safe: jet definition independent on the presence of partons radiated collinear to the quark

 Infrared safe: jet definition independent on the presence of soft radiation

Figure 4.3: Collinear safety violation. The splitting of one tower into two can change the jet properties.

Figure 4.2: Infrared safety violation: the radiation of a soft gluon can change the jet properties.

A family of "safe" algorithms

The k_T family algorithms are the most used nowadays
For every pair of particle I,j compute d_{ii}

$$\begin{split} d_{ij} &= min(E_{Ti}^{a}, E_{Tj}^{a}) \frac{\Delta \eta^{2} + \Delta \phi^{2}}{R^{2}} & \text{i!=j} \\ d_{ij} &= E_{T}^{2} & \text{i=j} \\ \end{split} \quad \text{if a = -1, one has the Anti-k}_{t} algorithm \end{split}$$

Find $d_{min} = \min(d_i, d_{ij}).$

If $d_{min} = d_{ij}$ for some j, merge tower i and j to a new tower k with momentum $p_k^{\mu} = p_j^{\mu} + p_j^{\mu}$.

If $d_{min} = d_i$ then a jet is found.

Iterate until the list of tower is empty.

Main corrections:

- In general, calorimeters show different response to electrons/photons and hadrons
- Subtraction of offset energy not originating from the hard scattering (inside the same collision or pile-up contributions, use minimum bias data to extract this)
- Correction for jet energy out of cone (corrected with jet data + Monte Carlo simulations)

Jet Energy Scale

Jet response correction in DØ:

- Measure response of particles making up the jet
- Use photon + jet data calibrate jets against the better calibrated photon energy

Achieved jet energy scale uncertainty:

DØ: $\Delta E / E \sim 1-2\%$ (excellent result, a huge effort)

Jet energy scale at the LHC

- A good jet-energy scale determination is essential for many QCD measurements (arguments similar to Tevatron, but kinematic range (jet p_T) is larger, ~20 GeV – ~3 TeV)
- Propagate knowledge of the em scale to the hadronic scale, but several processes are needed to cover the large p_T range

Measurement process	Jet p _T range
Z + jet balance	20 < p _T < 100 – 200 GeV
γ + jet balance	50 < p _T < 500 GeV (trigger, QCD background)
Multijet balance	500 GeV < p _T

Reasonable goal: 5-10% in first runs (1 fb⁻¹) 1- 2% long term

Stat. precision (500 pb⁻¹): 0.8% Systematics: 5-10% at low p_T , 1% at high p_T

Example: Z + jet balance

Test of QCD Jet production

An **"early"** result from the DØ experiment (34 pb⁻¹)

Inclusive Jet spectrum as a function of $Jet-P_T$

very good agreement with NLO pQCD calculations over many orders of magnitude !

within the large theoretical and experimental uncertainties

Double differential distributions in p_T and η

- Measurement in 5-6 different rapidity bins, over 9 orders of magnitude, up to $p_T \sim 650 \text{ GeV}$
- Data corresponding to ~ 1 fb⁻¹ (CDF) and 0.7 fb⁻¹ (DØ)

Comparison between data and theory

- CDF and DØ agree within uncertainties

- Experimental uncertainties are smaller than the pdf uncertainties (in particular large for large x, gluon distribution)
- Wait for updated (2009) parametrizations (plans to include Tevatron data, to better constrain the high x-region)

Di-jet angular distributions

reduced sensitivity to Jet energy scale
sensitivity to higher order QCD corrections preserved

Good agreement with next-to-leading order QCD predictions

High p_T jet events at the LHC

Event display that shows the highest-mass central dijet event collected during 2010, where the two leading jets have an invariant mass of 3.1 TeV. The two leading jets have (p_T , y) of (1.3 TeV, -0.68) and (1.2 TeV, 0.64), respectively. The missing E_T in the event is 46 GeV. From <u>ATLAS-CONF-2011-047</u>.

An event with a high jet multiplicity at the LHC

The highest jet multiplicity event collected by the end of October 2010, counting jets with p_T greater than 60 GeV: this event has eight. 1st jet (ordered by p_T): $p_T = 290$ GeV, $\eta = -0.9$, $\varphi = 2.7$; 2nd jet: $p_T = 220$ GeV, $\eta = 0.3$, $\varphi = -0.7$ Missing $E_T = 21$ GeV, $\varphi = -1.9$, Sum $E_T = 890$ GeV. The event was collected on 5 October 2010.

Initial jet energy scale calibration:

0.18 Systematic Uncertainty anti-k, R=0.6, 0.3<InI<0.8, PYTHIA 6 0.16 Underlying event (Perugia0) Ο Fragmentation (MC09-Pro) ALPGEN, HERWIG 6, JIMMY 0.14 Shifted Beam Spot Additional Dead Material Hadronic Shower Model 0.12 Noise Thresholds LAr/Tile Absolute EM Scale Total JES Systematic Uncertainty JES calibration non-closure 0.1 ATLAS 0.08 Fractional JES 0.06 0.04 0.02F 0 10^{2} $p_{_{_{_{_{_{}}}}}}^{10^3}$ 30 40 2×10^{2} 20

Average jet energy scale correction, evaluated using PYTHIA 6, as a function of jet transverse momentum at the EM scale for jets in the central barrel (black circles) and endcap (red triangles) regions, shown in EM scale p_T bins and η regions.

Fractional jet energy scale systematic uncertainty as a function of p_T for jets in the pseudorapidity region $0.3 < |\eta| < 0.8$ in the barrel calorimeter. The total systematic uncertainty is shown as the solid light blue area. The individual sources are also shown, with statistical errors if applicable.

Further improvements

Several in-situ techniques have reduces the jet energy scale uncertainty significantly:

- Single particle response
- Di-jet balance
- And, more recently:
- Gamma + jet balance
- Z + jet balance
- Strong impact on all measurements involving jets

