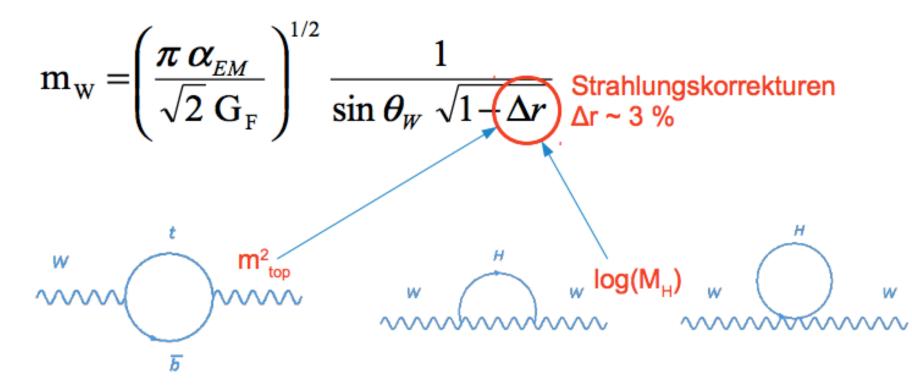
### 8. Physics of the Top Quark

- 8.1 Introduction (The top quark in the Standard Model)
- 8.2 Top quark production at the Tevatron
- 8.3 Top quark production at the LHC
- 8.4 Top-quark mass measurements (Tevatron and LHC)
- 8.5 Constraints on the Standard Model


# 8.1 Introduction to Top Quark Physics



- Discovered by the CDF and DØ collaborations at the Tevatron in 1995
- Tevatron Run I top physics results are consistent
- with expectations from the Standard Model (Errors dominated by statistics)
- Run II top physics program profits a lot from the higher statistics
- LHC: huge production rates (for  $\sqrt{s} = 7$  TeV: about a factor 25 larger cross sections than at the Tevatron)
  - Better precision
  - Search for deviations from Standard Model expectations

# Die Masse des W-Bosons

Wichtiger Konsistenzest, auch wenn SM Higgs-Boson gefunden ist

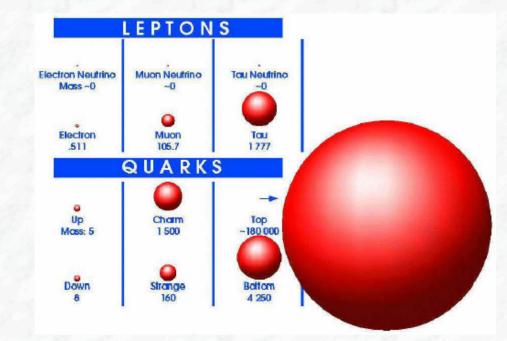


G<sub>F</sub>, α<sub>EM</sub> und sinθ<sub>w</sub> sind mit großer Präzision gemessen – nicht limitierend

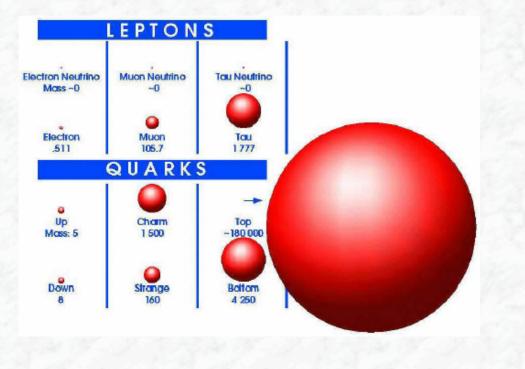
# What do we know about the top quark?

 The top quark is the heaviest know fermion

m<sub>t</sub>~173 GeV (from experiment)


 Lifetime τ ~ 5 10<sup>-25</sup> s (theory, Standard Model decays)

no hadronisation, behaves like a quasi-free quark !


Predominant decays:
 t → Wb (BR ~100%)

largely determined from very small CKM matrix elements  $V_{td},\,V_{ts}$ 

• Electric charge  $Q_t = +2/3$ 



## Why is Top-Quark so important?



The top quark may serve as a window to **New Physics** related to the electroweak symmetry breaking;

Why is its Yukawa coupling  $\sim 1$  ??

$$M_{t} = \frac{1}{\sqrt{2}} \lambda_{t} v$$
$$\Rightarrow \lambda_{t} = \frac{M_{t}}{173.9 \,\text{GeV}/c^{2}}$$

 We still know little about the properties of the top quark: mass, spin, charge, lifetime, decay properties (rare decays), gauge couplings, Yukawa coupling,...

 A unique quark: decays before it hadronizes, lifetime ~10<sup>-25</sup> s no "toponium states" remember: bb, bd, bs.... cc, cs.... bound states (mesons)

# **Top Quark Production**

#### Pair production: qq and gg-fusion

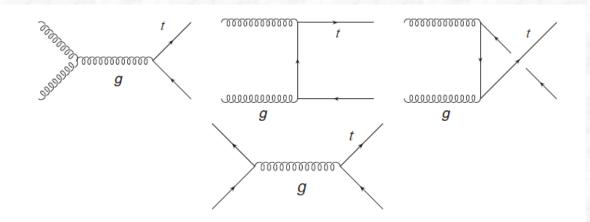
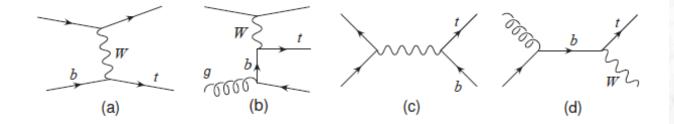



Figure 9.3 Top-quark pair production in the Born approximation.

- NLO corrections completely known
- NNLO partly known approximate NNLO results:


$$\begin{split} \sigma_{\rm LHC} &= (887^{+9}_{-33}\,({\rm scale})^{+15}_{-15}\,({\rm PDF}))~{\rm pb} \qquad (14~{\rm TeV})\,, \\ \sigma_{\rm Tev} &= (7.04^{+0.24}_{-0.36}\,({\rm scale})^{+0.14}_{-0.14}\,({\rm PDF}))~{\rm pb} \quad (1.96~{\rm TeV})\,. \end{split}$$

|          |      | Tevatron<br>1.96 TeV | LHC<br>14 TeV |
|----------|------|----------------------|---------------|
| qq<br>gg |      | 85%<br>15%           | 5%<br>95%     |
| σ        | (pb) | 7.0 pb               | 887 pb        |

For LHC running at  $\sqrt{s}$  = 7 TeV, the cross section is reduced by a factor of ~5, but it is still a factor 25 larger than the cross section at the Tevatron

### **Single Top Quark Production**

Electroweak production of single top-quarks (Drell-Yan and Wg-fusion)



**Figure 9.5** Representative Feynman diagrams for the three single top-quark production modes. The graphs show single top-quark production; the diagrams for single antitop-quark production can be obtained by interchanging quarks and antiquarks.

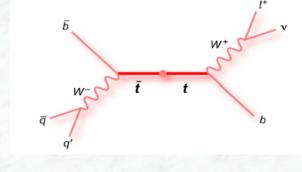
| Process                  | $\sqrt{s}$ | $\sigma_{tqar{b}}$             | $\sigma_{tar{b}}$              | $\sigma_{Wt}$           |
|--------------------------|------------|--------------------------------|--------------------------------|-------------------------|
| $p\bar{p} \to t/\bar{t}$ | 1.96 TeV   | $1.86^{+0.19}_{-0.16}~{ m pb}$ | $1.02\pm0.08~\text{pb}$        | $0.25\pm0.03~\text{pb}$ |
| $pp \to t$               | 14.0 TeV   | $149.4\pm4.1~\mathrm{pb}$      | $7.23^{+0.55}_{-0.47}~{ m pb}$ | $41.1\pm4.2~\text{pb}$  |
| $pp\to \bar{t}$          | 14.0 TeV   | $88.9\pm2.4~\text{pb}$         | $4.03^{+0.14}_{-0.16}~{ m pb}$ | $41.1\pm4.2~\text{pb}$  |

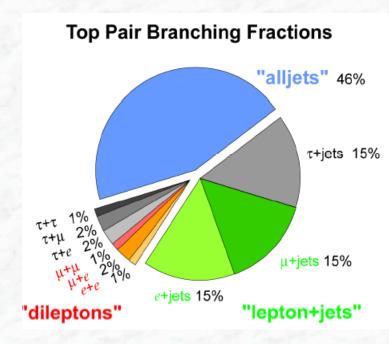
**Table 9.2** Predicted total cross sections for single top-quark production processes at the Tevatron and the LHC. The cross sections of the *t*-channel process are taken from [22]. The values for *s*-channel and associated production are taken from [23]. All cross sections are evaluated at  $m_t = 175$  GeV.

# **Top Quark Decays**

BR (t→Wb) ~ 100%

Dilepton channel:


Both W's decay via  $W \rightarrow \ell v$  ( $\ell = e \text{ or } \mu; 4\%$ )


Lepton + jet channel:

One W decays via  $W \rightarrow \ell v$  ( $\ell = e \text{ or } \mu; 30\%$ )

Full hadronic channel:

Both W's decay via  $W \rightarrow qq$  (46%)

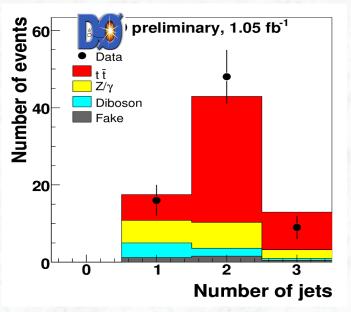


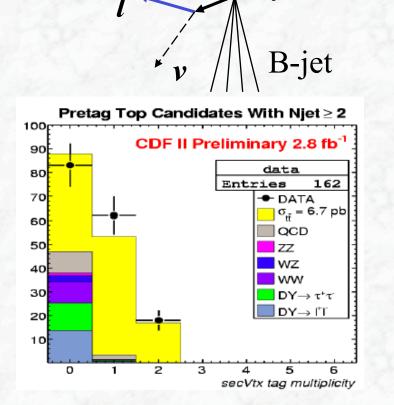


Important experimental signatures: : - Lepton(s)

Missing transverse momentum

- b-jet(s)


# 8.2 Measurement of Top Quark production


at the Tevatron

# tt cross section (dilepton)

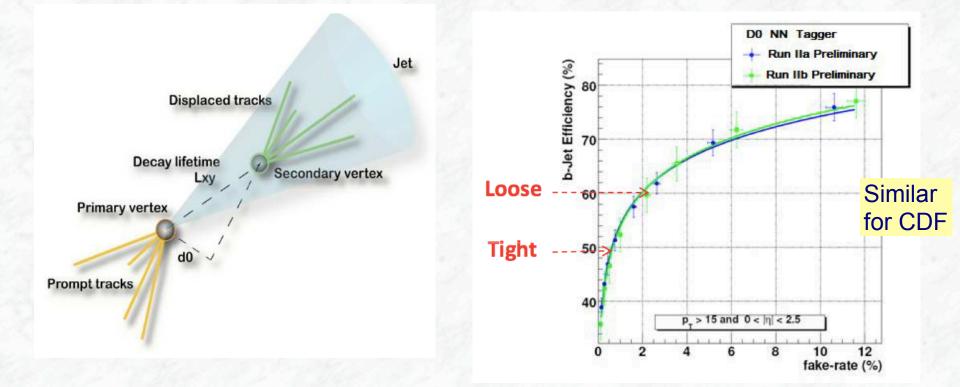
- Two high  $p_T$  leptons (opposite charge) ee, eµ, µµ
- Significant missing transverse momentum
- $\geq$  1 jet (eµ),  $\geq$  2 jets (ee, µµ)

#### ee,eµ and µµ combined





W

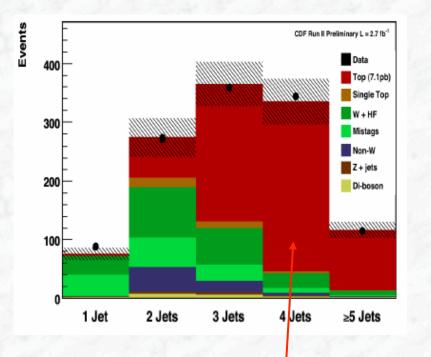

V

**B**-jet

W

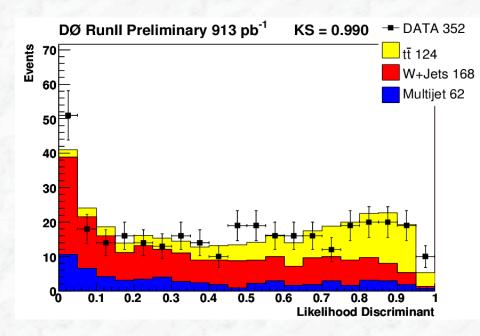
Top quark is needed to describe the b-jet multiplicity distribution in dilepton events

### **Tevatron b-tagging performance**




Neural networks are used for optimal combination of tagging information

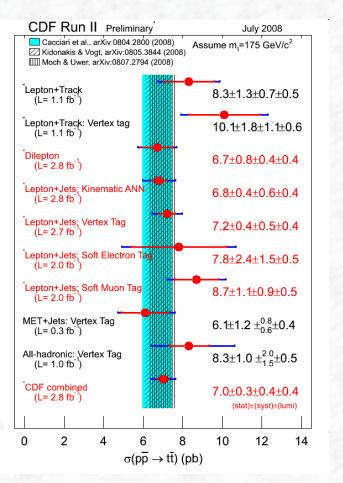
### tt cross section (lepton + jets) (including b-tagging)

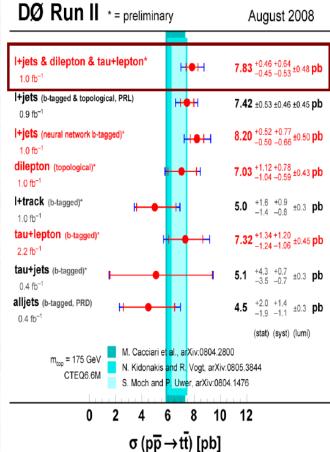

#### b-tag selection:

- One high  $P_T$  lepton (e,  $\mu$ )
- Significant E<sub>T</sub><sup>miss</sup>
- ≥ 1 b-tagged jet



#### Kinematic selection:


- One high  $P_T$  lepton (e,  $\mu$ )
- Significant E<sub>T</sub><sup>miss</sup>
- ≥ 4 jets
- Likelihood discriminant (tt vs. W+jets)




# Clear excess above the W+ jet background in events with high jet multiplicity



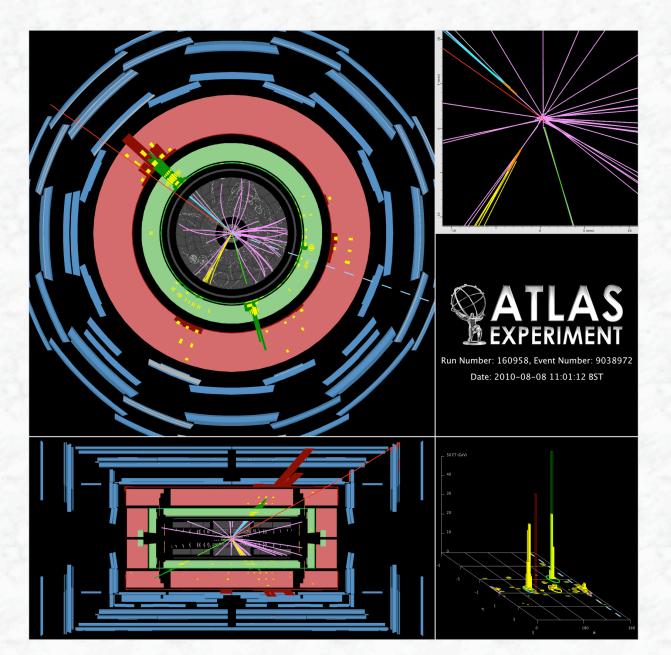
### tt cross section summary from the Tevatron





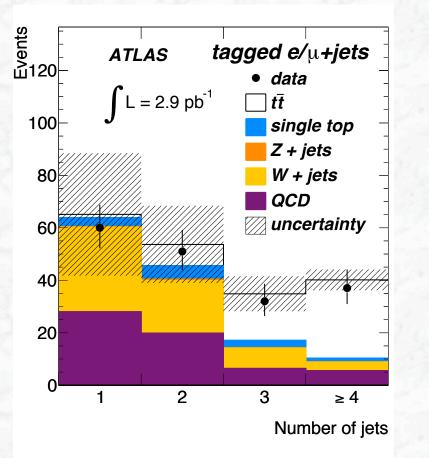
#### Summary of syst. uncertainties

b-tag analysis (2.7 fb<sup>-1</sup>):


| , |                                  | •              | •                     |
|---|----------------------------------|----------------|-----------------------|
|   | SYSTEMATIC                       | <b>Δσpb</b>    | Δσ/σ%                 |
|   | JET ENERGY SCALE                 | 0.16           | 2.2                   |
|   | BOTTOM TAGGING                   | 0.38           | 5.2                   |
|   | CHARM TAGGING                    | 0.08           | 1.1                   |
|   | MIS-TAGS                         | 0.15           | 2.1                   |
|   | HEAVY FLAVOR<br>CORRECTION       | 0.23           | 3.2                   |
|   | LUMINOSITY                       | 0.42           | 5.8                   |
|   | QCD FRACTION                     | 0.02           | 0.2                   |
|   | PARTON SHOWER<br>MODELING        | 0.13           | 1.8                   |
|   | INITIAL/FINAL STATE<br>RADIATION | 0.04           | 0.6                   |
|   | TRIGGER EFFICIENCY               | 0.05           | 0.6                   |
|   | PDF                              | 0.06           | 1.0                   |
|   | TOTAL                            | 0.67           | 9.3                   |
|   |                                  | CDE Run II Pro | insing my I - 2 7 fb- |

#### Good agreement:

- among various exp. measurements (two experiments)
- and with NLO + LL QCD prediction
- Systematic uncertainties at the 10% level (luminosity, b-tagging)


CDF Run II Preliminary L=2.7 fb<sup>-1</sup>

### 8.3 First measurements of Top Quark production at the LHC



Event display of a top pair e-µ dilepton candidate with two b-tagged jets. The electron is shown by the green track pointing to a calorimeter cluster, the muon by the long red track intersecting the muon chambers, and the missing ET direction by the dotted line on the xy-view. The secondary vertices of the two b-tagged jets are indicated by the orange ellipses on the zoomed vertex region view.

### First results on top production from the LHC



#### **Event Selection:**

- Lepton trigger
- One identified lepton (e,μ) with p<sub>T</sub> > 20 GeV
- Missing transverse energy: E<sub>T</sub><sup>miss</sup> > 35 GeV (significant rejection against QCD events)
  - Transverse mass:  $M_T(I,v) > 25 \text{ GeV}$ (lepton from W decay in event)
- One or more jets with  $p_{T}$  > 25 GeV and  $\eta$  < 2.5

#### Details on the composition of the event samples: ATLAS experiment, $L = 35 \text{ pb}^{-1}$ (data from 2010)

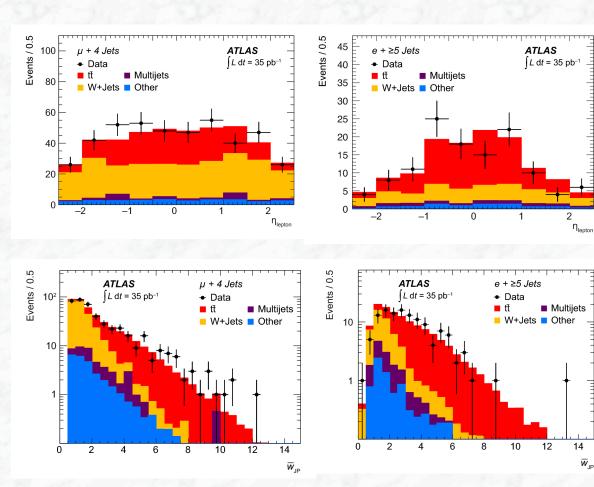
Table 1: Number of observed events in the data in the electron and muon channels after the selection cuts as a function of the jet multiplicity. The expected signal and background contributions are also given. All simulated processes are normalized to theoretical SM predictions, except the multijet background which uses the normalisation presented in Sec. 6 The quoted uncertainties include statistical, systematic and theoretical components, except for the multijet background. All numbers correspond to an integrated luminosity of 35 pb<sup>-1</sup>.

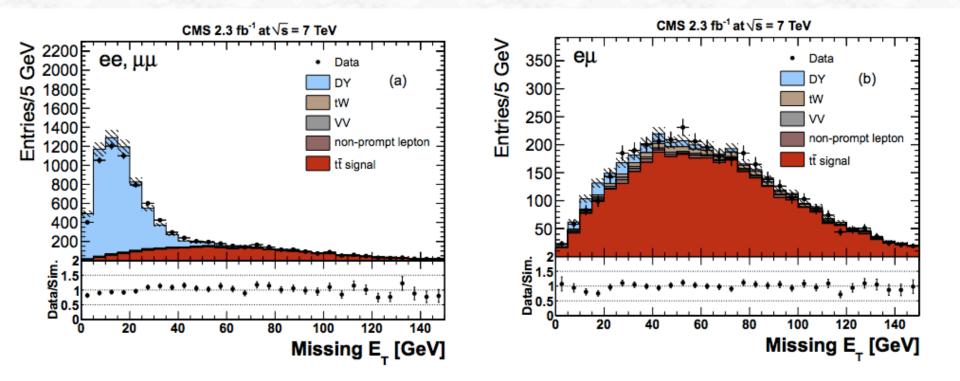
| Electron channel | 3 jets         | 4 jets        | ≥ 5 jets      |
|------------------|----------------|---------------|---------------|
| tī               | $117 \pm 16$   | $109 \pm 15$  | $76 \pm 19$   |
| W+jets           | $524 \pm 225$  | $124 \pm 77$  | $35 \pm 23$   |
| Multijet         | $64 \pm 32$    | $12 \pm 6$    | 8 ± 4         |
| Single top       | $21 \pm 5$     | $7 \pm 3$     | $3 \pm 2$     |
| Z+jets           | $60 \pm 28$    | $21 \pm 15$   | 8 ± 6         |
| Diboson          | 9 ± 3          | $1.9 \pm 1.5$ | $0.4 \pm 0.8$ |
| Predicted        | 795 ± 236      | $275 \pm 84$  | $130 \pm 35$  |
| Observed         | 755            | 261           | 123           |
| Muon channel     | 3 jets         | 4 jets        | ≥ 5 jets      |
| tī               | $165 \pm 22$   | $156 \pm 18$  | $108 \pm 27$  |
| W+jets           | $976 \pm 414$  | $222 \pm 139$ | $58 \pm 38$   |
| Multijet         | $79 \pm 24$    | $18 \pm 6$    | $11 \pm 3$    |
| Single top       | $31 \pm 7$     | $10 \pm 4$    | $4 \pm 2$     |
| Z+jets           | $58 \pm 26$    | $14 \pm 10$   | $5 \pm 4$     |
| Diboson          | $16 \pm 4$     | $3 \pm 2$     | $0.6 \pm 0.8$ |
| Predicted        | $1325 \pm 422$ | $423 \pm 143$ | $186 \pm 51$  |
| Observed         | 1289           | 436           | 190           |

Final 35  $pb^{-1}$  results obtained in a >3 jet selection.

Cross section obtained by a combined fit in different jet multiplicity regions

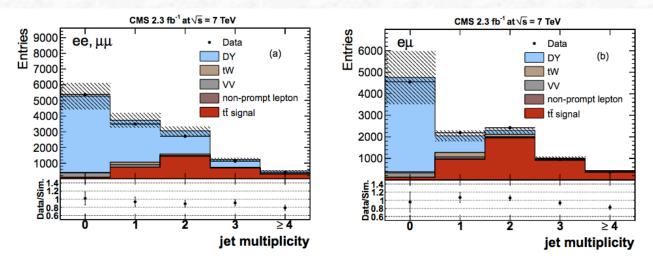
#### Distributions for different jet multiplicities

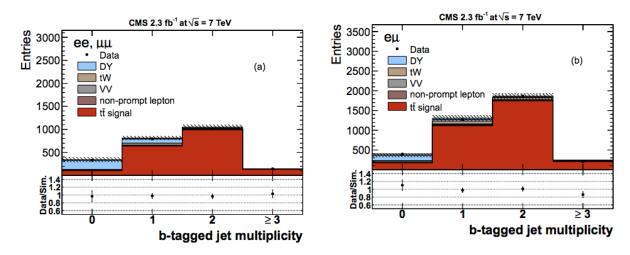




Table 2: Statistical and systematic uncertainties on the measured  $t\bar{t}$  cross-section in the untagged and tagged analyses. Multijet and small backgrounds normalisation uncertainties are already included in the statistical uncertainty (a/i) in the tagged analysis. W+jets heavy-flavour content and *b*-tagging calibration do not apply (n/a) to the untagged analysis. The luminosity uncertainty is not included in the table.

| Method                        | Unta  | gged  | Tag  | ged  |
|-------------------------------|-------|-------|------|------|
| Statistical Error (%)         | +10.1 | -10.1 | +5.8 | -5.7 |
| Object selection (%)          |       |       |      |      |
| JES and jet energy resolution | +4.1  | -5.4  | +3.9 | -2.9 |
| Lepton reconstruction,        |       |       |      |      |
| identification and trigger    | +1.7  | -1.6  | +2.1 | -1.8 |
| Background modelling (%)      |       |       |      |      |
| Multijet shape                | +3.5  | -3.5  | +0.8 | -0.8 |
| Multijet normalisation        | +1.1  | -1.2  | a    | /i   |
| Small backgrounds norm.       | +0.6  | -0.6  | a    | /i   |
| W+jets shape                  | +3.9  | -3.9  | +1.0 | -1.0 |
| W+jets heavy-flavour content  | n,    | la    | +2.7 | -2.4 |
| b-tagging calibration         | n,    | la    | +4.1 | -3.8 |
| tī signal modelling (%)       |       |       |      |      |
| ISR/FSR                       | +6.3  | -2.1  | +5.2 | -5.2 |
| NLO generator                 | +3.3  | -3.3  | +4.2 | -4.2 |
| Hadronisation                 | +2.1  | -2.1  | +0.4 | -0.4 |
| PDF                           | +1.8  | -1.8  | +1.5 | -1.5 |
| Others (%)                    |       |       |      |      |
| Simulation of pile-up         | +1.2  | -1.2  | < 1  | 0.1  |
| Template statistics           | +1.3  | -1.3  | +1.1 | -1.1 |
| Systematic Error (%)          | +10.5 | -9.4  | +9.7 | -9.0 |
|                               |       |       |      |      |

### **Cross section result**


- σ=(173 ±17(stat)<sup>+18</sup>-16(syst)±6(lumi)) pb (untagged analysis)
- σ=(187 ±11(stat)<sup>+18</sup>-17(syst)±6(lumi)) pb (tagged analysis)
- SM prediction (NLO + NLL):  $\sigma = 165^{+11}_{-16} \text{ pb}$
- Good agreement between the SM prediction and the measurement


#### CMS tt signals in the di-lepton channel



#### Missing ET distribution for same flavour and different flavour leptons

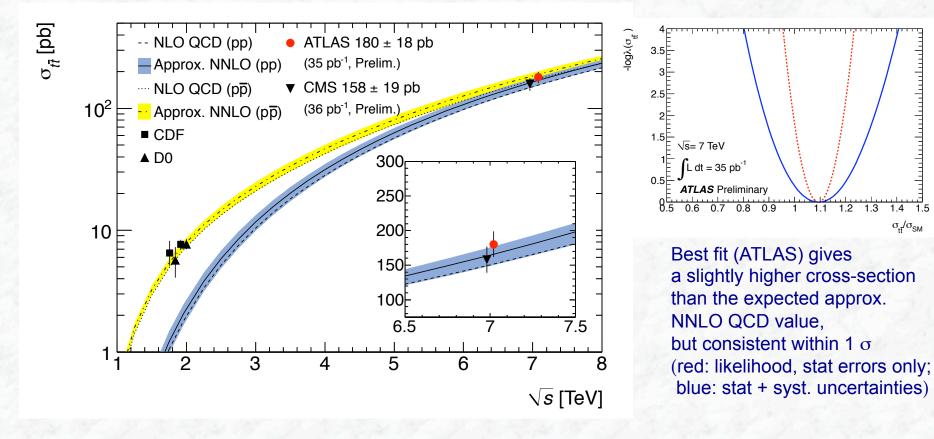
#### CMS tt signals in the di-lepton channel



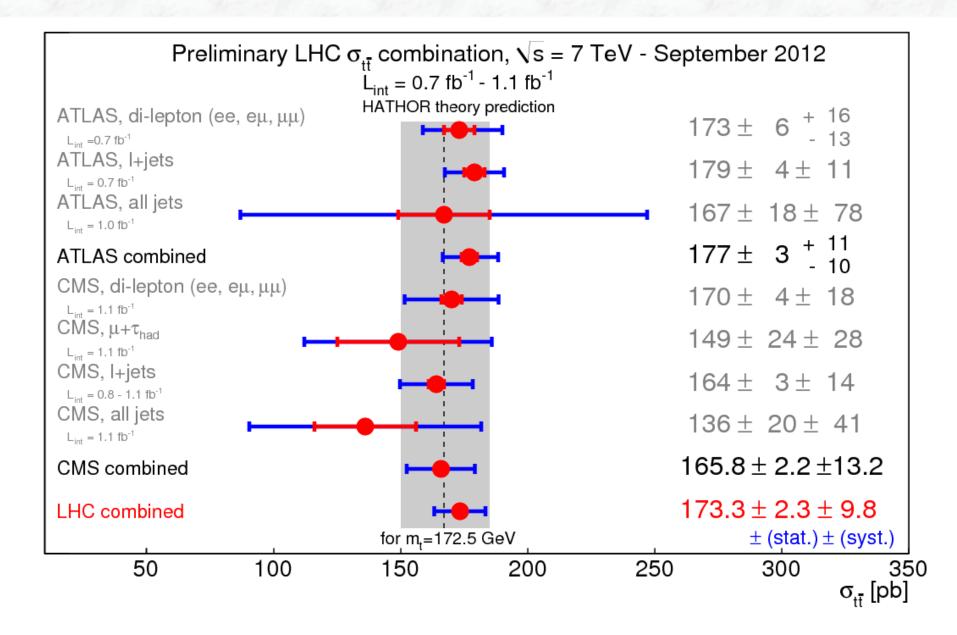


**Figure 6.** The multiplicity of b-tagged jets in events passing full event selections for (a) the summed  $e^+e^-$  and  $\mu^+\mu^-$  channels, and (b) the  $e^\pm\mu^\mp$  channels.

### CMS – dilepton channel results


Cross section results, di-lepton channel, CMS

| Channel  | PLR method                            | Counting analysis               |
|----------|---------------------------------------|---------------------------------|
| ee       | $168.0 \pm 6.6^{+7.6}_{-7.0} \pm 3.7$ | $165.9 \pm 6.4 \pm 7.0 \pm 3.6$ |
| $\mu\mu$ | $156.3 \pm 5.6^{+7.7}_{-6.6} \pm 3.5$ | $153.8 \pm 5.4 \pm 6.6 \pm 3.4$ |
| eμ       | $161.9\pm3.1^{+5.8}_{-5.4}\pm3.6$     | $161.6 \pm 3.1 \pm 5.6 \pm 3.6$ |
| Combined | $161.9 \pm 2.5^{+5.1}_{-5.0} \pm 3.6$ | $161.0 \pm 2.6 \pm 5.6 \pm 3.6$ |


**Table 4**. Measured  $\sigma_{t\bar{t}}$  in pb for a top quark mass of 172.5 GeV for each of the dilepton channels, as well as for their combination. The quoted uncertainties are, respectively, from statistical and systematic sources and the contributions from integrated luminosity.



### Top cross section measurements based on 2010 data from ATLAS and CMS



- Results between the two experiments are consistent
- Perturbative QCD calculations are in agreement with the obtained results

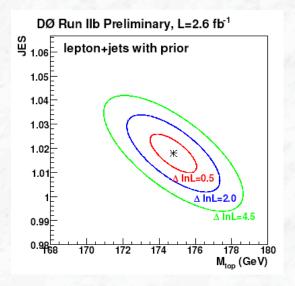


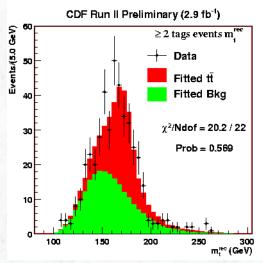
# 8.4 Top-quark mass measurement

#### Top mass measurements

- Top mass determination:
   No simple mass reconstruction possible,
   Monte Carlo models needed
  - $\rightarrow$  template methods,...

matrix element method...

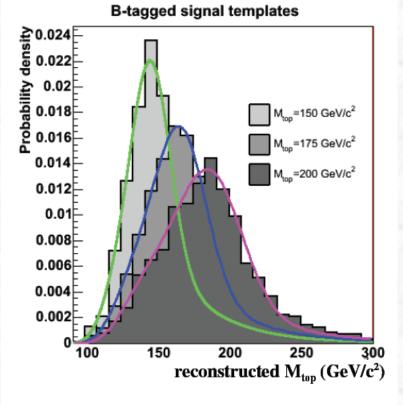

#### Most precise single measurements:


 $m_{top} = 172.1 \pm 0.9 \text{ (stat)} \pm 1.3 \text{ (syst)} \text{ GeV/c}^2 \text{ (CDF)}$ 

 $m_{top} = 173.7 \pm 0.8$  (stat)  $\pm 1.6$  (syst) GeV/c<sup>2</sup> (DØ)

 Reduce jet energy scale systematic by using in-situ hadronic W mass in tt events (simultaneous determination of m. and

(simultaneous determination of m<sub>t</sub> and energy scale)





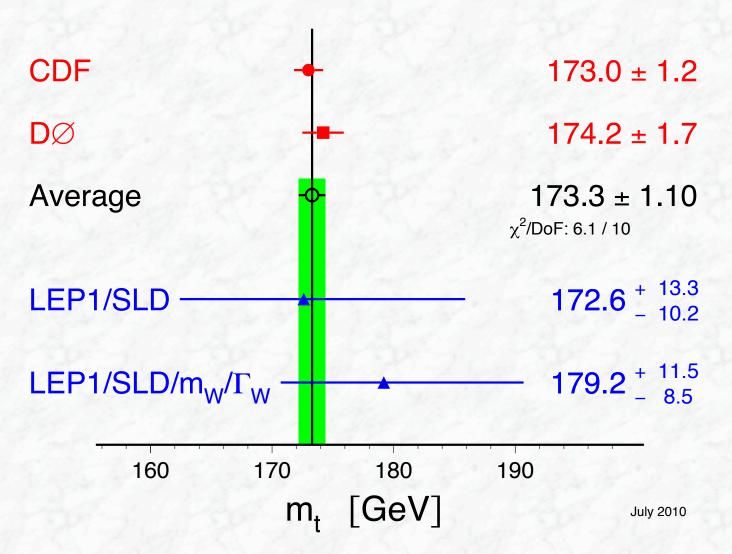

full hadronic channel

### Example: template method

- Calculate a per-event observable that is sensitive to m<sub>t</sub>
- Make templates from signal and background events
- Use pseudo-experiments (Monte Carlo) to check that method works
- Fit data to templates using maximum likelihood method



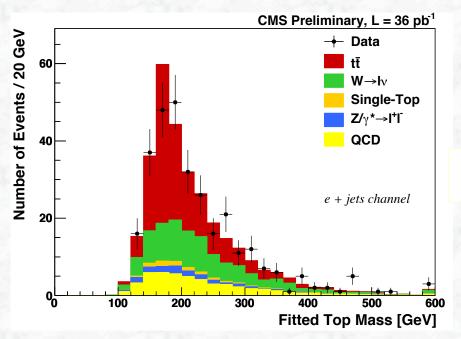
#### Summary of present results and future prospects




Expected LHC precision for 10 fb<sup>-1</sup>:

(Combination of several methods, maybe somewhat conservative)

1 GeV/c<sup>2</sup> < ~


# Top-Quark Mass [GeV]



#### First top quark mass measurements from CMS

CMS, 06.06.2011

- Use lepton + jet channel
- Full 2010 data set
- 637 candidate events selected

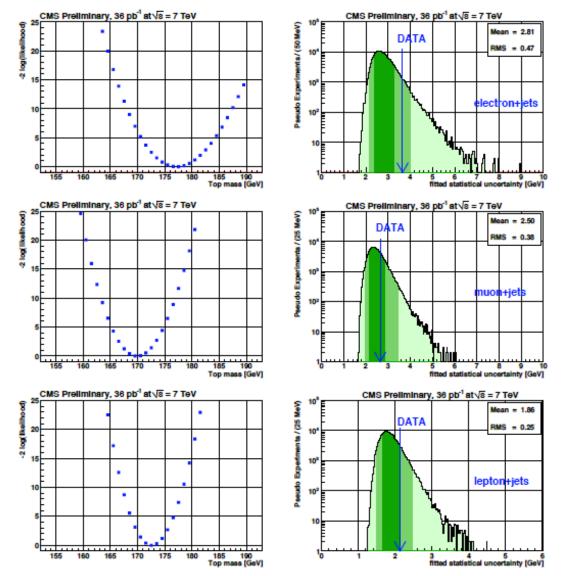
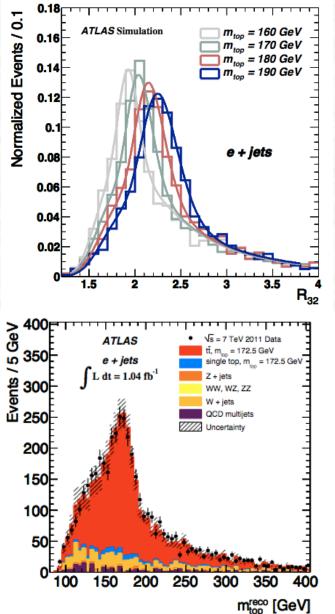


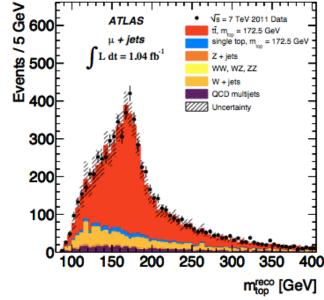
Top quark mass after the fit of the e+jets selected sample for an integrated luminosity of 36/pb after applying the event selection and requesting at least one solution with chi2<10.

 $m_{\rm t} = 173.4 \pm 1.9({\rm stat}) \pm 2.7({\rm syst})$  GeV.

Already impressive precision reached at that early stage of the experiment !

#### Estimated error compared to expectations from Monte Carlo simulations:



Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty compared to the expectation from MC pseudo-experiments (right), for the electron+jets (top), muon+jets (middle), and the combined lepton+jets channel (bottom).

### ATLAS top mass measurement

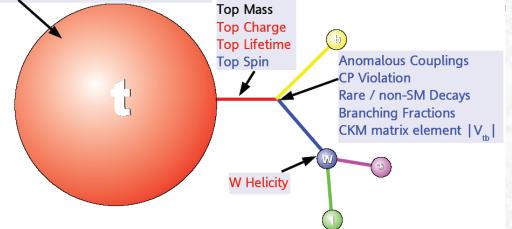


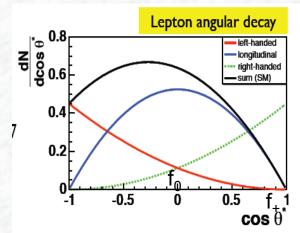
 $R_{32}$  = ratio between the reconstructed Top and W mass

$$m_{\rm top} = 174.5 \pm 0.6_{\rm stat} \pm 2.3_{\rm syst} \,\,{\rm GeV}$$

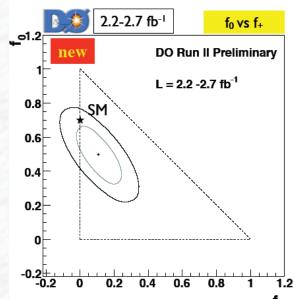


(c) e+jets channel


(d)  $\mu$ +jets channel


## Summary on top mass

|       | ATLAS                                                                    | m <sub>top</sub> summar                  | ry - May 201 | 3, L <sub>int</sub> = 35 | pb <sup>-1</sup> - 4.7 ft | o <sup>-1</sup> (*Prelimina            | ry)              |                               |
|-------|--------------------------------------------------------------------------|------------------------------------------|--------------|--------------------------|---------------------------|----------------------------------------|------------------|-------------------------------|
|       | AS 2010, I+jets*<br>2011-033, L <sub>int</sub> = 35 pb <sup>-1</sup>     |                                          | <del>.</del> | ••                       | 169.3                     | 0 ± 4.00                               |                  | ± 4.90                        |
|       | AS 2011, I+jets<br>ys. J. C72 (2012) 2046,                               | L <sub>int</sub> = 1.04 fb <sup>-1</sup> | -            | }}                       | 174.53                    | $3 \pm 0.61 \pm 0.43$                  | 3                | ± 2.27                        |
|       | AS 2011, all jets*<br>2012-030, L <sub>int</sub> = 2.05 fb <sup>-1</sup> | I.                                       | <b></b>      |                          | 174.90                    | 0 ± 2.10                               |                  | ± 3.80                        |
| 1     | <b>AS 2011, dileptor</b><br>2012-082, $L_{int} = 4.7 \text{ fb}^{-1}$    | n*                                       | -            | <b></b> ≎+               | ┥ 175.20                  | 0 ± 1.60                               |                  | ± 3.00                        |
|       | AS 2011, I+jets*<br>2013-046, L <sub>int</sub> = 4.7 fb <sup>-1</sup>    |                                          |              | H                        | 172.3                     | 1 ± 0.23 ± 0.27<br>± stat. ± JSF       |                  |                               |
|       | Average Septem<br>$36 \pm 0.38_{stat.} \pm 0.38_{stat.}$                 |                                          | н            | ●⊷                       |                           | – stat. uncertainty – stat. ⊕ JSF ⊕ bJ | /<br>ISF uncerta |                               |
|       | tron Average Ma                                                          | -                                        | н            | ●++                      |                           | <ul> <li>total uncertainty</li> </ul>  | ý                |                               |
| 173.2 | $20 \pm 0.51_{stat.} \pm 0.1$                                            | /1 <sub>JSF⊕syst.</sub>                  |              |                          |                           | <b>ATLAS</b> Pre                       | limina           | ry                            |
|       |                                                                          |                                          |              |                          |                           |                                        |                  |                               |
| 155   | 160                                                                      | 165                                      | 170          | 175                      | 180                       | 185                                    | 190              | 195<br>m <sub>top</sub> [GeV] |


#### Production Cross-Section Production Kinematics Spin Polarization Production via interm. Resonances t' Production

## Other top properties





| 5. 3. 6. 5                                      | Tevatron                                                  | luminosity<br>(fb <sup>-1</sup> ) |                  |
|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------|------------------|
| Mass                                            | 173.1 ± 1.                                                | 1 GeV                             | ~ 5.0            |
| W helicity                                      | CDF: $f_0 = 0.66 \pm 0.16$ ,<br>DØ: $f_0 = 0.49 \pm 0.14$ |                                   | 1.9<br>2.2 – 2.7 |
| Charge<br>Lifetime                              | rule out Q = +4/3<br>$\Gamma_t$ < 13.1 GeV                | (90.% C.L.)<br>(95% C.L.)         | 1.5              |
| V <sub>tb</sub><br>BR(t→Wb) / BR                | V <sub>tb</sub> > 0.89                                    | (95% C.L.)                        | ~ 1.0            |
| $(W \rightarrow Wq)$<br>BR (t $\rightarrow$ Zq) | R = 0.97 (+0.09) (-0.<br>< 3.7%                           | 08)<br>(95% C.L.)                 | 0.9              |



f\_

$$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{2}\left[F_{0}\left(\frac{\sin\theta_{\ell}^{*}}{\sqrt{2}}\right)^{2} + F_{L}\left(\frac{1-\cos\theta_{\ell}^{*}}{2}\right)^{2} + F_{R}\left(\frac{1+\cos\theta_{\ell}^{*}}{2}\right)^{2}\right]$$

$$\lim_{\substack{l \in \mathbb{R}^{n} \\ rest frame}} \ell$$

 $\theta_{\ell b}$ 

 $heta_\ell^* = \pi - heta_{\ell b}$ 

F<sub>i</sub><sup>0.4</sup>

0.3

0.2

0.1

-1

-0.75

-0.5

-0.25

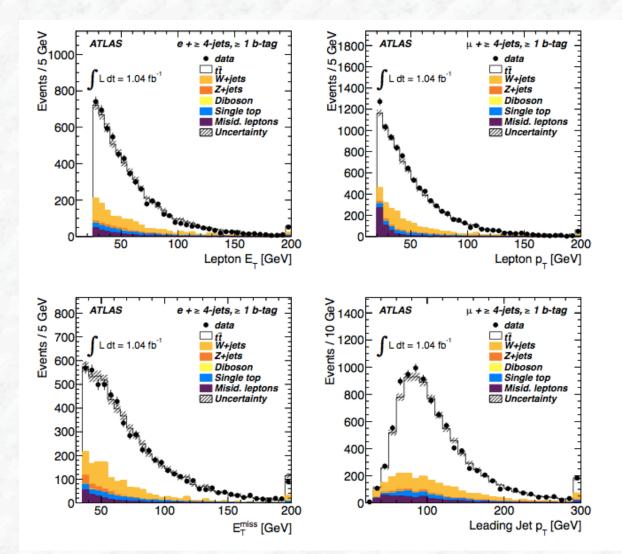
0

 $\cos\theta_1$ 

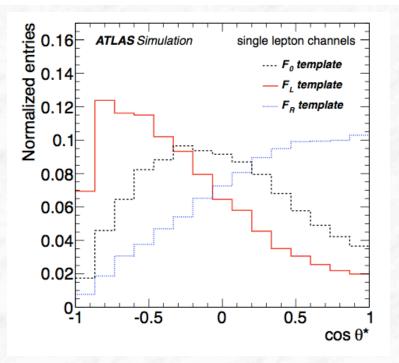
0.25

0.5

0.75

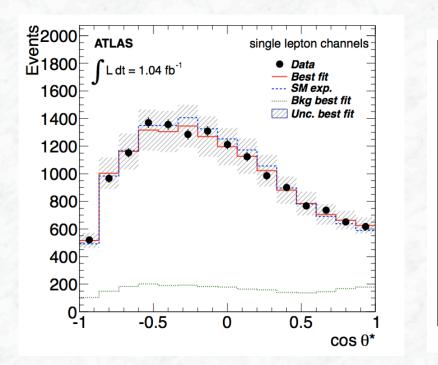

 $\nu$ 

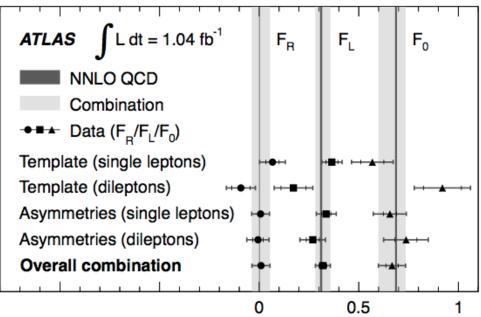
t


Measurement in both single and dilepton channels (we focus on the single Lepton channel)

- the appropriate single-electron or single-muon trigger had fired;
- events were required to contain exactly one isolated electron or muon;
- in the single-electron channel,  $E_{\rm T}^{\rm miss} > 35$  GeV and  $m_{\rm T}(W) > 25$  GeV were required<sup>2</sup> while in the single-muon channel the criteria were  $E_{\rm T}^{\rm miss} > 20$  GeV and  $E_{\rm T}^{\rm miss} + m_{\rm T}(W) > 60$  GeV;
- events were required to have at least four jets, with at least one of them being tagged as a b-jet.

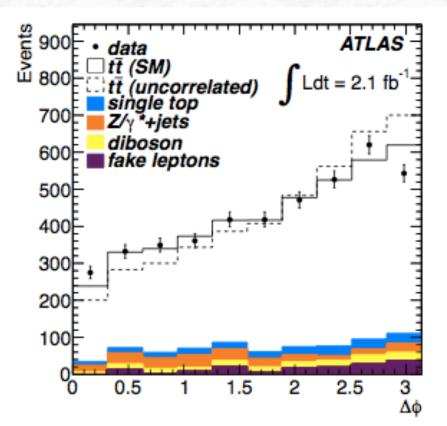
Kinematic fit determination to reconstruct the lepton angle in the W frame





| Process               | Single electron | Single muon     |
|-----------------------|-----------------|-----------------|
| $t\bar{t}$            | $4400\pm1100$   | $6500 \pm 1400$ |
| W+jets                | $900\pm~700$    | $1400\pm1000$   |
| Z+jets                | $120\pm90$      | $140\pm90$      |
| Diboson               | $14\pm 12$      | $22\pm12$       |
| Single top            | $260\pm90$      | $360\pm~110$    |
| Misidentified leptons | $220\pm220$     | $500\pm~500$    |
| Total predicted       | $5900 \pm 1300$ | $9000 \pm 1800$ |
| Data                  | 5830            | 9121            |

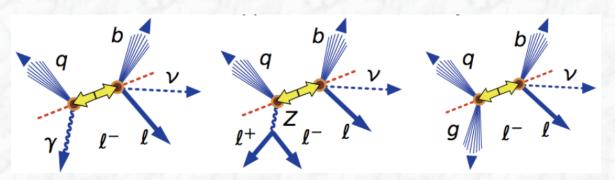


Combined fit to the final distribution with three pure helicity states templates plus three background components (W, non-prompt leptons, everything else)


$$egin{aligned} F_0 &= 0.67 \pm 0.03 \ ( ext{stat.}) \pm 0.06 \ ( ext{syst.}) \,, \ F_\mathrm{L} &= 0.32 \pm 0.02 \ ( ext{stat.}) \pm 0.03 \ ( ext{syst.}) \,, \ F_\mathrm{R} &= 0.01 \pm 0.01 \ ( ext{stat.}) \pm 0.04 \ ( ext{syst.}) \,. \end{aligned}$$



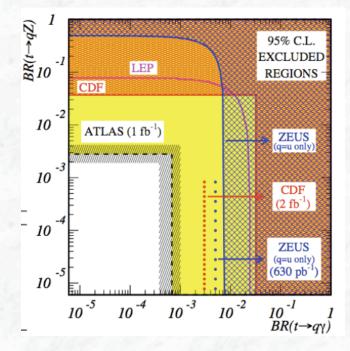



## Spin correlations

- Different production channels at the LHC and Tevatron
- This means different spin correlations in the final state -> complementary measurements from Tevatron and LHC
- Angular distribution consistent with the SM
- Absence of correlations excluded at 5.1 sigma

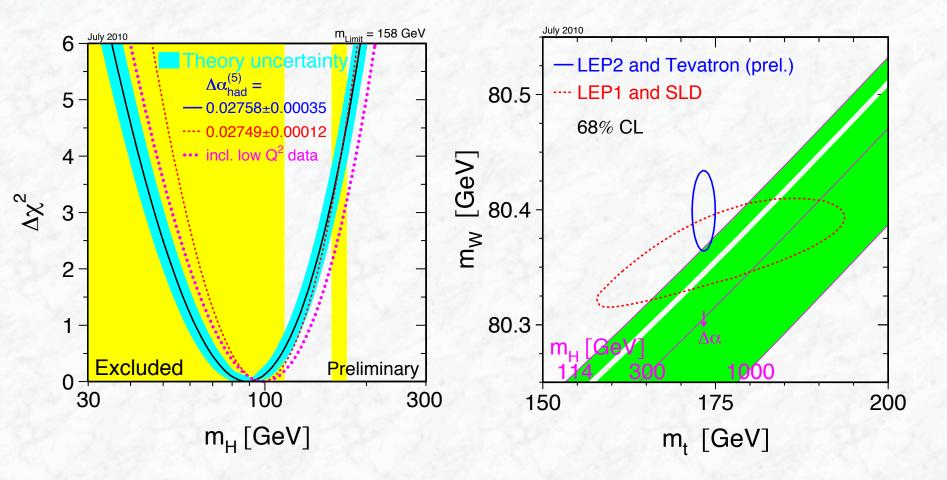


### LHC sensitivity for Rare Top Quark Decays


FCNC decays into qy, qZ and qg

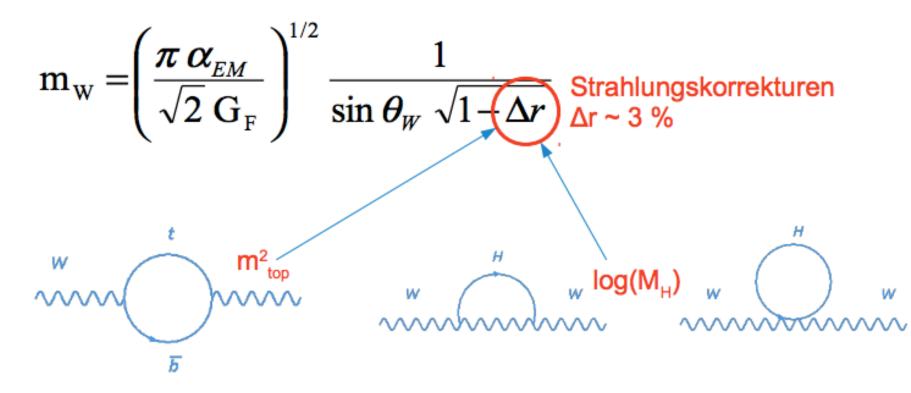


BR in Standard Model: ~  $10^{-12}$  for  $q\gamma$  and qZ~  $10^{-10}$  for qg


| Process                  | Expected 95% C.L. sensitivity (1 fb <sup>-1</sup> ) |
|--------------------------|-----------------------------------------------------|
| $t \rightarrow q \gamma$ | 6.8 · 10 <sup>-4</sup>                              |
| $t \rightarrow q Z$      | 2.8 · 10 <sup>-3</sup>                              |
| $t \rightarrow q g$      | 1.2 · 10 <sup>-2</sup>                              |

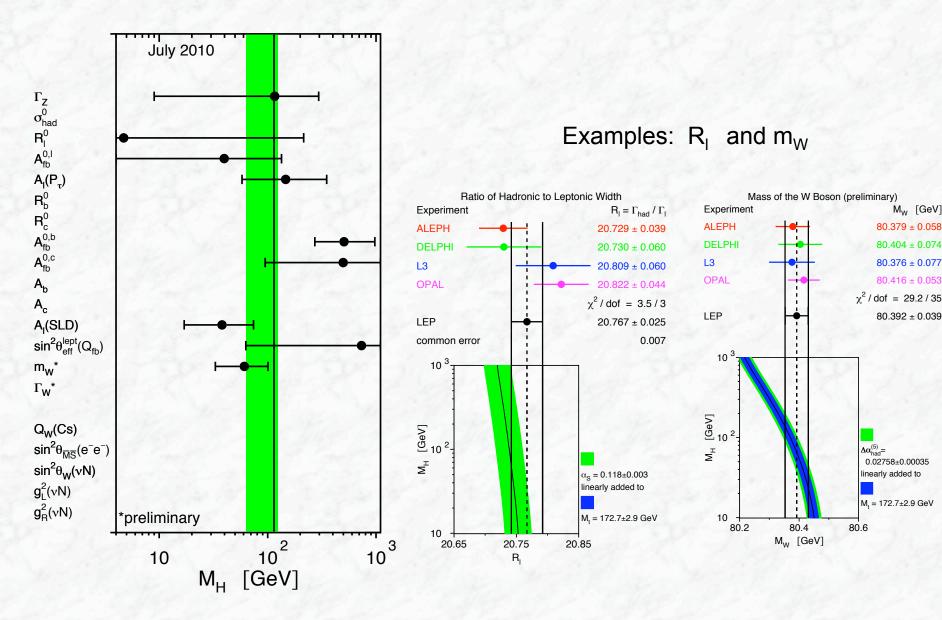
Expected  $5\sigma$  discovery sensitivity for 100 fb<sup>-1</sup>: for qg and qZ final states: ~  $10^{-4}$ 

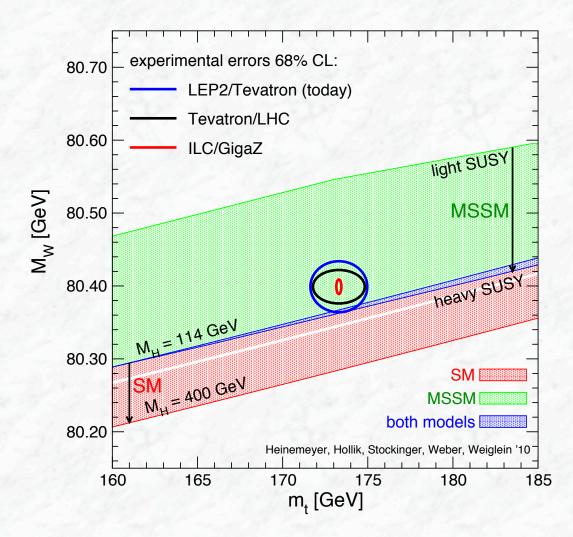



# 8.5 Constraints on the Standard Model

Pre – Higgs discovery: the Higgs boson mass enters logarithmically in loop corrections to the W mass



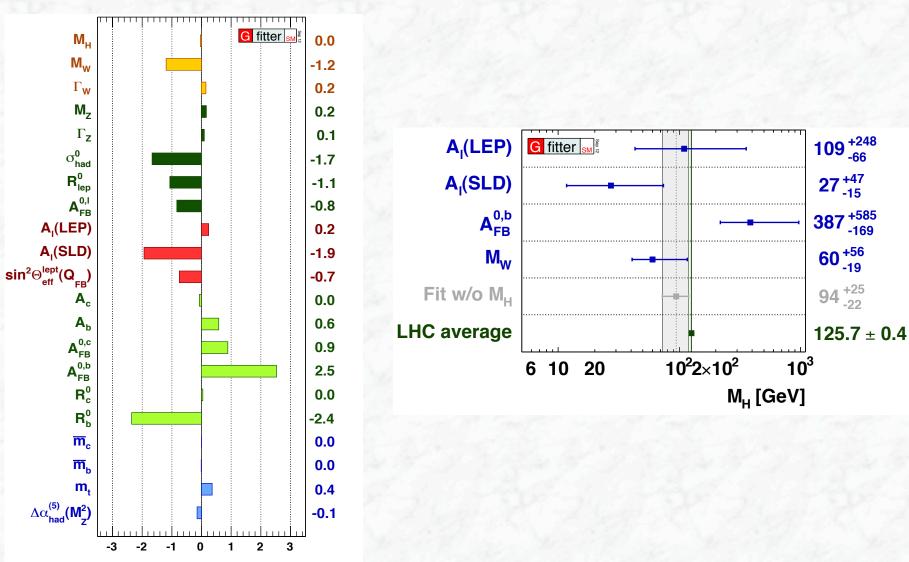

# Die Masse des W-Bosons


Wichtiger Konsistenzest, auch wenn SM Higgs-Boson gefunden ist

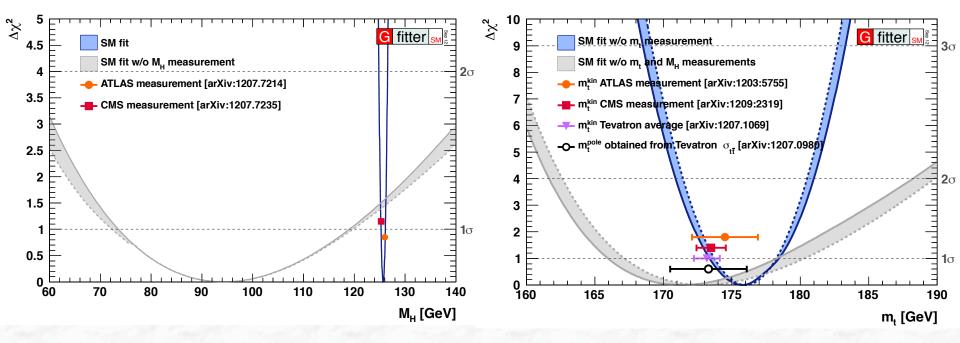


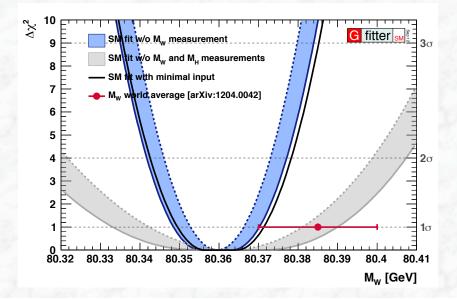
G<sub>F</sub>, α<sub>EM</sub> und sinθ<sub>w</sub> sind mit großer Präzision gemessen – nicht limitierend

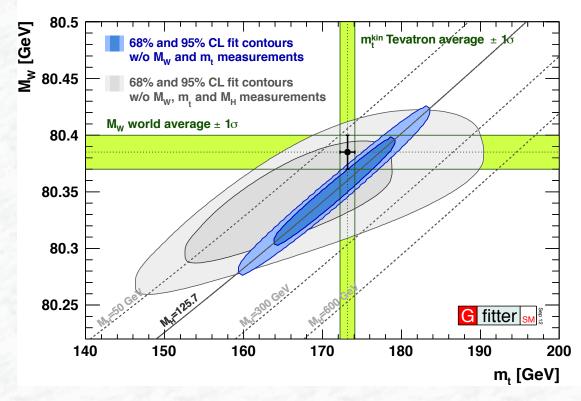
# Best estimate for the Higgs boson mass from the different electroweak observables:







Predictions for future precision (including LHC), compared to the Standard Model and its Minimal Supersymmetric Extension (MSSM)


Ultimate test of the Standard Model: compare direct prediction of Higgs mass with direct observation


### After the Higgs discovery



(O\_{\_{fit}} - O\_{\_{meas}}) / \sigma\_{\_{meas}}





