Übungen zu Physik an Hadron-Collidern SS 2013
 Prof. Karl Jakobs, Dr. Iacopo Vivarelli, Francesca Ungaro
 Übungsblatt Nr. 4

Die Lösungen müssen bis 11 Uhr am Donnerstag, 15.5.2013 in die
Briefkästen im Erdgeschoss des Gustav-Mie-Hauses eingeworfen werden!

1. Minimum bias interactions

Download the three ntuples named Minbias_900GeV $(2 \mathrm{TeV}, 7 \mathrm{TeV})$.root from
http://wwwhep.physik.uni-freiburg.de/~fungaro/hadronCollider/MinBias/
They contain the final state particles of simulated (with Pythia 8) non diffractive proton proton collisions at three different centre-of-mass energies. Each ntuple has a structure which should be obvious: for each event, 5 vectors are defined, containing the transverse momentum, the pseudorapidity, the ϕ angle, the charge and the PDG id of each particle produced in the event. The PDG id is a unique identifier for the particle identification ($\pi^{ \pm}, \pi^{0}, K^{ \pm}$and so on). To decode the PDG id, the following link can be useful:
http://pdg.lbl.gov/2002/montecarlorpp.pdf
Each ntuple contains 10^{5} events. The cross sections (according to Pythia) are $35(40,50)$ mb for $\sqrt{s}=900(2000,7000) \mathrm{GeV}$

For each of the three centre-of-mass energies:

- To what integrated luminosity correspond the 10^{5} events? [1 point]
- Investigate the particle spectrum. What is the average composition of particles with $p_{T}>100 \mathrm{MeV}$? [2 point]
- Where do all those photons come from mainly? Is the fraction of $\pi^{ \pm}$with respect to π^{0} roughly in agreement with arguments from isospin symmetry? [2 point]
- Plot the following distribution of charged particles with $p_{T}>100 \mathrm{MeV}$ and $|\eta|<2.5$ (be careful with the normalization):

$$
\begin{equation*}
\frac{1}{N_{e v}} \frac{d N_{c h}}{d \eta} \quad \frac{1}{N_{e v}} \frac{1}{2 \pi p_{T}} \frac{d^{2} N_{c h}}{d p_{T} d \eta} \quad \frac{1}{N_{e v}} \frac{d N_{e v}}{d n_{c h}} \tag{1}
\end{equation*}
$$

where $N_{e v}$ is the number of event, $N_{c h}$ is the number of charged particles, $n_{c h}$ is the number of charged particles per event. [2 points per distribution]
[Bonus questions:] Address also the following points:

- What is the average charged particle multiplicity (with $p_{T}>100 \mathrm{MeV}$) at $\eta=0$ in each centre-of-mass energy point? Make a plot. [2 bonus points]
- Compare the results with those shown in http://arxiv.org/pdf/1012.5104v2
shortly discussing possible sources of differences in the results. [2 bonus points]

