$$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$$

• With respect to $t_1 \rightarrow tX_1^0$, the mass of the chargino is one additional degree of freedom

Hypothesis	Targeted signature (3 players at 8 TeV)	
gaugino universality: $m_{X\pm} \sim 2m_{X0}$	2-leptons - large leptons M _{T2} 1-lepton (dedicated SR)	
stop-chargino mass degeneracy m _{X±} ~m _{t1} - 10 GeV	2-leptons - large leptons MT2	
neutralino-chargino mass degeneracy (favoured if X_1^0, X_1^{\pm} higgsino-like): $m_{X_{\pm}} \sim m_{X_0}$	2 b-jets + MET; 0-lepton	
Fixed chargino mass at 150 GeV	2-leptons - large leptons M _{T2} 1-lepton (dedicated SR)	

- 2 b + E_T^{miss} analysis already discussed
- Same signal regions as for direct sbottom sensitive to $t_1 \rightarrow bX_1^{\pm}$ for small $\Delta m(X_1^{\pm}, X_1^{0})$
- Loss of acceptance due to lepton and jet veto

Stop summary

Electroweak \tilde{X}^0 , \tilde{X}^{\pm} production

- Neutralinos and chargino masses of few hundreds
 GeV expected in natural SUSY models
- LHC has sensitivity to the EW coupling-suppressed cross sections
- Give rise to multi-lepton final states
 - Very low SM background expected

Electroweak \tilde{X}^0 , \tilde{X}^{\pm} production

Production channel	Analysis	
chargino pair production	2-leptons	
$\mathbf{\tilde{X}}_{1} \mathbf{\tilde{X}}_{2}$ production	2-leptons, 3-leptons	
$\mathbf{\tilde{X}}_{2^{0}}\mathbf{\tilde{X}}_{3^{0}}$ production	4-leptons	

3-leptons background prediction validation

Background prediction
 validated in dedicated
 regions with different

Selection	VRnoZa	VRnoZb	VRZa	VRZb
m _{SFOS} [GeV]	<81.2 or >101	.2 <81.2 or >10	01.2 81.2-101.2	81.2-101.2
<i>b</i> -jet	veto	request	veto	request
$E_{\rm T}^{\rm miss}$ [GeV]	35-50	>50	30-50	>50
Dominant proce	ss WZ^*, Z^*Z^*, Z^*+	jets $t\bar{t}$	WZ, Z+jets	WZ
1.1.19	*65*-61	1000		NG1
election	VRnoZa	VRnoZb	VRZa	VRZb
ri-boson	1.4 ± 1.4	0.5 ± 0.5	0.6 ± 0.6	0.26 ± 0.26
Z	$(1.3 \pm 0.9) \times 10^{2}$	4.5 ± 2.8	108 ± 23	6.9 ± 2.2
V	2.9 ± 1.2	21 ± 7	7.4 ± 2.6	26 ± 8
VZ	110 ± 21	34 ± 15	$(5.5 \pm 0.9) \times 10^{2}$	$(1.4 \pm 0.4) \times 10^{2}$
SM irreducible	$(2.4 \pm 0.9) \times 10^2$	60 ± 16	$(6.6 \pm 0.9) \times 10^{2}$	$(1.7 \pm 0.4) \times 10^{2}$
M reducible	$(1.5 \pm 0.6) \times 10^2$	$(0.7 \pm 0.4) \times 10^2$	$(3.8 \pm 1.4) \times 10^{2}$	27 ± 13
SM	$(3.9 \pm 1.1) \times 10^2$	$(1.3\pm 0.5)\times 10^2$	$(10.4 \pm 1.7) \times 10^{2}$	$(2.0 \pm 0.4) \times 10^{2}$
Data	463	141	1131	171

3-leptons results

3-leptons interpretation

- Signal interpretation (simplified models) assumes wino-like X_2^0 and X_1^{\pm} , bino-like X_1^0 : $m(X_2^{0}) = m(X_1^{\pm})$
- Degenerate neutralino-chargino mass excluded up to 610 GeV if decay via sleptons is assumed
- masses up to 310 GeV excluded even for the decay through W/Z bosons

Further reading, available on the web:

- S. Martin, "A Supersymmetry Primer", hep-ph/97093 http://arxiv.org/abs/hep-ph/9709356
- D.I. Kazakov, "Beyond the Standard Model", CERN school 2004
 <u>http://doc.cern.ch/yellowrep/2006/2006-003/p169.pdf</u>
- J. Ellis, Supersymmetry for Alp Hikers http://arxiv.org/abs/hep-ph/0203114

Lehrbücher:

- H.Baer, X. Tata, "Weak Scale Supersymmetry", 2006
- Drees, Godbole, Roy, "Theory and Phenomenology of Sparticles", 2004

BACKUP

Search for Charginos and Neutralinos - the tri-lepton channel-

 Gaugino pair production via electroweak processes (small cross sections, ~0.1 – 0.5 pb, however, small expected background)

• For small gaugino masses (~100 GeV/c²) one needs to be sensitive to low P_T leptons

Analysis:

- Search for different (*lll*) + like-sign $\mu\mu$ final states with missing transverse momentum
- In order to gain efficiency, no lepton identification is required for the 3rd lepton, select: two identified leptons + a track with $p_T > 4$ GeV/c

mSUGRA interpretation

For specific scenarios: sensitivity / limits above LEP limits; e.g., $M(\chi^{\pm}) > 140 \text{ GeV/c}^2$ for the 3l-max scenario

9.5 Search for Supersymmetry at the LHC

 If SUSY exists at the electroweak scale, a discovery at the LHC should be easy

Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

 Step: Look for deviations from the Standard Model Example: Multijet + E_τ^{miss} signature

2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution

3. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations

Sparticle production at the LHC

Quark-gluon fusion

Quark

Cross sections for SUSY production processes

Examples of SUSY decay chains at the LHC:

Typical final states: jets + E_T^{miss} (+ leptons)

A typical search for squark and gluino production

- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_{τ}^{miss}
- Typical selection: $N_{iet} > 4$, $E_T > 100, 50, 50, 50$ GeV, $E_T^{miss} > 100$ GeV
- Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

example: mSUGRA, point SU3 (bulk region) $m_0 = 100 \text{ GeV}, m_{1/2} = 300 \text{ GeV}$ $\tan \beta = 6$, $A_0 = -300 \text{ GeV}$, $\mu > 0$

Expectations from simulations:

LHC reach for squark- and gluino masses: $0.1 \text{ fb}^{-1} \implies M \sim 750 \text{ GeV}$ $\begin{array}{cccc} 1 \ \text{fb}^{\text{-1}} & \Rightarrow & \mathsf{M} \sim 1350 \ \text{GeV} \\ 10 \ \text{fb}^{\text{-1}} & \Rightarrow & \mathsf{M} \sim 1800 \ \text{GeV} \end{array}$

Deviations from the Standard Model due to SUSY at the TeV scale can be detected fast !

First results on the search for Etmiss + jets, no leptons (2010 data)

Simple selection:

- 3 jets with p_T > 50 GeV , η < 2.5
- H_T > 300 GeV (scalar sum of jets with p_T > 50 and η < 2.5)
- H_T^{miss} > 150 GeV (modulus of vector sum of jets with p_T > 30 GeV and η < 5)

Good agreement between data and expectations from Standard Model processes
 No evidence for an excess → limits in SUSY parameter space

- Significant extension of exclusion contours in the squark-gluino mass plane
- Gluinos below 500 GeV are excluded for m(squarks) < 1000 GeV

First results on the search for E_T^{miss} + jets (165 pb⁻1) (part of 2011 data already included)

Selection of events with E_T^{miss} + jets

Split the analysis according to jet multiplicities: 2,3 and 4 jets (different sensitivity for different squark/gluino mass combinations, i.e. in different regions of SUSY parameter space)

MSSM/cMSSM interpretation (for equal squark and gluino masses): L = 165 pb⁻¹: m(squark), m(gluino) > 950 GeV

A display of the reconstructed event with the highest m_{eff} (1548 GeV) found in the ATLAS data sample. This event possesses four jets with $p_T > 40$ GeV ($p_T = 636$, 189, 96 and 81 GeV respectively) and $E_T^{miss} = 547$ GeV.

...additional potential: inclusive searches with leptons i.e. E_T^{miss}, jets + leptons

- Smaller signal rates, but different background composition
- Again: data are well described by contributions from Standard Model processes
- Similar exclusions in the MSSM models

Multi-lepton search in CMS

- Multi-leptons are produced via associated production of charginos and neutralinos (like at Tevatron, see above)
- Limits extracted are already beyond the Tevatron

9.6 How can the parameter of the SUSY model be constrained ?

- Not easy !!
- Other possible scenarios for Physics Beyond the Standard Model could lead to similar final state signatures
 e.g. search for direct graviton production in extra dimension models

Measurement of the SUSY spectrum \rightarrow Parameter of the theory

LHC: strongly interacting squarks and gluinos ILC / CLIC: precise investigation of electroweak SUSY partners

LHC Strategy: End point spectra of cascade decays

Example:

$$\widetilde{q} \to q \widetilde{\chi}_2^0 \to q \widetilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \widetilde{\chi}_1^0$$

$$M^{max}_{\ell^{+}\ell^{-}} = \frac{\sqrt{(m^{2}_{\chi^{0}_{2}} - m^{2}_{\widetilde{\ell}})(m^{2}_{\widetilde{\ell}} - m^{2}_{\chi^{0}_{1}})}}{m_{\widetilde{\ell}}}$$

$$M_{\ell_1 q}^{max} = \frac{\sqrt{(m_{\chi_2^0}^2 - m_{\tilde{\ell}}^2)(m_{\tilde{q}}^2 - m_{\chi_2^0}^2)}}{m_{\chi_2^0}}$$

Results for point 01:

	LHC	LHC⊕ILC
$\Delta m_{\tilde{\chi}_1^0}$	4.8	0.05 (input)
$\Delta m_{\tilde{l}_B}$	4.8	0.05 (input)
$\Delta m_{ ilde{\chi}_2^0}$	4.7	0.08
$\Delta m_{\tilde{q}_L}$	8.7	4.9
$\Delta m_{\tilde{q}_R}$	11.8	10.9
$\Delta m_{\tilde{g}}$	8.0	6.4
$\Delta m_{\tilde{b}_1}$	7.5	5.7
$\Delta m_{\tilde{b}_2}$	7.9	6.2
$\Delta m_{\tilde{l}L}$	5.0	0.2 (input)
$\Delta m_{\tilde{\chi}_4^0}$	5.1	2.23

 $L = 300 \text{ fb}^{-1}$

The LHC and the ILC (International Linear Collider, in study/planning phase) are complementary in SUSY searches

 $m_{1/2}$

)* Study by J. Ellis et al., hep-ph/0202110

 \mathbf{m}_0

Strategy in SUSY Searches at the LHC:

- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ's, long lived sleptons)
- Look for l^{\pm} , $l^{+} l^{-}$, $l^{\pm} l^{\pm}$, b-jets, τ 's
- End point analyses, global fit \rightarrow SUSY model parameters

Dark Matter at Accelerators ?

Parameter of the SUSY-Model \Rightarrow Predictions for the relic density of **Dark Matter**

$$\rho_{\chi} \sim m_{\chi} n_{\chi}, \quad n_{\chi} \sim \frac{1}{\sigma_{ann}(\chi\chi \rightarrow \ldots)}$$

Importance for the interplay between direct and indirect Dark Matter searches

- Following a discovery of New Physics at the LHC (deviation from the Standard Model) the LHC will aim to test the Dark Matter hypothesis
- Estimation of relic density in a simple model-dependent scenario will be the first goal
- Less model-dependent scenarios will follow, detailed studies probably require the ILC
- Conclusive result is only possible in conjunction with astroparticle physics experiments
- Ultimate goal: observation of LSP at the LHC, confirmed by a signal in a direct dark matter experiment with predicted mass and cross-section

