Übungen zu Physik an Hadron-Collider SS 2013 Prof. Karl Jakobs, Dr. Iacopo Vivarelli, Francesca Ungaro Übungsblatt Nr. 9

Die Lösungen müssen bis 11 Uhr am Mittwoch den 3.7.2013 in die Briefkästen im Erdgeschoss des Gustav-Mie-Hauses eingeworfen werden!

1. Top quark decay

The muon decay width Γ_{μ} can be very roughly estimated using dimensional arguments. The Feynman diagram involves two weak vertices, which means the width will be proportional to G^2 (G being the Fermi constant).

 Based ONLY on dimensional arguments, write down an expression for Γ_μ as a function of G and the muon mass m_μ [2 points]

Note that the estimate is quite wrong, as in the exact calculation there is a large, dimensionless factor $1/192\pi^3$ which is involved in the expression.

With similar arguments, one can compute the width Γ_t of a top quark decaying into a Wb.

- Why is the t → Wb decay in practice the only decay channel of the top quark? [1 point]
- Based ONLY on dimensional arguments, write down an expression for Γ_t as a function of G and the top mass m_t [2 points]
- The result of the exact LO calculation is that a factor $1/8\pi\sqrt{2}$ has to multiply the expression obtained at the previous point. Write down the numerical estimate for Γ_t . [2 points]

On http://wwwhep.physik.uni-freiburg.de/~fungaro/hadronCollider/Top you find the ntuple Top.root containing 7 TeV $pp \rightarrow t\bar{t} \rightarrow l\nu qqbb$ events at truth level (you have the *b* and light quarks, and the lepton 4-vector).

• Make a plot of the top mass by explicitly reconstructing the decay (note there is some ambiguity in the association of the two *b* quarks). How accurate is the calculation of Γ_t made before? [2 points]