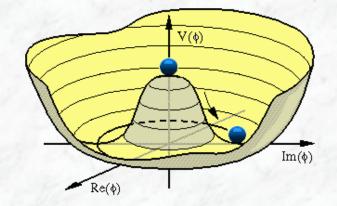
7. Physics of the Higgs Boson

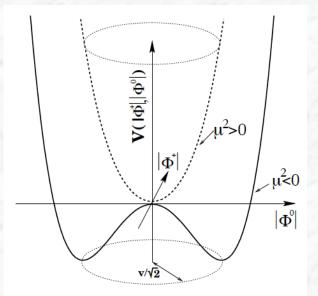
- 7.1 The Higgs boson in the Standard Model
- 7.2 Properties of the Higgs boson
- 7.3 Higgs boson production at hadron colliders



- 7.4 The search for and discovery of a Higgs boson at the LHC
- 7.5 What are its properties? Is it the Higgs boson of the Standard Model?

7.1 The Higgs boson in the Standard Model

(a brief summary, for more details, see lecture notes)



The structure of the Standard Model

Fundamental principle: Prototype:

Local gauge invariance **Quantum Electrodynamics (QED)**

Free Dirac equation:

Lagrangian formalism:

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$
$$L = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi$$

Local gauge transformation:

 $\psi(x) \to e^{i\alpha(x)}\psi(x)$

(derivative:

derivative:

$$\partial_{\mu}\psi \rightarrow e^{i\alpha(x)}\partial_{\mu}\psi + ie^{i\alpha(x)}\psi\partial_{\mu}\alpha$$
,
 $\delta_{\mu}\alpha$ term breaks the invariance of L)

Invariance of L under local gauge transformations can be accomplished by introducing a gauge field A_{μ} , which transforms as:

$$A_{\mu} \rightarrow A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$
 where $e = g_e/4\pi = \text{coupling strength}$

Can be formally achieved by the construction of a "modified" derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ieA_{\mu}$$
 (covariant derivative)

\rightarrow Lagrangian of QED:

$$L = i \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \overline{\psi} \psi + e \overline{\psi} \gamma^{\mu} A_{\mu} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

interaction term

where $F_{\mu\nu}$ is the usual field strength tensor:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Note:

(i) Imposing local gauge invariance leads to the interacting field theory of QED (ii) A mass term ($\frac{1}{2}m^2A_{\mu}A^{\mu}$) for the gauge field A_{μ} would violate gauge invariance

Similar for the Standard Model interactions:

Quantum Chromodynamics (QCD):

SU(3) transformations, 8 gauge fields, 8 massless gluons, Gluon self-coupling - T_a (a = 1,...,8) generators of the SU(3) group

- (independent traceless 3x3 matrices)
- G_{μ} gluon fields
- g = coupling constant

Electroweak Interaction (Glashow, Salam, Weinberg): $SU(2)_{I} \times U(1)_{Y}$ transformations,

4 gauge fields, $(W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3}, B_{\mu})$

Physical states:

$$W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^1_{\mu} \mp i W^2_{\mu} \right)$$

 $Z_{\mu} = -\sin \theta_{W} B_{\mu} + \cos \theta_{W} W_{\mu}^{3}$ $A_{\mu} = \cos \theta_{W} B_{\mu} + \sin \theta_{W} W_{\mu}^{3}$

$$D_{\mu} = \partial_{\mu} + igT_{a}G_{\mu}^{a}$$
$$G_{\mu}^{a} \rightarrow G_{\mu}^{a} - \frac{1}{g}\partial_{\mu}\alpha_{a} - f_{abc}\alpha_{b}G_{\mu}^{c}$$

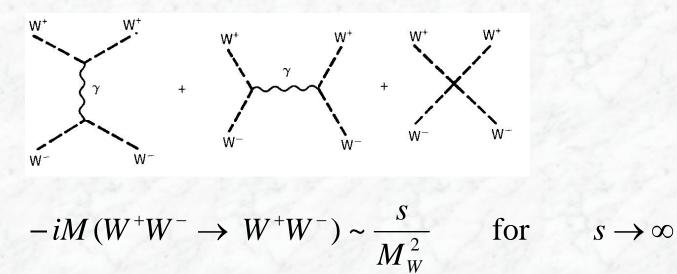
Problems at that stage:

Masses of the vector bosons W and Z:

Experimental results: $m_W = 80.385 \pm 0.015 \text{ GeV}/c^2$ $m_Z = 91.1875 \pm 0.0021 \text{ GeV}/c^2$

A local gauge invariant theory requires massless gauge fields

Divergences in the theory (scattering of W bosons)



Solution to both problems:

- create mass via spontaneous breaking of electroweak symmetry
- introduce a scalar particle that regulates the WW scattering amplitude

→ Higgs Mechanism

The Higgs mechanism

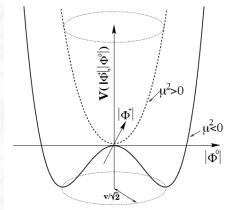
Spontaneous breaking of the SU(2) x U(1) gauge symmetry

Scalar fields are introduced

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

Potential :

$$V(\phi) = \mu^2(\phi^*\phi) + \lambda(\phi^*\phi)^2$$



• Lagrangian for the scalar fields: g, g ' = SU(2), U(1) gauge couplings

$$\mathbf{L}_{2} = \left[i\partial_{\mu} - g\mathbf{T} \cdot \mathbf{W}_{\mu} - g'\frac{\mathbf{Y}}{2}B_{\mu} \right] \phi \Big|^{2} - V(\phi)$$

• For
$$\mu^2 < 0$$
, $\lambda > 0$,
minimum of potential:

$$\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = \mathbf{V}^2$$
 $\mathbf{V}^2 = -\mu^2 / \lambda$

$$\phi_0(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \Rightarrow$$

Particle content and masses

- Mass terms for the W^{\pm} bosons:

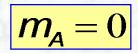
$$m_{W^{\pm}} = \frac{1}{2} vg$$

- Remaining terms off-diagonal in W_{μ}^{3} and B_{μ} :

$$\frac{1}{8}v^{2}(W_{\mu}^{3}, B_{\mu})\begin{pmatrix}g^{2} & -gg'\\-gg' & g'^{2}\end{pmatrix}\begin{pmatrix}W^{3\mu}\\B^{\mu}\end{pmatrix} = \frac{1}{8}v^{2}\left[gW_{\mu}^{3} - g'B_{\mu}\right]^{2} + 0\left[g'W_{\mu}^{3} + gB_{\mu}\right]^{2}$$

- Massless photon:

$$A_{\mu} = \frac{g' W_{\mu}^{3} + g B_{\mu}}{\sqrt{g^{2} + {g'}^{2}}} \quad with$$



- Massive neutral vector boson:
$$Z_{\mu} = \frac{gW_{\mu}^3 - g'B_{\mu}}{\sqrt{g^2 + {g'}^2}}$$
 with $m_Z = \frac{1}{2}v\sqrt{g^2 + {g'}^2}$

Masses of the gauge bosons:

$$\begin{split} & \left| \left(-ig \frac{\tau}{2} \cdot \mathbf{w}_{\mu} - i \frac{g'}{2} B \right) \phi \right|^{2} \\ &= \frac{1}{8} \left| \left(\begin{array}{c} gW_{\mu}^{3} + g'B_{\mu} & g(W_{\mu}^{1} - iW_{\mu}^{2}) \\ g(W_{\mu}^{1} + iW_{\mu}^{2}) & -gW_{\mu}^{3} + g'B_{\mu} \end{array} \right) \left(\begin{array}{c} 0 \\ v \end{array} \right) \right|^{2} \\ &= \frac{1}{8} v^{2} g^{2} \left[(W_{\mu}^{1})^{2} + (W_{\mu}^{2})^{2} \right] + \frac{1}{8} v^{2} (g'B_{\mu} - gW_{\mu}^{3}) (g'B^{\mu} - gW^{3\mu}) \\ &= \left(\frac{1}{2} vg \right)^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{8} v^{2} (W_{\mu}^{3}, B_{\mu}) \left(\begin{array}{c} g^{2} & -gg' \\ -gg' & g'^{2} \end{array} \right) \left(\begin{array}{c} W^{3\mu} \\ B^{\mu} \end{array} \right) \end{split}$$

Important relations in the Glashow-Salam-Weinberg model:

Relation between the gauge couplings:

 \rightarrow Important prediction of the GSW with a Higgs doublet:

or expressed in terms of the ρ parameter:

• From the M_w relation the value of the vacuum expectation value of the Higgs field can be calculated:

$$\frac{1}{2v^2} = \frac{g^2}{8m_W^2} = \frac{G_F}{\sqrt{2}} \qquad \Rightarrow \quad v = 246 \; GeV$$

where G_F = Fermi constant, know from low energy experiments (muon decay)

$$\frac{g'}{g} = \tan \theta_W$$

 $\frac{m_{W}}{m_{W}} = \cos\theta_{W}$

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1$$

$$v = 246 GeV$$

Masses of the Fermions:

 The same Higgs doublet which generates W[±] and Z masses is sufficient to give masses to the fermions (leptons and quarks):
 e.g. for electrons: use an arbitrary coupling G_e

$$L_{3} = -G_{e} \left[(\overline{\nu}_{e}, \overline{e})_{L} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} e_{R} + \overline{e}_{R}(\phi^{-}, \overline{\phi}^{0}) \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L} \right]$$

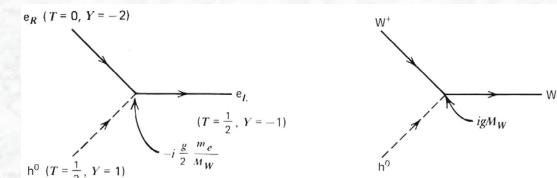
• Spontaneous symmetry breaking:

$$L_{3} = -\frac{G_{e}v}{\sqrt{2}}(\bar{e}_{L}e_{R} + \bar{e}_{R}e_{L}) - \frac{G_{e}}{\sqrt{2}}(\bar{e}_{L}e_{R} + \bar{e}_{R}e_{L})h$$
mass term
interaction term with
the Higgs field

$$\phi = \sqrt{\frac{1}{2} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}}$$

 Important relation: coupling of the Higgs boson to fermions is proportional to their mass

$$G_f = \frac{\sqrt{2} m_f}{v}$$



and finally..... a massive scalar with self-coupling, the **Higgs boson**:

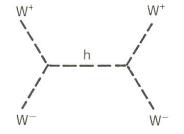
• Mass:
$$m_h^2 = 2v^2\lambda$$

(since λ is not predicted by theory, the mass of the Higgs boson is unknown)

• Self-coupling:
$$-\lambda vh^3 - \frac{1}{4}\lambda h^4$$

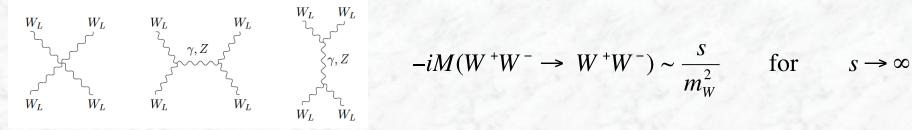
..... and:

• The additional diagram, with Higgs boson exchange, regulates the divergences in the longitudinal WW scattering

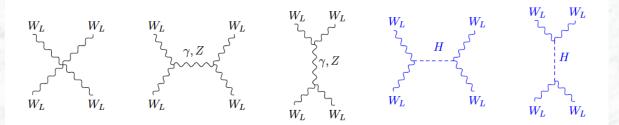


The Higgs boson as a UV regulator

Scattering of longitudinally polarized W bosons

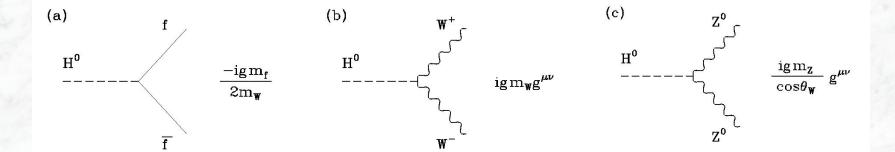


Higgs boson guarantees unitarity (if its mass is < -1 TeV)



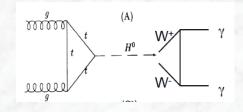
 $-iM(W^+W^- \rightarrow W^+W^-) \sim m_H^2 \quad \text{for} \quad s \rightarrow \infty$

7.2 Higgs boson properties

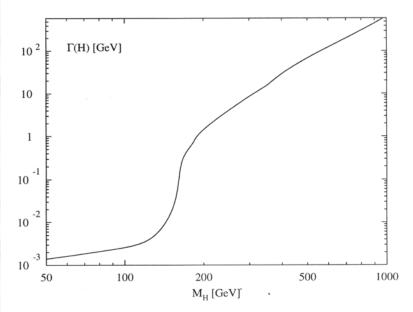


Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

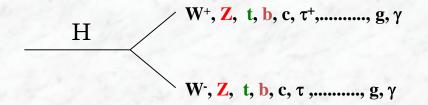


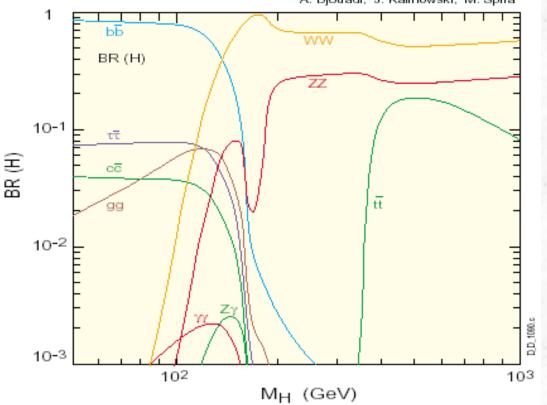
 $\Gamma(H \to f\bar{f}) = N_c \frac{G_F}{4\sqrt{2\pi}} m_f^2(m_H^2) m_H$ $\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2\pi}} m_H^3 (1 - 4x + 12x^2) \beta_V$ where: $\delta_Z = 1, \ \delta_W = 2, \ x = m_V^2 / m_H^2, \ \beta = \text{velocity}$ (+ W -loop contributions) $\Gamma(H \to gg) = \frac{G_F \alpha_a^2(m_H^2)}{36\sqrt{2\pi^3}} m_H^3 \left[1 + \left(\frac{95}{4} - \frac{7N_f}{6}\right) \frac{\alpha_a}{\pi} \right]$ $\Gamma(H \to \gamma\gamma) = \frac{G_F \alpha_a^2}{128\sqrt{2\pi^3}} m_H^3 \left[\frac{4}{3} N_C e_t^2 - 7 \right]^2$



Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the **mass** is known:





A. Djouadi, J. Kalinowski, M. Spira

Constraints on the Higgs boson mass

- 1. Constraints from theory
- 2. Indirect limits from electroweak precision data (theory and experiment)
- 3. Limits from Direct Searches (LEP, Tevatron)

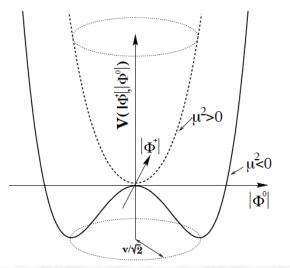
(i) Theory Constraints on the Higgs boson mass

• Unitarity limit:

If Higgs boson too heavy, the regulation of the WW cross section is less effective and unitarity is violated again

 \rightarrow m_H < ~1 TeV (as just discussed)

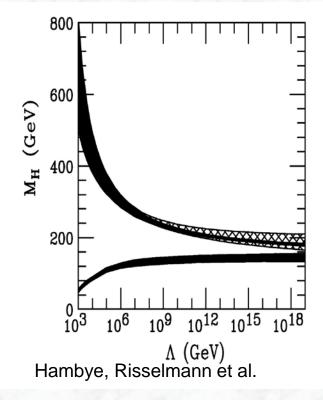
- Stricter limits from the energy dependence of the Higgs boson self coupling λ
 - Stability of the vacuum
 - Diverging coupling $\lambda(Q^2)$
 - \rightarrow next slides



Tighter Higgs mass constraints:

Stronger bounds on the Higgs-boson mass result from the energy dependence of the Higgs coupling λ (Q²) (if the Standard Model is assumed to be valid up to some scale Λ)

$$\lambda(Q^2) = \lambda_0 \left\{ 1 + \frac{3\lambda_0}{2\pi^2} \log\left(2\frac{Q^2}{v^2}\right) + \dots - \frac{3g_t^4}{32\pi^2} \log\left(2\frac{Q^2}{v^2}\right) + \dots \right\} \quad \text{where} \quad \lambda_0 = \frac{m_h^2}{v^2}$$



Upper bound: Lower bound:

diverging coupling (Landau Pole) stability of the vacuum (negative contribution from top quark dominates)

Mass bounds depend on scale Λ up to which the Standard Model should be valid

(ii) Indirect limits from electroweak precision data $(m_w \text{ and } m_t)$

Motivation:

W mass and top quark mass are fundamental parameters of the Standard Model; The standard theory provides well defined relations between m_w, m_t and m_H

Electromagnetic constant measured in atomic transitions, e⁺e⁻ machines, etc.

$$m_{W} = \left(\frac{\pi \alpha_{EM}}{\sqrt{2}}\right)^{1/2} \frac{1}{\sin \theta_{W}}$$

Fermi constant
measured in muon
decay

decay

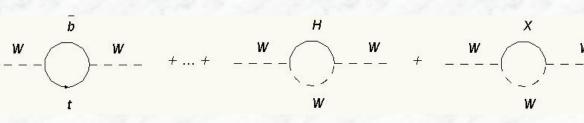
LEP/SLC

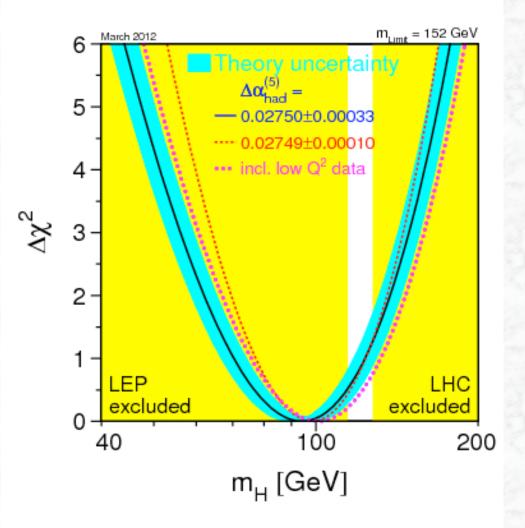
radiative corrections $\Delta r \sim f (m_t^2, \log m_H)$ $\Delta \mathbf{r} \approx 3\%$

 $G_{F}, \alpha_{FM}, \sin \theta_{W}$

are known with high precision

Precise measurements of the W mass and the top-quark mass constrain the Higgsboson mass (and/or the theory, radiative corrections)





Results of the precision el.weak measurements: (LEWWG-2012):

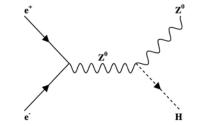
 $m_{H} = 94^{+29}_{-24} \, GeV$

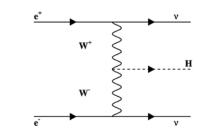
(iii) Constraints from

direct searches at LEP

Higgs bosons searches at LEP

Higgs-Strahlung: $e+e- \rightarrow ZH$





Higgs decay branching ratios for $m_H=115 \text{ GeV/c}^2$: BR (H \rightarrow bb) = 74%, BR (H $\rightarrow \tau\tau$, WW, gg) = 7% each, BR(H \rightarrow cc) = 4%

Decay modes searched for:

- Four Jet channel: $HZ \rightarrow bb qq$
- Missing energy channel:
- Leptonic channel: \rightarrow bb ee, bb $\mu\mu$
- Tau channels:

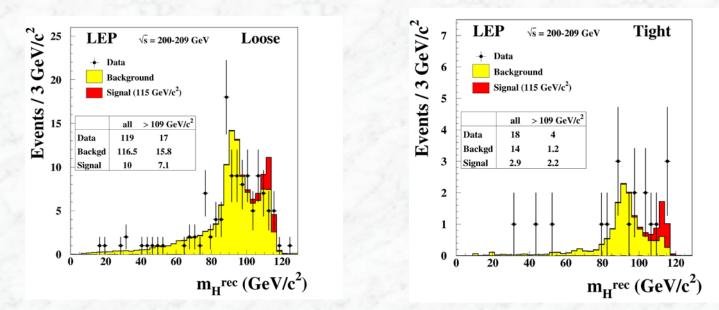
 \rightarrow bb $\tau\tau$, and $\tau\tau$ qq

 $\rightarrow bb vv$

Results of the final LEP analysis:

Final results have been published: CERN-EP / 2003-011:

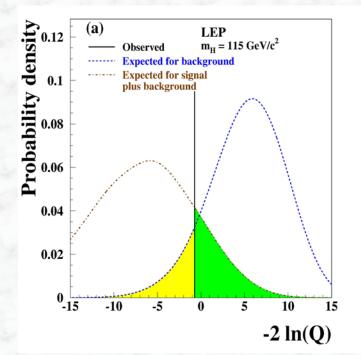
Based on final calibrations of the detectors, LEP-beam energies, final Monte Carlo simulations and analysis procedures.



The reconstructed bb mass for two levels of signal purity (loose and tight cuts):

Clear peak in the background prediction in the vicinity of m_Z due to the $e^+e^- \rightarrow ZZ$ background, which is consistent with the data.

Final combined LEP result



Likelihood ratio $Q := L_{S+B} / L_B$ Test statistics: - 2 ln Q

	$1 - CL_b$	$\mathrm{CL}_{\mathrm{s+b}}$
LEP	0.09	0.15
ALEPH	3.3×10^{-3}	0.87
DELPHI	0.79	0.03
L3	0.33	0.30
OPAL	0.50	0.14
Four-jet	0.05	0.44
All but four-jet	0.37	0.10

$$1- CL_B = 0.09 \quad \leftrightarrow$$

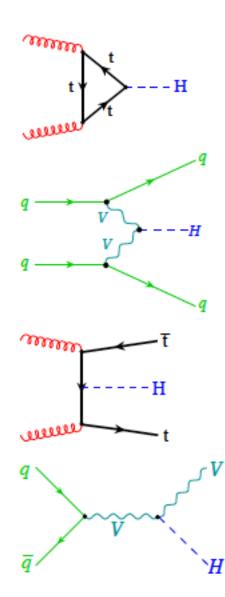
Signal significance = 1.7 σ

$M_{\rm H} > 114.4 \ {\rm GeV/c^2} \quad (95\% \ {\rm CL})$

expected mass limit: 115.3 GeV/c² (sensitivity)

7.3 Higgs boson production at Hadron Colliders

Higgs Boson production processes at Hadron Colliders



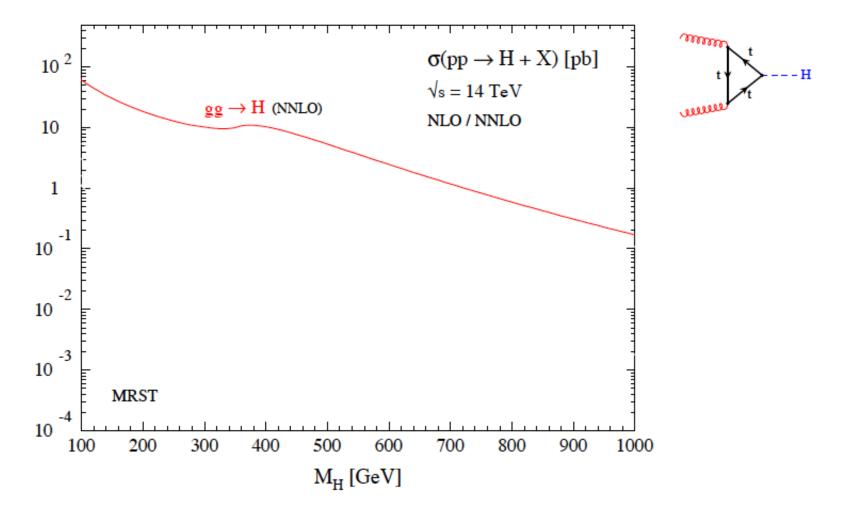
Gluon Fusion

Relative importance of the various processes is different at the LHC and at the Tevatron

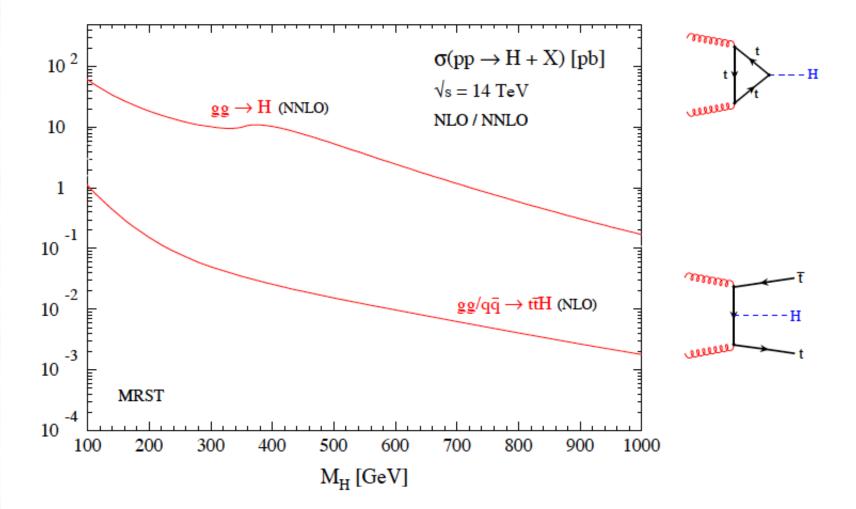
Vector boson fusion

tt associated production

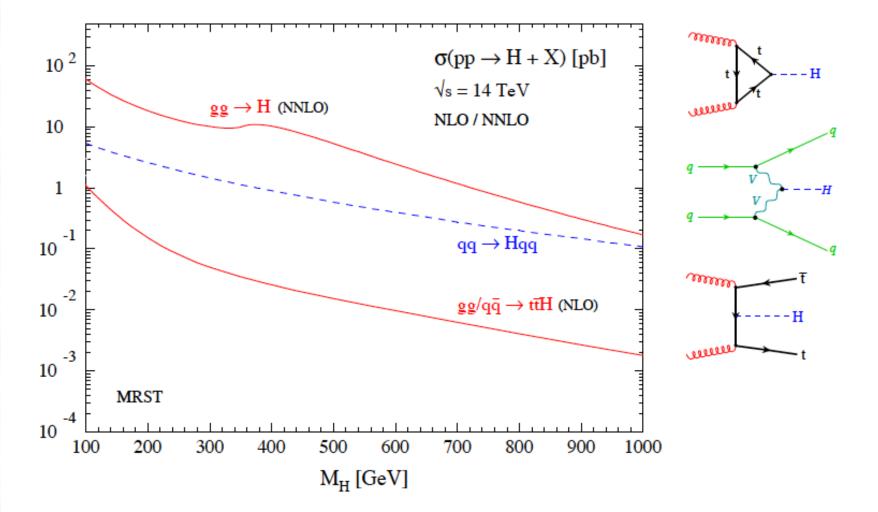
WH/ZH associated production



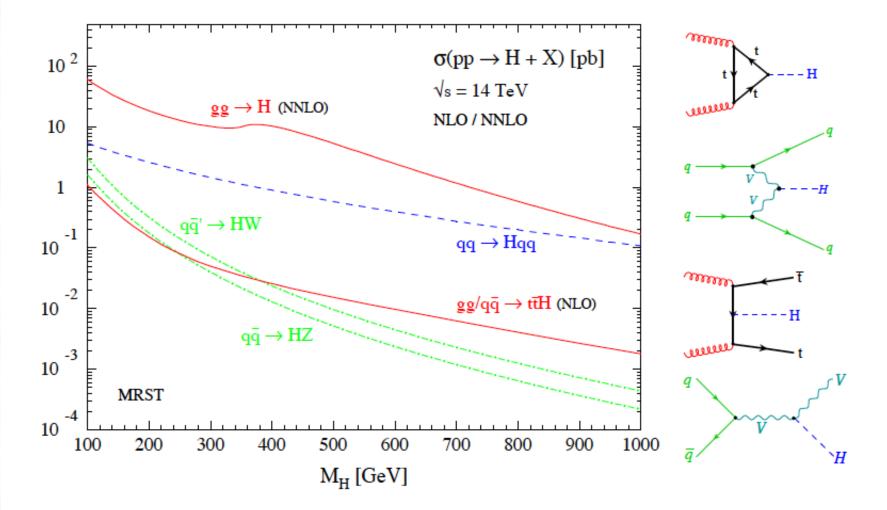
(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)



(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

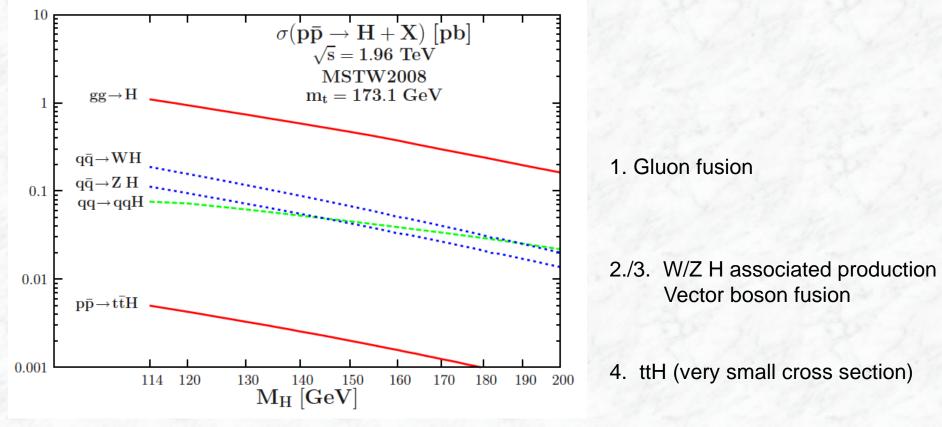


(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)



(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

Production cross sections at the Tevatron



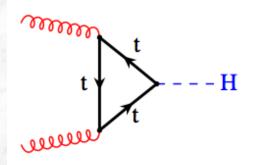
J. Baglio, A. Djouadi, arXiv:1003.4266

 $\begin{array}{ll} qq \rightarrow W/Z + H & cross \ sections \\ gg \rightarrow H \end{array}$

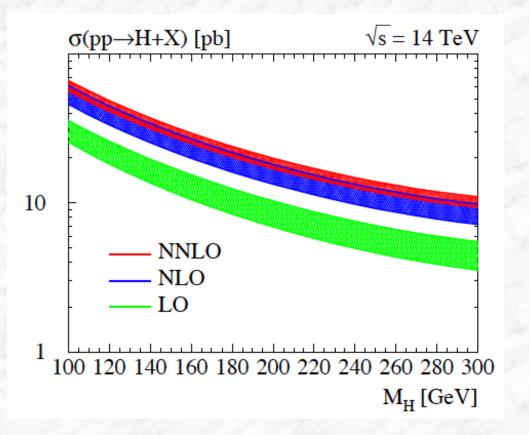
~10 x larger at the LHC (\sqrt{s} = 14 TeV) ~70-80 x larger at the LHC (\sqrt{s} = 14 TeV)

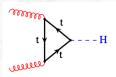
Gluon fusion:

- Dominant production mode
- Sensitive to heavy particle spectrum ...
 (e.g. 4th generation quarks)
 ...and the corresponding Yukawa couplings
 (important for coupling measurements, top Yukawa coupling)
- Large K-factors (NLO, NNLO corrections)
 - Difficult to calculate, loop already at leading order (calculation with infinite top mass is used as an approximation, however, this seems to be a good approximation)
 - Nicely converging perturbative series



Higher order corrections:





- Spira, Djouadi, Graudenz, Zerwas (1991) - Dawson (1991)
- Harlander, Kilgore (2002)
- Anastasiou, Melnikov (2002)
- Ravindran, Smith, van Neerven (2003)

Independent variation of renormalization and factorization scales (with 0.5 m_H < μ_F , μ_R < 2 m_H)

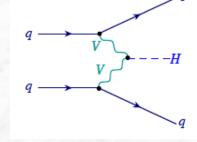
Vector boson fusion:

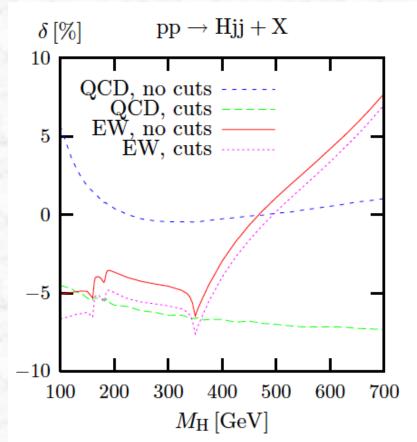
- Second largest production mode, Distinctive signature (forward jets, little jet activity in the central region)
- Sensitivity to W/Z couplings
- Moderate K-factors (NLO corrections)

Both NLO QCD and el.weak have been calculated

 Effective K-factor depends on experimental cuts

Example: typical VBF cuts $P_T(jet) > 20 \text{ GeV}$ $\eta < 4.5, \Delta \eta > 4, \eta_1 \cdot \eta_2 < 0$





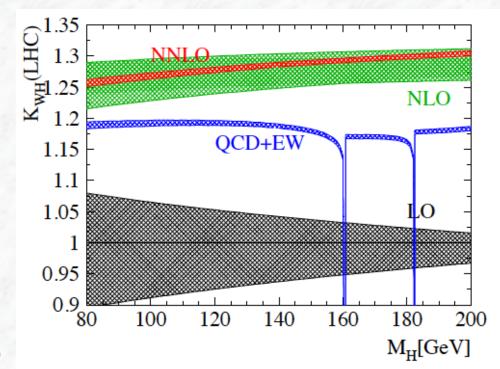
Ciccolini, Denner, Dittmaier (2008)

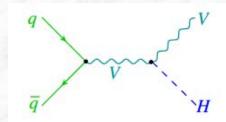
WH / ZH associated production:

- Weak at the LHC, Relatively stronger at the Tevatron
- Allows for a Higgs-decay-independent trigger
 W → Iv, Z → II
- Sensitivity to W/Z couplings
- Moderate K-factors (NLO corrections)

Both NLO QCD and el.weak corrections available

Brein, Djouadi, Harlander, (2003) Han, Willenbrock (1990) Ciccolini, Dittmaier, Krämer (2003)





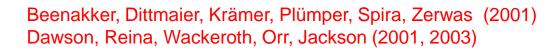
ttH associated production:

- Weak and difficult at the LHC
- Sensitivity to top-Yukawa coupling
- Moderate K-factors (NLO corrections)

NLO QCD corrections available, scale uncertainty drastically reduced

scale: $\mu_0 = m_t + m_H/2$

K ~ 1.2 LHC: Tevatron: $K \sim 0.8$



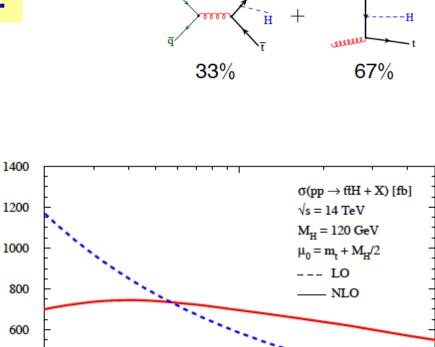
0.5

400

200

0

0.2



1 μ/μ_0 2

5