2.5.1 Spin und magnetische Momente

- Proton und Neutron sind Spin-¹/₂ Teilchen (Fermionen)
- Aus Hyperfeinstruktur der Energieniveaus vieler Atomkerne kann man schließen, dass Atomkerne ein magnetisches Moment besitzen. Dieses ist mit einem Drehimpuls verbunden:
 - \vec{I} = Kernspin I = Kernspinquantenzahl (halb- oder ganzzahlig)
- Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen

 $\vec{I} = \sum_{i} (\vec{I}_{i} + \vec{L}_{i})$ Summe über alle Nukleonen

• Das magnetische Moment μ_l ist proportional zum Kernspin I und wird wie folgt geschrieben:

$$\vec{\mu}_{I} = g_{K} \mu_{K} \frac{\vec{I}}{\hbar}$$

wobei $\mu_{K} = \frac{e\hbar}{2m_{p}c} = 3,152 \ 10^{-8} \ \text{eV/T}$ das Kernmagneton darstellt.

- Man beachte, dass das Kernmagneton im Vergleich zum Bohr'schen Magneton um einen Faktor m_p / m_e = 1836 kleiner ist.
- Der Faktor g_K ist der sogenannte Kern g-Faktor und ist über das folgende Verhältnis definiert.

$$g_{K} = \frac{\mu_{I}}{I}$$

$$\mu_{K} = \frac{\max(\mu_{Iz})}{\mu_{K}}$$

$$I = \frac{\max(I_{z})}{\hbar} = \max(m_{I})$$

Dieser Faktor gibt an, um welchen Faktor sich das magnetische Moment des Kerns von demjenigen unterscheidet, das man für einen Drehimpuls I klassischerwarten würde.

2.5.2 Hyperfeinstruktur

Hyperfeinstrukturaufspaltung: Multiplett für J=5/2 und I = 3/2 (aus Meyer-Kuckuk, Atomphysik, Abb. 92)

2.5.3 Hyperfeinstruktur in äußeren Magnetfeldern

Äußeres Magnetfeld \bar{B}

Wechselwirkungsenergie $V_{B}^{\rm HFS}$ = - $\vec{\mu}_{F}\cdot\vec{B}$

Man muss unterscheiden zwischen der Aufspaltung in einem schwachen und einem starken Magnetfeld

i) <u>Schwaches \vec{B} -Feld:</u> $V_{B} \ll V_{HFS}$ ($\vec{I}, \vec{J} - Kopplung$)

 \vec{I},\vec{J} – Kopplung bleibt erhalten

Präzessionsbewegung von \vec{I} und \vec{J} um \vec{F} ; \vec{F} präzessiert seinerseits um die Z-Achse;

$$\Rightarrow -\vec{\mu}_{F} \cdot \vec{B} = -\frac{1}{\hbar^{2}|\vec{F}^{2}|} (g_{K}\mu_{K} \cdot \vec{I} - g_{J} \cdot \mu_{B} \cdot \vec{J}) \cdot \vec{F} (\vec{F} \cdot \vec{B})$$

wobei g_J = Landéscher g-Faktor $g_J := \left\{ 1 + \frac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)} \right\}$

(bekannt aus der Atomphysik, Zeemann-Aufspaltung der Feinstrukturniveaus im Magnetfeld;

man beachte auch, dass aufgrund der verschiedenen Vorzeichen der elektrischen Ladungen von Elektronen und Kern die magnetischen Momente verschiedene Vorzeichen haben.)

(aus Meyer-Kuckuk, Atomphysik, Abb. 99

$$-\vec{\mu}_{F} \cdot \vec{B} = -\frac{1}{\hbar^{2}|\vec{F}^{2}|} (g_{K}\mu_{K} \cdot \vec{I} - g_{J} \cdot \mu_{B} \cdot \vec{J}) \cdot \vec{F} (\vec{F} \cdot \vec{B})$$

Man beachte, dass aufgrund der verschiedenen g-Faktoren das magnetische Moment μ_F und der Gesamtdrehimpuls F nicht in die gleiche Richtung zeigen.

Analog zur Zeeman-Aufspaltung der Feinstrukturniveaus

(aus Meyer-Kuckuk, Atomphysik, Abb. 54)

Die Störenergien ergeben sich wie üblich durch Übergänge von den Operatoren zu den Eigenwerten:

$$\Rightarrow \Delta E_{B}^{HFS} = -m_{F} \cdot B \cdot g_{K} \cdot \mu \frac{F(F+1) + I(I+1) - J(J-1)}{2F(F+1)}$$
$$+m_{F} \cdot B \cdot g_{J} \cdot \mu \frac{F(F+1) + J(J+1) - I(J-1)}{2F(F+1)}$$

oder
$$\Delta E_{B,schwach}^{HFS} = g_F \cdot \mu_B \cdot B \cdot m_F$$

wobei
$$g_F := g_J \cdot \frac{F(F+1)+J(J+1)-I(I+1)}{2F(F+1)} - g_K \frac{\mu_K}{\mu_B} \frac{F(F+1)+I(I+1)-J(J+1)}{2F(F+1)}$$

Da $\mu_K/\mu_B \approx 1/1800$ ist der erste Term dominant

Dies stellt die Zeeman-Aufspaltung des HFS-Niveaus dar.

Man erhält eine äquidistante Aufspaltung jedes Niveaus in (2F+1) Komponenten)

Aufspaltung der Hyperfeinstrukturniveaus für $J=\frac{1}{2}$ und $I=\frac{1}{2}$ in einem schwachen und starken äußeren Magnetfeld (aus T. Meyer-Kuckuk, Atomphysik, Abb. 100)

ii) <u>Starkes \overline{B} -Feld:</u>

- → Entkopplung von \overline{I} und \overline{J} (ähnlich zum Paschen-Back-Effekt) \overline{I} und \overline{J} präzessieren um \overline{B}
- → zwei Energiekorrekturen
 - (i) Zeeman-Aufspaltung (äußeres Feld wirkt auf starkes magn. Moment der Hülle) $\Delta E = g_J \cdot \mu_B \cdot m_J \cdot B$
 - (ii) Standard-Hyperfeinstruktur-Wechselwirkung

$$\begin{split} V_{HFS} &= \frac{\mu_{I} \mu_{K} \cdot B}{\hbar^{2} \cdot I \cdot J} (\vec{I} \cdot \vec{J}) \\ \underline{aber:} \text{ keine Kopplung von } \vec{I} \text{ und } \vec{J} \text{ zu } \vec{F} \text{ !!} \end{split}$$

 \vec{I} und \vec{J} präzessieren unabhängig um \vec{B} , mit verschiedenen Geschwindigkeiten

$$\Rightarrow \overline{(\vec{I} \cdot \vec{J})} = \frac{1}{B^2} (\vec{I} \cdot \vec{B}) (\vec{B} \cdot \vec{J}) = I_Z \cdot J_Z \qquad \Delta E = \frac{\mu_I \cdot \mu_J \cdot B_0}{U_I} \cdot m_I \cdot m_I = A \cdot m_I \cdot m_I$$

Man beachte, dass am Kernort das von der Hülle erzeugte Magnetfeld dominiert und mit etwa 100 T viel stärker als das äußere Feld ist.

Aufspaltung der Hyperfeinstrukturniveaus für $J=\frac{1}{2}$ und $I=\frac{1}{2}$ in einem schwachen und starken äußeren Magnetfeld (aus T. Meyer-Kuckuk, Atomphysik, Abb. 100)

- Aufspaltung der J-Energieniveaus im starken äußeren Magnetfeld in (2J+1) Niveaus
- Zeeman-Aufspaltung der m_J-Niveaus nach m_I, In jeder Gruppe (m_J = const) beträgt die Zahl der Unterzustände (2I+1); Die Untersuchung des Aufspaltungsmusters in einem starken Magnetfeld stellt somit eine einfache Methode zur Bestimmung des Kernspins I dar.
- Der Zeeman-Effekt der Hyperfeinstruktur geht in die Hyperfeinstruktur des Zeeman-Effekts über.

Aufspaltung der Hyperfeinstrukturniveaus für J=3/2 und I=3/2 in einem schwachen und starken äußeren Magnetfeld (aus T. Meyer-Kuckuk, Atomphysik, Abb. 101)

Auswahlregeln für elektromagnetische Übergänge (Photon-Emission und Absorption):

- Zeeman-Gebiet (B schwach):
 - $\Delta F = 0, \pm 1$
 - $\Delta m_F = 0, \pm 1$
- Paschen-Back-Gebiet (B stark):
 - $\Delta m_1 = 0, \pm 1$
 - oder $\Delta m_J = 0, \pm 1$

Atomstrahlapparatur nach Rabi

Rabi-Apparatur zur Bestimmung magnetischer Dipolmomente (aus Bethge, Walter, Wiedemann, Kernphysik, Abb. 3.6)

Zur Erinnerung: $\vec{F} = \nabla (\vec{\mu}_{I} \cdot \vec{B})$

Experiment zur Messung des magnetischen Moments des Protons mit Hilfe der Rabi-Methode in einem H-Atomstrahl (aus Demtröder, Experimentalphysik 4)

Kernspinresonanz

(aus Meyer-Kuckuk, Kernphysik, Abb. 24)

Abb. 2.23 Prinzip einer Kernresonanzapparatur

(aus Bethge, Walter, Wiedemann, Kernphysik, Abb. 3.2)

Abb. 2.24

Theoretische Berechung des differentiellen Wirkungsquerschnitts für die Streuung von ¹⁰B an ¹⁰B für verschiedene Kernspinhypothesen

	Kernspinquantenzahl		Magnetisches Moment	
	erwartet aus	exp.	erwartet aus	exp.
Kern	$\sum I_{\rm p} + \sum I_{\rm n}$	Wert	$\sum \boldsymbol{\mu}_{\mathrm{p}} + \sum \boldsymbol{\mu}_{\mathrm{n}}$	Wert
$^{2}_{1}H$	$\frac{1}{2} + \frac{1}{2}$	1	0,880	0,857
$^{3}_{1}\mathrm{H}$	$\frac{1}{2} + 0$	$\frac{1}{2}$	2,793	2,978
³ ₂ He	$0 + \frac{1}{2}$	$\frac{1}{2}$	-1,913	-2,127
⁴ ₂ He	0+0	0	0	0
⁶ ₃ Li	$\frac{1}{2} + \frac{1}{2}$	1	0,880	0,822
⁷ ₃ Li	$\frac{1}{2} + 0$	$\frac{3}{2}!$	2,793	3,256
⁹ ₄ Be	$0 + \frac{1}{2}$	$\frac{3}{2}!$	-1,91	-1,177
$^{12}_{6}C$	0+0	0	0	0
⁸⁵ ₃₇ Rb	$\frac{1}{2} + 0$	$\frac{5}{2}!$	+2,793	1,353
¹¹⁵ ₄₉ In	$\frac{1}{2} + 0$	$\frac{9}{2}!$	2,793	5,523

Kernspinquantenzahlen und magnetische Momente einiger Kerne in einheiten des Kernmagnetons (aus Demtröder, Experimentalphysik 4)

Magnetische Momente für Kerne mit ungepaartem Proton

Magnetische Momente für Kerne mit ungepaartem Neutron

(aus Meyer-Kuckuk, Kernphysik, Abb. 25)

Nichtsphärische Kerne. Für Kerne mit positivem Quadrupolmoment ist $(z^2)_{mittel}$ größer als $(x^2)_{mittel}$ oder $(y^2)_{mittel}$, sie sind zigarrenförmig (a). Für Kerne mit negativem Quadrupolmoment ist $(z^2)_{mittel}$ kleiner als $(x^2)_{mittel}$ oder $(y^2)_{mittel}$, sie sind diskusförmig (b).

Abb. 2.26 (aus Meyer-Kuckuk, Kernphysik, Abb. 26)

Abb. 2.27

Zusätzliche Wechselwirkungsenergie

$$V_{\rm HFS} = -\vec{\mu}_{\rm I}\vec{\rm B}_{\rm 0}$$

wobei B₀ das von den Hüllenelektronen am Kernort erzeugte Magnetfeld darstellt. Dies führt zu einer Kopplung des Kernspins I und des gesamten Drehimpulses J der Hülle zum Gesamtdrehimpuls F des Atoms.

(aus Meyer-Kuckuk, Atomphysik, Abb. 92)

Kommentare zu $\vec{I} \cdot \vec{J}$

In der Vorlesung haben wir Terme der Form $\vec{I} \cdot \vec{J}$ gehabt. Diese konnten wir auflösen indem wir die Definition von \vec{F} genommen haben und diese quadriert haben.

$$\left(\vec{F}\right)^2 = \left(\vec{I} + \vec{J}\right)^2 \tag{1}$$

$$= \left(\vec{I}\right)^2 + \left(\vec{J}\right)^2 + \vec{I} \cdot \vec{J} + \vec{J} \cdot \vec{I}$$
(2)

$$= \left(\vec{I}\right)^2 + \left(\vec{J}\right)^2 + 2\vec{I}\cdot\vec{J}.$$
(3)

Diese Gleichung 3 konnten wir dann umformen zu

$$\vec{I} \cdot \vec{J} = \frac{1}{2} \left(\left(\vec{F} \right)^2 - \left(\vec{I} \right)^2 - \left(\vec{J} \right)^2 \right) \,. \tag{4}$$

Nun konnten wir die Eigenwerte für diese Operatoren einsetzen. Damit hatten wir das finale Ergebnis erhalten

$$\vec{I} \cdot \vec{J} = \frac{\hbar^2}{2} \left(F \left(F + 1 \right) - I \left(I + 1 \right) - J \left(J + 1 \right) \right) \,. \tag{5}$$

Bei dem Schritt von Gleichung 2 nach Gleichung 3 kam die Frage auf warum dies geht. Insbesondere, ob \vec{I} und \vec{J} kommutieren. Die Antwort ist dass diese beiden Operatoren in der Tat kommutieren. Sie sind Operatoren auf verschiedene Größen, \vec{I} auf den Gesamptspin des Atomkerns und \vec{J} auf den Gesamtdrehimpuls der Atomhülle, und kommutieren daher.