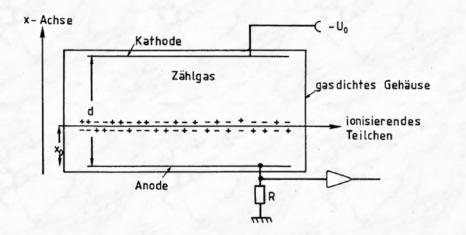
4. Measurement of Ionization

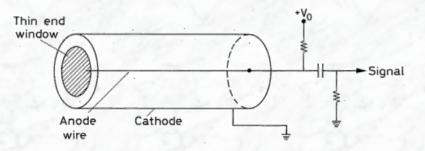
4.1 Gaseous Ionization Detectors

- Ionization chamber
- Ionization yield, charge multiplication
- Proportional counter
- Geiger-Müller counter
- Streamer tubes
- 4.2 Ionization in liquids
- 4.3 Drift and diffusion in gases

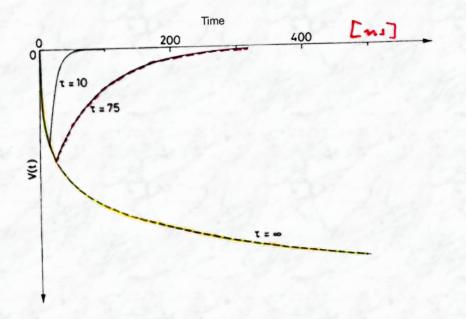
History of Instrumentation

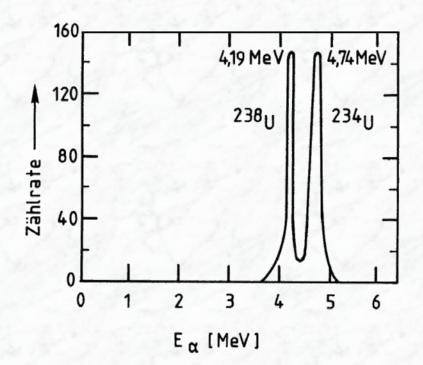

906:	Geiger Counter
910:	Cloud Chamber
928:	Geiger-Müller Counter*
929:	Coincidence Method
930:	Emulsion
940/50:	Scintillator, Photomultiplier
952:	Bubble Chamber
962:	Spark Chamber
968:	Multi-Wire Prop. Chamber*
972:	Drift Chamber*
974:	Time Projection Chamber*
983:	Silicon strip detectors*
990:	Silicon pixel detectors*

H. Geiger, E. RutherfordC.T.R. WilsonW. MüllerW. BotheM. Blau


D. Glaser

G. CharpakF. Sauli, J. Heintze et al.D. NygrenJ. Kemmer, R. Klanner, G. Lutz et al.


*covered during this lecture series


Principle of a planar ionization chamber [from Ref. 3]

Principle of a cylindrical ionisation chamber [from Ref. 2]

Voltage pulse in a cylindrical proportional counter for different electronic time constants (shaping times [from Ref. 2]

Measured pulse height spectrum of α particles of a ^{234}U / ^{238}U mixture; [from Ref. 3]

Gas Dichte $\varrho[g/cm^3]$ $I_0[eV]$ W[eV] $n_p[cm^{-1}]$ $n_T[cm^{-1}]$

H_2	$8.99 \cdot 10^{-5}$	15.4	37	5.2	9.2
He	$1.78 \cdot 10^{-4}$	24.6	41	5.9	7.8
N_2	$1.25\cdot10^{-3}$	15.5	35	10	56
O_2	$1.43 \cdot 10^{-3}$	12.2	31	22	73
Ne	$9.00 \cdot 10^{-4}$	21.6	36	12	39
Ar	$1.78 \cdot 10^{-3}$	15.8	26	29	94
Kr	$3.74 \cdot 10^{-3}$	14.0	24	22	192
Xe	$5.89 \cdot 10^{-3}$	12.1	22	44	307
CO_2	$1.98 \cdot 10^{-3}$	13.7	33	34	91
CH_4	$7.17 \cdot 10^{-4}$	13.1	28	16	53
$C_{4}H_{10}$	$2.67\cdot 10^{-3}$	10.8	23	46	195

Tabelle 1.2: Zusammenstellung einiger Eigenschaften von Gasen. Angegeben sind der mittlere Energieverlust W pro erzeugtes Ionenpaar, das mittlere effektive Ionisationspotential pro Hüllen-Elektron I_0 , die Anzahl der primär (n_p) und insgesamt (n_T) gebildeten Elektron-Ion-Paare pro cm bei Normaldruck für minimalionisierende Teilchen [94, 32, 104, 8].

[from Ref. 3]

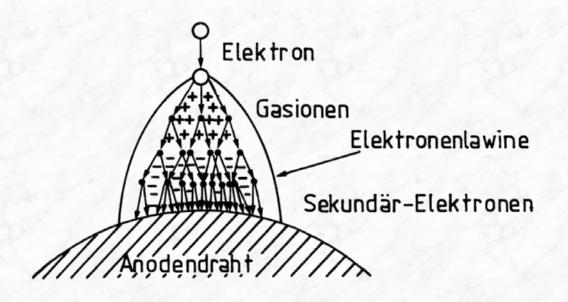
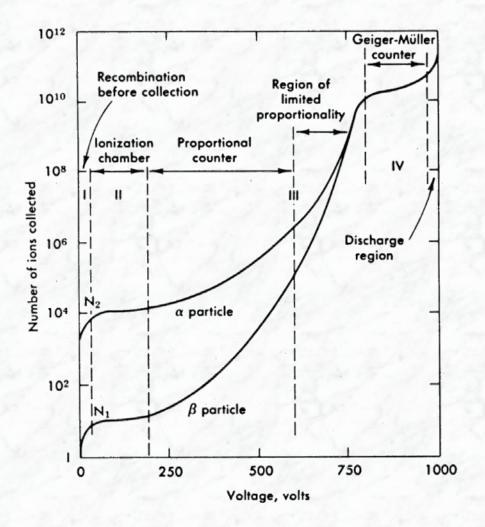



Illustration of avalanche charge multiplication in the vicinity of the anode wire in a proportional counter. Due to lateral diffusion, a drop-like avalanche develops. [from Ref. 3]

Number of collected charge carriers (ions) as a function of the applied voltage in a cylindrical gas-filled detector [from Ref. 2]

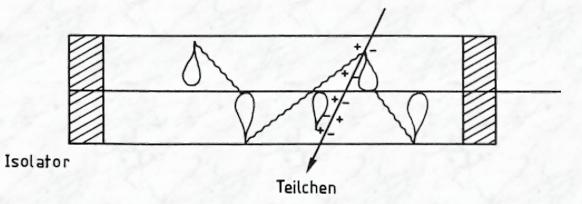
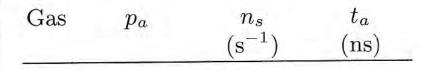
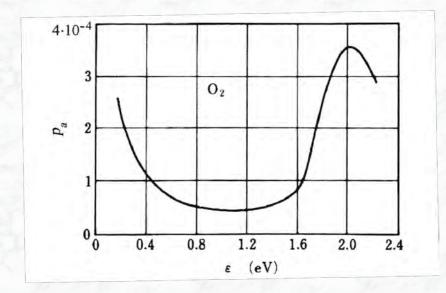
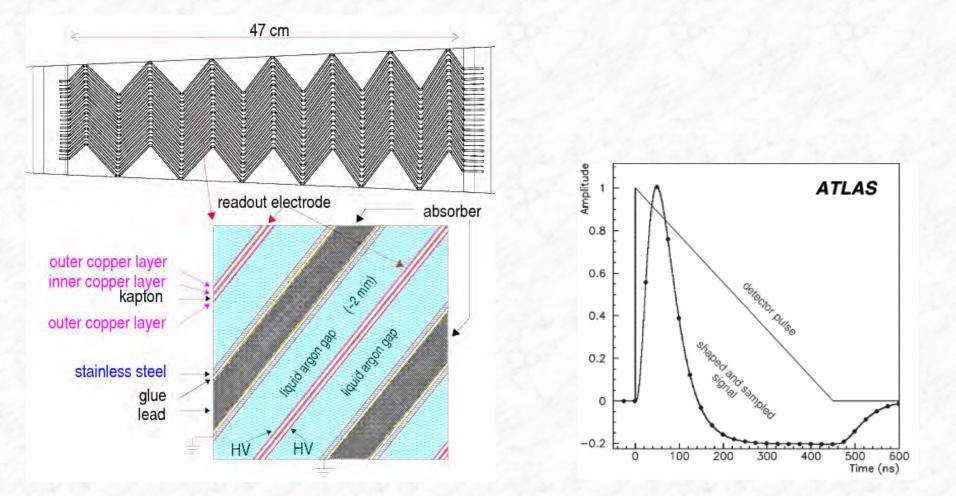
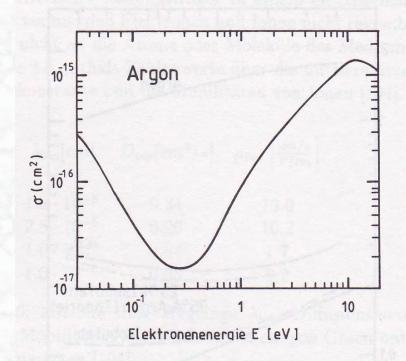




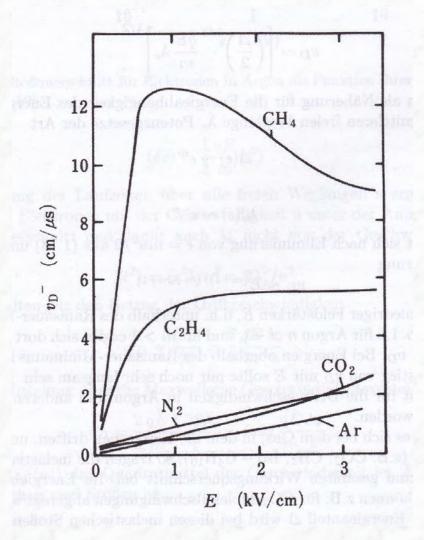
Illustration of the transverse avalanche propagation in a Geiger-Müller counter [from Ref. 3]


 $\begin{array}{cccccccc} \mathrm{CO}_2 & 6.2 \times 10^{-9} & 2.2 \times 10^{11} & 7.1 \times 10^5 \\ \mathrm{O}_2 & 2.5 \times 10^{-5} & 2.1 \times 10^{11} & 1.9 \times 10^2 \\ \mathrm{H}_2\mathrm{O} & 2.5 \times 10^{-5} & 2.8 \times 10^{11} & 1.4 \times 10^2 \\ \mathrm{Cl} & 4.8 \times 10^{-4} & 4.5 \times 10^{11} & 5.0 \times 10^0 \end{array}$

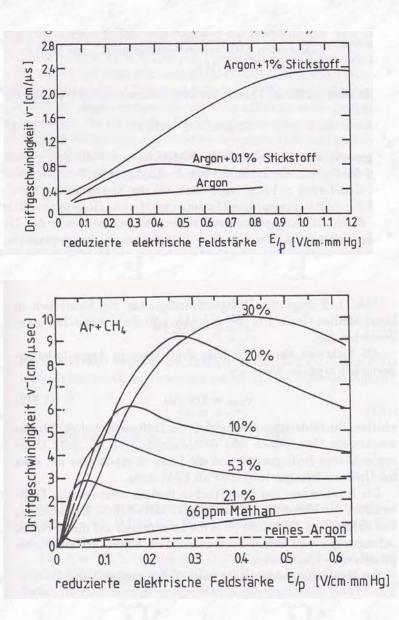
Attachment probability for electrons p_a , number of collisions per second n_s and average time for attachment t_a without an electric field [from Ref. 1]

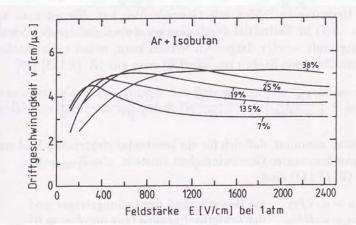
Attachment probability p_a for electrons in O_2 per collision as function of the electron energy ϵ [from Ref. 3]


Example: the liquid argon calorimeter of the ATLAS experiment


(the ATLAS liquid argon calorimeter uses current-sensitive amplifiers; measurement of the initial current!)

Gas	Massenzahl	$^{ m u}$ (cm/s)	D^+ (cm ² /s)	μ^+ (cm ² s ⁻¹ V ⁻¹	λ) (10 ⁻⁵ cm)
H_2	2.02	1.8×10^{5}	0.34	13.0	1.8
He	4.00	1.3×10^{5}	0.26	10.2	2.8
Ar	39.95	0.41×10^{5}	0.04	1.7	1.0
O_2	32.00	0.46×10^{5}	0.06	2.2	1.0
H_2O	18.02	0.61×10^{5}	0.02	0.7	1.0


Thermal velocities u, diffusion coefficients D⁺, mobilities μ^+ and mean free path lengths λ for positive ions in different gases at normal pressure p₀ [from Ref. 1].

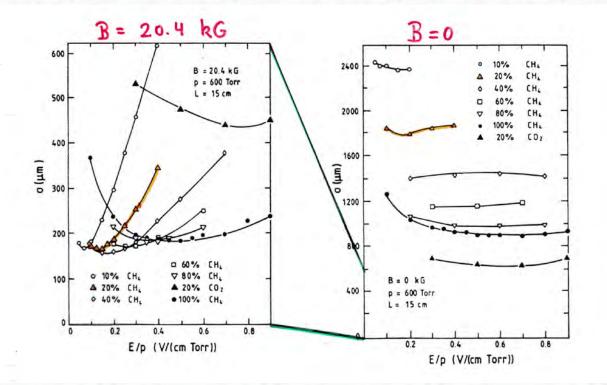


Scattering cross section σ for electrons in argon gas as a function of their kinetic energy [from Ref. 1].

Drift velocity of electrons in various gases at normal pressure as a function of the electric field strength [from Ref. 1].

- The drift velocity in argon is relatively low, compared to other gases
- It can be significantly increased by the admixture of other gases, like (Ar, N₂), (Ar, CO₂), (Ar, CH₄) or (Ar, C₄H₁₀)

Drift velocities of electrons in pure argon and in argon with admixtures of nitrogen, methane, and isobutane as a function of the reduced field strength (E/p) or field strength (E) [from Ref. 3].


Drift velocities of electrons and Lorentz angle in a gas mixture of argon (67.2%), isobutane (30.3%) and methylal (2.5%) as a function of the magnetic field strength. The magnetic field is oriented perpendicular to the electric field [from Ref. 3].

Typical magnetic field strengths in particle physics experiments in the (inner detector volume, used for momentum determination)

LEP and Tevatron experiments:~1.5 TeslaATLAS:2.0 TeslaCMS:3.8 Tesla

 \rightarrow sizeable effects

Diffusion with and without a magnetic field:

Standard deviation of an originally point-like electron cloud transverse to the drift direction (E-field) due to diffusion after a drift distance of 15 cm without a magnetic filed (right) and within a 2.04 T magnetic field parallel to the electric field (left), i.e. drift parallel to E [from Ref. 1].

\rightarrow significantly lower diffusion inside a magnetic field

important for position sensitive detectors (tracking detectors) like drift chambers and time projection chambers (\rightarrow Chapter 5)