Part 4: Search for the Higgs Boson

4th July 2012 A great day for science / particle physics
Some convincing signals

\[H \rightarrow \gamma\gamma \]

\[H \rightarrow ZZ^{(*)} \rightarrow \ell^+\ell^- \ell^+\ell^- \]
H → WW → ℓν ℓν

Updated ATLAS analysis (since 4th July) including the 2012 data new
Compatibility with background only hypothesis

Observation of a new resonance in the search for the Higgs boson
Evolution of the excess with time

ATLAS Preliminary

Energy-scale systematics not included
Next important steps:
- Updated ATLAS analyses on tt and bb channels awaited
- Determination of parameters of the resonance (mass, spin / CP, couplings)
- Most of this will be summarized in the dedicated lecture by Meenakshi Narain

- I will concentrate on a few important SUSY results in the following
5.1 Search for Supersymmetry

- qq, qg or gg in the initial state \rightarrow production of coloured SUSY particles is dominant, via strong interaction

- Drell-Yan production of sleptons, charginos and neutralinos (lower cross sections)
Cross sections for SUSY production processes

NLO corrections in QCD perturbation theory are known.
Decays of heavy SUSY particles \rightarrow long and complex decay chains

Invariants in R-parity conserving SUSY: jets, E_T^{miss} (2 LSPs)
An example of a search for $E_T^{\text{miss}} + \text{jets}$ \hspace{1em} (1.04 fb$^{-1}$)

Selection of events with $E_T^{\text{miss}} + \text{jets}$

Split the analysis according to jet multiplicities: 2, 3 and 4 jets

(different sensitivity for different squark/gluino mass combinations, i.e. in different regions of SUSY parameter space)

Definition of signal regions:

\[
m_{\tilde{g}} = m_{\tilde{q}}
\]
Three different analyses, depending on squark / gluinos mass relations:

(i) dijet analysis
small m_0, $m(\text{squark}) < m(\text{gluino})$

(ii) 3-jet analysis
intermediate m_0, $m(\text{squark}) \approx m(\text{gluino})$

(iii) Gluino analysis
large m_0, $m(\text{squark}) > m(\text{gluino})$
An example of a search for $E_T^{\text{miss}} + \text{jets}$ (1.04 fb$^{-1}$)

Selection of events with $E_T^{\text{miss}} + \text{jets}$

Split the analysis according to jet multiplicities: 2, 3 and 4 jets (different sensitivity for different squark/gluino mass combinations, i.e. in different regions of SUSY parameter space)

Definition of signal regions:
Summary on control of backgrounds using data

(control regions, very important!!)

A: \(Z + \text{jet events, } Z \rightarrow \text{ee} \)

(to estimate \(Z \rightarrow \nu\nu \) background, likewise \(\gamma + \text{jet events were used} \))

B: QCD multijet background

(reverse cut on \(\Delta \phi \) (jet, \(E_T^{\text{miss}} \))

C: \(W \rightarrow l\nu + \text{jet control region} \)

(select events with one lepton, \(30 < M_T(l,E_T^{\text{miss}}) < 100 \text{ GeV} \),

no b-jet to suppress top contribution)

D: top quark control region

(same selection as for \(W \) events, but require b-tag)
Observed and expected event numbers (from Standard Model processes)

dominant backgrounds:
- W/Z + jets
- \(t\bar{t}\) production

Normalized in control regions!
(as explained on the previous slide)
Interpretation of the results in the \((m_{\text{gluino}}, m_{\text{squark}})\)-plane as 95\% C.L. exclusion limits in a simplified SUSY model:

- \(m_X = 0\)

- masses of gluinos and of 1st and 2nd generation squarks as given on plot

- all other SUSY masses are assumed to be decoupled, with masses of 5 TeV

Large area of mass combinations excluded;
Limits do not apply to stop / sbottom production
mSUGRA interpretation

\[\tan \beta = 10, \quad A_0 = 0, \quad \mu > 0 \]
mSUGRA interpretation, including 2012 data

MSSM/cMSSM interpretation (for equal squark and gluino masses):

\[L = 5.8 \text{ fb}^{-1} \text{ at } \sqrt{s} = 8 \text{ TeV} \quad m(\text{squark}), m(\text{gluino}) > 1500 \text{ GeV} \]
Looking for “natural” SUSY

• Search for stops and sbottoms in gluino decays
 - if other squarks are very heavy, gluino will decay into sbottoms and stops with high branching ratio

• Search for stop and sbottom pair production
 - to close the loophole that the “gluino is too heavy”
ATLAS: $\tilde{g} \to \tilde{t}, \tilde{b}$

4-6 jets (≥3 b-jets), no leptons.

Allowed decays depend on masses

Upper plots – 2-body cascade decays

Lower plots – 3-body decays
Direct Stop searches

Heavy stop $> m_t$: look for hadronic or leptonic top decays with extra E_T^{miss}

$$\tilde{t}_1 \rightarrow t \tilde{\chi}_d^0 \rightarrow Wb \tilde{\chi}_d^0$$

Light stop $< m_t$: look for top-like decay via chargino. Signal events contain lower p_T leptons, and subsystem mass below $2m_t$

$$m_t > m_\tilde{t} > m_{\tilde{\chi}_1^\pm}$$

$$\tilde{t} \rightarrow b \tilde{\chi}_d^+ \rightarrow b W^{(*)} \tilde{\chi}_d^0$$

ATLAS Preliminary

Data 2011 ($\sqrt{s} = 7$ TeV)

- Standard Model
- $t\bar{t}$
- Single top, dibosons, W+jets
- $Z\gamma^*$+jets

$$(m(t), m_\tilde{t}) = (112,55) \text{ GeV}$$

Signal at low p_T
Combined stop exclusion

\[\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm, \tilde{\chi}_1^- \rightarrow W^{+} + \tilde{\chi}_1^0 \text{ (BR=1, } m_{\tilde{t}} < 200 \text{ GeV)}; \quad \tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 \text{ (BR=1, } m_{\tilde{t}} > 200 \text{ GeV)} \]

\[\int L \, dt = 4.7 \text{ fb}^{-1} \quad \sqrt{s} = 7 \text{ TeV} \]

ATLAS Preliminary

Expected limits (nominal)

\[m_{\tilde{t}_1} \text{ production: } \tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm, \tilde{\chi}_1^- \rightarrow W^{+} + \tilde{\chi}_1^0 (\text{BR=1, } m_{\tilde{t}} < 200 \text{ GeV}); \quad \tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 (\text{BR=1, } m_{\tilde{t}} > 200 \text{ GeV}) \]

All limits at 95\% CL_{sus}
Is SUSY dead?

A. Parker, ICHEP 2012, SUSY summary talk

- Under attack from all sides, but not dead yet.
- The searches leave little room for SUSY inside the reach of the existing data.
- But interpretations within SUSY models rely on many simplifying assumptions, and so care must be taken when making use of the limit plots.
- Plausible “natural” scenarios still not ruled out: stop and/or RPV scenarios have few constraints.
- There is no reason to give up hope of finding SUSY at the LHC.
Summary of results on searches for Physics Beyond the Standard Model in ATLAS in ATLAS

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: ICHEP 2012)

<table>
<thead>
<tr>
<th>Type</th>
<th>Process</th>
<th>Mass Limit [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large ED (ADD)</td>
<td>monojet + (E_{T,miss})</td>
<td>3.8</td>
</tr>
<tr>
<td>Large ED (ADD)</td>
<td>monophoton + (E_{T,miss})</td>
<td>1.7</td>
</tr>
<tr>
<td>Large ED (ADD)</td>
<td>dihphoton, (m_{\phi})</td>
<td>1.29</td>
</tr>
<tr>
<td>UED</td>
<td>dihphoton + (E_{T,miss})</td>
<td>1.41</td>
</tr>
<tr>
<td>RS1 with (k/M_{pl}=0.1)</td>
<td>dihphoton, (m_{\phi})</td>
<td>2.06</td>
</tr>
<tr>
<td>RS1 with (k/M_{pl}=0.1)</td>
<td>ZZ resonance, (m_{ll}/m_{ll})</td>
<td>2.16</td>
</tr>
<tr>
<td>RS1 with (k/M_{pl}=0.1)</td>
<td>WW resonance, (m_{\ell\ell}/m_{\ell\ell})</td>
<td>1.22</td>
</tr>
<tr>
<td>(g_{\gamma}/m_{\phi}=0.20)</td>
<td>(tt\rightarrow) jets, (m_{X})</td>
<td>0.63</td>
</tr>
<tr>
<td>RS with (BR(g_{\gamma}\rightarrow\gamma j)\ 0.925)</td>
<td>(\gamma\rightarrow j+)jets, (m_{\gamma})</td>
<td>1.50</td>
</tr>
<tr>
<td>ADD BH ((M_{N}/M_{pl}=3))</td>
<td>SS dimuon, (N_{part})</td>
<td>1.75</td>
</tr>
<tr>
<td>ADD BH ((M_{N}/M_{pl}=3))</td>
<td>leptons +(Z, Z')</td>
<td>2.21</td>
</tr>
<tr>
<td>Quantum black hole</td>
<td>dijet, (F_{\text{ch. part.}})</td>
<td>1.58</td>
</tr>
<tr>
<td>Color octet scalar</td>
<td>dijet resonance, (m_{\phi})</td>
<td>0.55</td>
</tr>
<tr>
<td>Major. neutr. (LRSM, no mixing)</td>
<td>(2) lept. +jets, (m_{\ell\ell})</td>
<td>0.55</td>
</tr>
<tr>
<td>Vector-like quark</td>
<td>(CC)</td>
<td>1.0</td>
</tr>
<tr>
<td>Vector-like quark</td>
<td>(NC)</td>
<td>1.0</td>
</tr>
<tr>
<td>Techni-hadrons</td>
<td>(WZ) resonance, (k/\theta_{u})</td>
<td>1.0</td>
</tr>
<tr>
<td>4th generation</td>
<td>(Q_{4})</td>
<td>1.0</td>
</tr>
<tr>
<td>Excited fermions</td>
<td>(\gamma\rightarrow\gamma) resonance, (m_{\gamma})</td>
<td>1.0</td>
</tr>
<tr>
<td>Exotic scalars</td>
<td>dijet resonance, (m_{\phi})</td>
<td>1.0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of the lectures

• After a long way of design, construction, installation, commissioning of both machine and experiments the LHC had an excellent start in 2010

• The performance of the accelerator and the experiments is superb; (In 2012: an integrated luminosity > 12 fb$^{-1}$ already)

• The Standard Model has been established, all relevant processes measured; In many areas measurements have reached the precision phase

• A new boson has been discovered with a mass around 125/126 GeV; Exiting analyses ahead of us to understand the nature of this new particle

• So far: no deviations from the Standard Model seen, but the LHC potential has by far not yet been fully exploited!
End of lectures
\[\mathcal{L}_{\text{TGC}} = i e g_1^\gamma (A_\mu (\partial_\mu W^-_\nu (\partial_\nu W^-_\mu) W^+_{\nu \mu} - A_\mu (\partial^\mu W^{+\nu} - \partial^\nu W^{+\mu}) W^-_{\nu \mu}) \\
+ i e \kappa_\gamma (\partial_\mu A_\nu - \partial_\nu A_\mu) W^{+\mu} W^{-\nu} \\
+ i e \cot \theta_W g_1^Z Z_\mu (\partial_\mu W^-_\nu - \partial_\nu W^-_\mu) W^+_{\nu \mu} - Z_\mu (\partial^\mu W^{+\nu} - \partial^\nu W^{+\mu}) W^-_{\nu \mu}) \\
+ i e \cot \theta_W \kappa_Z (\partial_\mu Z_\nu - \partial_\nu Z_\mu) W^{+\mu} W^{-\nu} \\
+ i e \frac{\lambda_\gamma}{M_W^2} ((\partial_\mu A_\rho - \partial_\rho A_\mu) (\partial^\rho W^{+\nu} - \partial^\nu W^{+\rho}) (\partial_\nu W^{-\mu} - \partial_\mu W^{-\nu})) \\
+ i e \cot \theta_W \frac{\lambda_Z}{M_W^2} ((\partial_\mu Z_\rho - \partial_\rho Z_\mu) (\partial^\rho W^{+\nu} - \partial^\nu W^{+\rho}) (\partial_\nu W^{-\mu} - \partial_\mu W^{-\nu})) \]