Physics at Hadron Colliders

Part 2

Standard Model Physics

Test of Quantum Chromodynamics (Jet production, W/Z production, top-quark production,....)

Precision measurements (W mass, top-quark mass,)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

QCD processes at hadron colliders

- Hard scattering processes are dominated by QCD jet production
- Originating from quark-quark, quark-gluon and gluon-gluon scattering
- Due to fragmentation of quarks and gluons in final state hadrons
 - \rightarrow Jets with large transverse momentum P_{T} in the detector
- Cross sections can be calculated in QCD (perturbation theory)

Comparison between experimental data and theoretical predictions constitutes an important test of the theory.

Deviations? → Problem in the experiment ? Problem in the theory (QCD) ? New Physics, e.g. quark substructure ?

A two jet event at the Tevatron (CDF)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

Test of QCD Jet production

K. Jakobs, Universität Freiburg

Data from the DØ experiment (Run II)

Inclusive Jet spectrum as a function $of Jet-P_T$

very good agreement over many orders of magnitude !

within the large theoretical and experimental uncertainties

CERN Summer Student Lectures, Aug. 2005

Main experimental systematic uncertainty: Jet Energy Scale

A Jet is NOT a well defined object (fragmentation, detector response) - one needs an algorithm to define a jet, to measure its energy (e.g., a cone around a local energy maximum in the calorimeter, cone size adapted such that a large fraction of jet energy is collected, typical values: $\Delta R = \sqrt{\Delta \Phi^2 + \Delta \eta^2} = 0.7$ Cluster energy \neq parton energy Main corrections: - In general, calorimeters show different response to electrons/photons and hadrons (see lectures on detector physics) - Subtraction of offset energy not originating from the hard scattering (inside the same collision or pile-up contributions, use minimum bias data to extract this) Correction for jet energy in/out of cone

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

Main experimental systematic uncertainty: Jet Energy Scale

(corrected with jet data + Monte Carlo simulations)

Jet response correction in DØ:

- measure response of particles making up the jet
- use photon + jet data calibrate jets against the better calibrated photon energy

Comparison with Theory

- Fully corrected inclusive jet cross section

Test of W and Z production

How do W and Z events look like ?

As explained, leptons, photons and missing transverse energy are key signatures at hadron colliders

 $\begin{array}{ll} \rightarrow & \text{Search for leptonic decays:} & \textbf{W} \rightarrow \textbf{\ell} \ \nu & (\text{large } P_T(\textbf{\ell}), \text{ large } P_T^{\text{miss}}) \\ \textbf{Z} \rightarrow \textbf{\ell} \ \textbf{\ell} \end{array}$

W/Z discovery by the UA1 and UA2 experiments at CERN (1983/84)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

$$M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^\nu \cdot \left(1 - \cos \Delta \phi^{l,\nu}\right)}$$

Note: the longitudinal component of the neutrino cannot be measured \rightarrow only transverse mass can be reconstructed

Precision is limited by systematic effects (uncertainties on luminosity, parton densities,...

$\underline{Z \rightarrow \ell\ell \ cross \ sections}$

Precision is limited by systematic effects (uncertainties on luminosity, parton densities,...

C. R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343

Top Quark Physics

0

- Discovered by CDF and DØ collaborations at the Tevatron in 1995
- Run I top physics results are consistent with the Standard Model (Errors dominated by statistics)
- Run II top physics program will take full advantage of higher statistics
 - Better precision
 - Search for deviations from Standard Model expectations

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

Why is Top-Quark physics so important ?

• The top quark may serve as a window to *New Physics* related to the electroweak symmetry breaking (mass generation)

• We still know little about the top quark:

its properties (mass, spin, polarization, decay properties (rare decays??),....) should be measured with high accuracy to look for deviations from the Standard Model

Top Quark Production

Pair production: qq and gg-fusion

Electroweak production of single top-quarks (Drell-Yan and Wg-fusion)

	Run 1	Run II	LHC
	1.8	1.96	14 TeV
	TeV	TeV	
qq	90%	85%	5%
gg	10%	15%	95%
σ (pb)	5 pb	7 pb	600 pb

	Run 1	Run II	LHC
	1.8	1.96	14 TeV
	TeV	TeV	
σ (qq) (pb)	0.7	0.9	10
σ (gW) (pb)	1.7	2.4	250
σ (gb) (pb)	0.07	0.1	60

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

Top Quark Decays

BR (t→Wb) ~ 100%

Both W's decay via $W \rightarrow \ell \nu$ ($\ell = e \text{ or } \mu; 5\%$) dilepton channel

One W decays via $W \rightarrow l_V$ (l=e or μ ; 30%) lepton + jet channel

Both W's decay via W→qq (44%) all hadronic, not very useful

Important experimental signatures: : - Lepton(s)

- Missing transverse momentum

- b-jet(s)

DØ top candidate event with two leptons

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

Before b-tagging: background from W+jet events clearly dominates

Run II: silicon detectors cover a large region of acceptance

K. Jakobs, Universität Freiburg

μ + jets double-tagged event

tt cross section (lepton + jets) (including b-tagging)

1 high- p_T isolated lepton, at least one b-tagged jet

Large missing $E_{\scriptscriptstyle T}$

Excess above the W+ jet background in events with high jet multiplicity

K. Jakobs, Universität Freiburg

tt cross section summary (preliminary)

QCD prediction:

- Cacciari et al., hep-ph/0303085
- Kidonakis et al., hep-ph/0303086

Good agreement among various exp. measurements and with QCD prediction (similar results for DØ)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

K. Jakobs, Universität Freiburg

Ultimate test of the Standard Model: comparison between the direct Higgs boson mass (from observation, hopefully) and predictions from rad. corrections....

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

In general the transverse mass M_T is used for the determination of the W-mas (smallest systematic uncertainty).

Shape of the transverse mass distribution is sensitive to m_W , the measured distribution is fitted with Monte Carlo predictions, where m_W is a parameter

Main uncertainties:

result from the capability of the Monte Carlo prediction to reproduce real life:

- detector performance (energy resolution, energy scale,)
- physics: production model $p_T(W), \Gamma_{W_1},$
- backgrounds

Dominant error (today at theTevatron, and most likely also at the LHC) : Knowledge of lepton energy scale of the detector ! (if measurement of the lepton energy wrong by 1%, then measured m_w wrong by 1%)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2005

 \rightarrow calorimeter is perfectly calibrated

• to measure m_W to ~ 20 MeV, need to know energy scale to 0.2 %, i.e. if $E_{electron} = 100 \text{ GeV}$ then 99.98 GeV < $E_{measured} < 100.02 \text{ GeV}$

 \Rightarrow one of most serious experimental challenges

K. Jakobs, Universität Freiburg

what precision can be reached in Run II and at the LHC f
--

Int. Luminosity	0.08 fb ⁻¹	2 fb ⁻¹	10 fb ⁻¹
Stat. error	96 MeV	19 MeV	2 MeV
Energy scale, lepton res.	57 MeV	20 MeV	16 MeV
Monte Carlo model (P _T ^w , structure functions, photon-radiation)	30 MeV	20 MeV	17 MeV
Background	11 MeV	2 MeV	1 MeV
Tot. Syst. error	66 MeV	28 MeV	24 MeV
Total error	116 MeV	34 MeV	25 MeV

- Total error per lepton species and per experiment at the LHC is estimated to be $\,\pm\,25~MeV$

at the Tevatron

- Main uncertainty: lepton energy scale (goal is an uncertainty of ± 0.02 %)
- Many systematic uncertainties can be controlled in situ, using the $Z \rightarrow \ell \ell$ sample (P_T(W), recoil model, resolution)

Combining both experiments (ATLAS + CMS, 10 fb⁻¹), both lepton species and assuming a scale uncertainty of $\pm 0.02\%$ $\Rightarrow \Delta m_w \sim \pm 15 \text{ MeV}$

Tevatron: 2 fb⁻¹:

$\Delta m_w \sim \pm 30 \text{ MeV}$

K. Jakobs, Universität Freiburg

± 34 MeV

Signature of Z and W decays

Top mass measurements Top mass calculation: - Kinematic fit under (tt) hypothesis - compute likelihood for observed events as a function of the top quark mass B-Maximum likelihood $\rightarrow m_{ton}$

Bjet jet

Reduce JES systematic by using in-situ hadronic W mass in tt events

(simultaneous determination of m_t and JES from reconstructed m, and M_w templates)

K. Jakobs, Universität Freiburg

Tevatron results on the top quark mass

Summary of the 2. Lecture

- Hadron Colliders Tevatron and LHC play an important role in future tests of the Standard Model
- Predictions of Quantum Chromodynamics can be tested in
 - High P_T jet production
 - W/Z production
 - Top quark production
 -
- In addition, precise measurements of Standard Model parameters can be carried out.

Examples: W mass can be measured to ~15 MeV Top-quark mass to ~ 1 GeV

→ Higgs mass constrained indirectly to ~ 25%

Prospects for top-quark mass measurements at the LHC

