Physics at Hadron Colliders

- Introduction to Hadron Collider Physics
- The present (and future) Hadron Colliders
 - The Tevatron and the LHC
- Test of the Standard Model at Hadron Colliders
 - Test of QCD: Jet, W/Z, top-quark production
 - W- and top-quark mass measurements
- Search for the Higgs Boson
- Search for New Phenomena

Karl Jakobs
Physikalisches Institut
Universität Freiburg / Germany
The Standard Model of Particle Physics

(i) The building blocks of matter: Quarks and Leptons (Fermions)

\[m(e) = 0.000511 \text{ GeV/c}^2 \]

\[m(\tau) = \sim 1.8 \text{ GeV/c}^2 \]

\[m(u) = 0.005 \text{ GeV/c}^2 \]

\[m(t) = \sim 174 \text{ GeV/c}^2 \]

\[\text{In comparison: } m(p) = 0.938 \text{ GeV/c}^2 \]
(ii) Force carriers / Interactions: exchange of bosons

Electroweak Interaction: γ, W^\pm, Z

Quantum Chromodynamics (QCD): Gluons

$m_\gamma = 0$, \hspace{1cm} m_g = 0$

$M_W = 80.426 \pm 0.034 \text{ GeV} / c^2$

$M_Z = 91.1875 \pm 0.0021 \text{ GeV} / c^2$
Important open questions of particle physics

1. **What is the origin of mass?**

 Does the Higgs particle exist?

 as proposed by P. Higgs (1964)

 All properties of the Higgs particle are known, once its mass is fixed. The mass is a free parameter in the Standard Model

 Constraints (from theory and experiment):
 \[114.4 \text{ GeV/c}^2 \text{ (exp.)} < m_H < \sim 1000 \text{ GeV/c}^2 \text{ (theo.)} \]
2. The question of unification:
Is there a universal force, a common origin of the different interactions?

Famous example: J.C. Maxwell (1864)
Unification of electricity and magnetism

1962-1973: Glashow, Salam and Weinberg

Unification of the electromagnetic and weak interactions
⇒ electroweak interaction
 (prediction of W- und Z-bosons)

Higgs mechanism is a cornerstone of the model
Are there new, yet unknown types of matter?
Will we meet supersymmetry (SUSY) on the way towards unification?

Quark Squark
Top Stop
Electron Selectron
Wino W
Higgsino H

Motivation for SUSY:
(i) Unification of forces seems possible
(ii) Supersymmetry provides a candidate for dark matter in the universe
Where are we in the Universe?

We are here
Surrounded by
- Mass (planets, stars, ..., hydrogen gas)
- Dark Matter
- Dark Energy

© Rocky Kolb
Key Questions of Particle Physics

1. **Mass**: What is the origin of mass?
 - How is the electroweak symmetry broken?
 - Does the Higgs boson exist?

2. **Unification**: What is the underlying fundamental theory?
 - Motivation: Gravity not yet included; Standard Model as a low energy approximation
 - Is our world supersymmetric?
 - Are there extra space time dimensions?
 - Other extensions?

3. **Flavour**: or the generation problem
 - Why are there three families of matter?
 - Neutrino masses and mixing?
 - What is the origin of CP violation?
The role of Hadron Colliders

1. **Mass**
 - Search for the Higgs boson

2. **Unification**
 - Test of the Standard Model
 - Search for Supersymmetry
 - Search for other Physics Beyond the SM

3. **Flavour**
 - B hadron masses and lifetimes
 - Mixing of neutral B mesons
 - CP violation

The link between SUSY and Dark Matter?

Energy \rightarrow Explore the TeV energy domain
Experiments must also be prepared for “the unexpected”

Precision \rightarrow Further tests of the Standard Model

M. Battaglia, I. Hinchliffe, D. Tovey, hep-ph/0406147
e^+e^- colliders LEP at CERN and SLC at SLAC
+ many other experiments (Tevatron, fixed target…….)
have explored the energy range up to ~100 GeV with incredible precision

However:
The Standard Model is consistent with all experimental data!

Light Higgs boson favoured
No evidence for phenomena beyond the SM
Why a hadron collider?

e^+e^- colliders are excellent machines for precision physics!!

- e^+e^- are point-like particles, no substructure \rightarrow clean events
- complete annihilation, centre-of-mass system, kinematic fixed
Proton proton collision are more complex
Main drawbacks of e^+e^- circular accelerators:

1. Energy loss due to synchrotron radiation
 (basic electrodynamics: accelerated charges radiate, dipole, x-ray production via bremsstrahlung, synchrotron radiation……)

 - Radiated power (synchrotron radiation):
 Ring with radius R and energy E

 $P = \frac{2 e^2 c}{3 R^2} \left(\frac{E}{m_c^2} \right)^4$

 - Energy loss per turn:

 - Ratio of the energy loss between protons and electrons:

 $-\Delta E \approx \frac{4 \pi e^2}{3 R} \left(\frac{E}{m_c^2} \right)^4$

 $\frac{\Delta E(e)}{\Delta E(p)} = \left(\frac{m_p}{m_e} \right)^4 \sim 10^{13}$

Future accelerators:
- pp ring accelerators (LHC, using existing LEP tunnel)

- or e^+e^- linear accelerators, International Linear Collider ILC
 (under study / planning)
2. Hard kinematic limit for center-of-mass energy from the beam energy:
\[\sqrt{s} = 2 E_{\text{beam}} \]
The Large Hadron Collider (LHC)

• Proton-proton accelerator in the LEP-tunnel at CERN

\[p \Rightarrow p \]

7 TeV 7 TeV

- Highest energies per collision

- Conditions as at times of \(10^{-13} - 10^{-14}\) s after the big bang

• Four planned experiments: ATLAS, CMS (pp physics)
 LHC-B (physics of b-quarks)
 ALICE (Pb-Pb collisions)

• Constructed in an international collaboration

• Startup planned for late 2007
Important components of the accelerator

• superconducting dipole magnets
 - challenge: magnetic field of 8.33 Tesla
 - in total 1232 magnets, each 15 m long
 - operation temperature of 1.9 K
 LHC is the largest cryogenic system in the world

• Eight superconducting accelerator structures, acceleration gradient of 5 MV/m
Beam energy: 7 TeV
Luminosity: \(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
Bunch spacing: 25 ns
Particles/Bunch: \(1.15 \times 10^{11}\)
SC Dipoles: 1232, 15 m, 8.33T
Stored Energy: 362 MJ/Beam

Status of the LHC machine

- Key components available
- Installation progressing in parallel and at high speed; aim to finish by end March 2007
- “Every effort is being made to have first collisions by end of 2007”

A “likely” startup scenario:

- **Late 2007:** Pilot run, first collisions (at injection energy)
 - detector and trigger commissioning, calibration, early physics
- **2008:** First Physics run at nominal energy
Proton antiproton collider

2 Experiments: CDF and DØ

* 1992 - 1996: Run I, $\sqrt{s} = 1.8$ TeV
 6 x 6 bunches, 3 μs spacing
 $\int L \, dt = 125$ pb$^{-1}$

* 1996 - 2001: upgrade programme
 Accelerator: new injector (x5)
 antiproton recycler (x2)
 36x36 bunches, 396 ns spacing

+ Detectors

* March 2001 – Feb 2006: Run II a, $\sqrt{s} = 1.96$ TeV, 1.2 fb$^{-1}$
* July 2006 - 2009: Run II b, $\sqrt{s} = 1.96$ TeV, 5 - 8 fb$^{-1}$

Real Data
Physics at Hadron Colliders

• Protons are complex objects:
 Partonic substructure:
 Quarks and Gluons

• Hard scattering processes:
 (large momentum transfer)
 quark-quark
 quark-gluon scattering or annihilation
 gluon-gluon

However: hard scattering (high P_T processes) represent only a tiny fraction
of the total inelastic pp cross section
Total inelastic pp cross section ~ 70 mb (huge)
Dominated by events with small momentum transfer
Variables used in the analysis of pp collisions

- **Transverse momentum**
 - (in the plane perpendicular to the beam)
 - \(p_T = p \sin \theta \)

Transverse momentum

- \(\theta = 90^\circ \rightarrow \eta = 0 \)
- \(\theta = 10^\circ \rightarrow \eta \approx 2.4 \)
- \(\theta = 170^\circ \rightarrow \eta \approx -2.4 \)
- \(\theta = 1^\circ \rightarrow \eta \approx 5.0 \)

Pseudo-rapidity:

\[\eta = -\ln \tan \frac{\theta}{2} \]
Inelastic low-P_T pp collisions

Most interactions are due to interactions at large distance between incoming protons → small momentum transfer, particles in the final state have large longitudinal, but small transverse momentum

$< p_T > \approx 500 \text{ MeV}$ (of charged particles in the final state)

$\frac{dN}{d\eta} \approx 7$

- about 7 charged particles per unit of pseudorapidity in the central region of the detector
- uniformly distributed in Φ

These events are called “Minimum-bias events"
More details on the hard scattering process:

Proton beam can be seen as beam of quarks and gluons with a wide band of energies.

The proton constituents (partons) carry only a fraction $0 < x < 1$ of the proton momentum.

The effective centre-of-mass energy $\sqrt{\hat{s}}$ is smaller than \sqrt{s} of the incoming protons.

\[
\begin{align*}
p_1 &= x_1 p_A \\
p_2 &= x_2 p_B \quad \text{(if } x_1 = x_2 = x) \\
p_A = p_B &= 7 \text{ TeV}
\end{align*}
\]

To produce a mass of:

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>Tevatron</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 GeV:</td>
<td>$x \sim 0.007$</td>
<td>0.05</td>
</tr>
<tr>
<td>5 TeV:</td>
<td>$x \sim 0.36$</td>
<td>--</td>
</tr>
</tbody>
</table>
From where do we know the x-values?

The structure of the proton is investigated in Deep Inelastic Scattering experiments:

Today’s highest energy machine: the HERA ep collider at DESY/Hamburg

Scattering of 30 GeV electrons on 900 GeV protons:
→ Test of proton structure down to 10^{-18} m
How do the x-values of the proton look like?

Parton density functions (pdf):

- u- and d-quarks at large x-values
- Gluons dominate at small x!!

Uncertainties in the pdfs, in particular on the gluon distribution at small x
Calculation of cross sections

\[\sigma = \sum_{a,b} \int dx_a \, dx_b \, f_a(x_a, Q^2) \, f_b(x_b, Q^2) \, \hat{\sigma}_{ab}(x_a, x_b) \]

Sum over initial partonic states \(a, b \)

\(\hat{\sigma}_{ab} \equiv \) hard scattering cross-section

\(f_i(x, Q^2) \equiv \) parton density function

Example: **W-production**: (leading order diagram)

\[\sigma (pp \rightarrow W) \sim 150 \text{ nb} \sim 2 \cdot 10^{-6} \sigma_{\text{tot}} (pp) \]

... + higher order QCD corrections (perturbation theory)
Luminosity

The rate of produced events for a given physics process is given by:

\[N = L \sigma \]

dimensions: \(s^{-1} = \text{cm}^{-2} \text{s}^{-1} \cdot \text{cm}^2 \)

Luminosity depends on the machine:
important parameters: number of protons stored, beam focus at interaction region,....

In order to achieve acceptable production rates for the interesting physics processes, the luminosity must be high!

\[L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1} \] design value for Tevatron Run II
\[L = 10^{33} \text{ cm}^{-2} \text{s}^{-1} \] planned for the initial phase of the LHC (1-2 years)
\[L = 10^{34} \text{ cm}^{-2} \text{s}^{-1} \] LHC design luminosity, very large!!
(1000 x larger than LEP-2, 50 x Tevatron Run II design)

One experimental year has ~ 10^7 s →

Integrated luminosity at the LHC:
\[10 \text{ fb}^{-1} \] per year, in the initial phase
\[100 \text{ fb}^{-1} \] per year, later, design
Proton – proton collisions at the LHC

Proton – proton:

2835 x 2835 bunches
Separation: 7.5 m (25 ns)

10^{11} protons / bunch
Crossing rate of p-bunches: 40 Mio. / s
Luminosity: $L = 10^{34}$ cm$^{-2}$ s$^{-1}$

$\sim 10^9$ pp collisions / s
(superposition of 23 pp-interactions per bunch crossing: pile-up)

~ 1600 charges particles in the detector

⇒ high particle densities
 high requirements for the detectors
Cross Sections and Production Rates

Rates for $L = 10^{34}$ cm$^{-2}$ s$^{-1}$: (LHC)

- Inelastic proton-proton reactions: 10^9 / s
- bb pairs: 5×10^6 / s
- tt pairs: 8 / s
- $W \rightarrow e \nu$: 150 / s
- $Z \rightarrow ee$: 15 / s
- Higgs (150 GeV): 0.2 / s
- Gluino, Squarks (1 TeV): 0.03 / s

LHC is a factory for:
- top-quarks, b-quarks, W, Z, …… Higgs, ……

The only problem: you have to detect them!
What experimental signatures can be used?

Quark-quark scattering:

No leptons / photons in the initial and final state

If leptons with large transverse momentum are observed:
⇒ interesting physics!

Example: Higgs boson production and decay

Important signatures:
• Leptons und photons
• Missing transverse energy
Detector requirements from physics

• Good measurement of leptons and photons with large transverse momentum P_T

• Good measurement of missing transverse energy (E_T^{miss}) and energy measurements in the forward regions \Rightarrow calorimeter coverage down to $\eta \sim 5$

• Efficient b-tagging and τ identification (silicon strip and pixel detectors)

for more details: see lecture by D. Froidevaux
Suppression of background: Reconstruction of objects with large transverse momentum

Reconstructed tracks with pt > 25 GeV
Detector requirements from the experimental environment (pile-up)

- LHC detectors must have **fast response**, otherwise integrate over many bunch crossings → too large pile-up

 Typical response time: 20-50 ns
 → integrate over 1-2 bunch crossings
 → pile-up of 25-50 minimum bias events
 ⇒ very challenging readout electronics

- **High granularity** to minimize probability that pile-up particles be in the same detector element as interesting object
 → large number of electronic channels, high cost

- LHC detectors must be **radiation resistant**: high flux of particles from pp collisions
 → high radiation environment
 e.g. in forward calorimeters: up to 10^{17} n/cm2
 in 10 years of LHC operation
How are the interesting events selected?

TRIGGER: much more difficult than at e⁺e⁻ machines

Interaction rate: \(\sim 10^9 \) events/s
Can record \(\sim 200 \) events/s (event size 1 MB)

\[\Rightarrow \text{trigger rejection} \sim 10^7 \]

Trigger decision \(\approx \mu s \rightarrow \text{larger than interaction rate of 25 ns} \)

Store massive amount of data in *pipelines* while special trigger processors perform calculations
The ATLAS experiment

- Solenoidal magnetic field (2T) in the central region (momentum measurement)

High resolution silicon detectors:
- 6 Mio. channels (80 µm x 12 cm)
- 100 Mio. channels (50 µm x 400 µm)
 space resolution: ~ 15 µm

- Energy measurement down to 1° to the beam line

- Independent muon spectrometer (supercond. toroid system)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>25 m</td>
</tr>
<tr>
<td>Barrel toroid length</td>
<td>26 m</td>
</tr>
<tr>
<td>End-cap end-wall chamber span</td>
<td>46 m</td>
</tr>
<tr>
<td>Overall weight</td>
<td>7000 Tons</td>
</tr>
</tbody>
</table>
Der ATLAS Detektor im Vergleich
ATLAS Collaboration
(Status Oct. 2003)

(151 Institutions)

Total Scientific Authors
Scientific Authors holding a PhD or equivalent

K. Jakobs
ATLAS detector construction and installation
ATLAS detector construction: Calorimeters
ATLAS Installation

- Impressive progress! Nearly all detector components at CERN;
- Installation in the pit proceeding well, although time delays, work in parallel to catch up;
- On critical path: Installation of Inner detector services and forward muon wheels (time);
- ATLAS expected to be ready in August 2007 … one more tough year …
CMS

Superconducting Coils, 4 Tesla

Tracker
- Pixels
- Silicon Microstrips
- 210 m² of silicon sensors
- 9.6M channels

Muon Barrel
- Drift Tube Chambers (DT)
- Resistive Plate Chambers (RPC)

Calorimeters
- ECAL
 - 76k scintillating PbWO4 crystals
- HCAL
 - Plastic scintillator/brass sandwich

Iron Yoke

Endcaps

Total weight: 12500 t
Overall diameter: 15 m
Overall length: 21.6 m
CMS Installation

UXC will be ready for lowering 31 August 06

Coil inserted, 14. September 2005

Cathode Strip chambers and yoke endcaps Hadronic calorimeter, endcap Tracker, outer barrel

On critical path: ECAL crystal delivery (Barrel: Feb. 07, Endcaps: Jan. 08)
Pixel installation for 2008 physics run.
The CDF-Experiment

New in Run II:

Tracking system
- Silicon vertex detector (SVXII)
- Intermediate silicon layers
- Central outer tracker (COT)

End plug calorimeter
Time of flight system

Front-end electronics
Trigger and DAQ systems

12 countries, 59 institutions
706 physicists
The DØ Experiment

19 countries, 83 institutions
664 physicists

New for Run II

Inner detector
magnetic field added

Preshower detectors
Forward muon detector

Front-end electronics
Trigger and DAQ
Integrated and peak luminosities

integrated luminosity recorded by the D0 experiments until Feb.06: 1.18 fb⁻¹

Results shown during the next days are based on this data sample

Peak luminosity

Run II goal: \(3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}\)

Run II maximum: \(1.7 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}\) (to date)

Run I maximum: \(2.4 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}\)
Tevatron Luminosity Goals

- Additional improvements in shutdown 2006 (electron cooling in the recycler)
- Final performance depends on antiproton stacking rate in the accumulator (at present 20 mA/h = 0.2 \cdot 10^{12} \text{ pbar/h})

\[\text{Int. Luminosity (fb}^{-1}\text{)} \]

We are here

\[~ 8 \text{ fb}^{-1} \]

\[~ 5 \text{ fb}^{-1} \]
Summary of the 1. Lecture

• Hadron Colliders play an important role in particle physics (today and over the next decade!)

• LHC machine has enough energy to explore the TeV energy range
 - Mass reach 3-5 TeV/c²
 - Low energy region (above LEP energies) can already be addressed at the Tevatron today
 (Examples will be discussed during the week)

• Experiments at Hadron Colliders are challenging
 Huge interaction rate → complex trigger architecture,
 Large background from QCD jet production, pile-up at the LHC

 → requires highly performing (fast, high granularity, radiation hard) detectors and electronics

Tevatron experiment CDF and DØ are in the middle of data taking and physics analysis;

LHC pp experiments ATLAS and CMS in the final round of their construction phase, startup in 2007.