HIGGS and SUSY in ATLAS
- overview on physics prospects -

- Introduction, Detector Aspects
- Standard Model Higgs Search
- Determination of Higgs Parameters
- Higgs Search in the MSSM
- Search for SUSY signals
 - general SUSY signatures
 - Study of SUGRA models
 - Higgs in SUGRA

Karl Jakobs
University of Mainz
55099 Mainz, Germany
The ATLAS Detector

ATLAS

S. C. Air Core Toroids
S. C. Solenoid
EM Calorimeters
Inner Detector
Hadron Calorimeters
Muon Detectors
Forward Calorimeters
Important Detector Parameters

<table>
<thead>
<tr>
<th>Detector component</th>
<th>resolution, characteristics</th>
<th>η coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measurement</td>
</tr>
<tr>
<td>e.m. calorimetry</td>
<td>$10%/\sqrt{E} \oplus 0.7%$</td>
<td>±3</td>
</tr>
<tr>
<td>Preshower detection</td>
<td>Enhanced $\gamma-\pi^0$ and γ-jet separation, direction measurements, and b-tagging with electrons</td>
<td>±2.4</td>
</tr>
</tbody>
</table>
| Jet and missing E_T Calorimetry | 50%/\sqrt{E} \oplus 3%
100%/\sqrt{E} \oplus 10% | ±3
3 < |η| < 5 | ±3
3 < |η| < 5 |
| Inner detector | 30% at $p_T = 500$ GeV
Enhanced electron identification (TRT)
b-tagging
Secondary vertex detection | ±2.5
±2.5
±2.5 | ±2.5
±2.5
±2.5 |
| Muon detection | 10% at $p_T = 1$ TeV
in stand-alone mode at highest luminosity | ±3 | ±2.2 |
b-tagging performance:

Muon resolution, stand alone toroid:
Running Scenarios and Luminosities

starting date: ~ 2005 \hspace{1cm} $\sqrt{s} = 14$ TeV

initial luminosity: $\mathcal{L} = 1.0 \ 10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$

\[
\int \mathcal{L} dt = 10 \ fb^{-1} \quad \text{per year}
\]

\Rightarrow expected period of 3 years

high luminosity: $\mathcal{L} = 1.0 \ 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

\[
\int \mathcal{L} dt = 100 \ fb^{-1} \quad \text{per year}
\]

ultimate reach:

\[
\int \mathcal{L} dt = 300 \ fb^{-1} < 10 \text{ years}
\]
Simulation Framework

- **PYTHIA 5.7** Monte Carlo
 SPYTHIA and *ISAJET* for SUSY studies

- **K factors** not included

 K-factors are not known for many background processes, conservative, as long as \(\frac{K_{Signal}}{\sqrt{K_{Backgr.}}} > 1 \).

- **Higgs branching ratios**: HDECAY program

- **CTEQ-2 structure function** parametrizations

- **Detector Simulation**

 Many results based on fast detector simulation; Critical parameters (mass resolutions, background rejections) determined in full GEANT simulations

 Detector performance has been verified in many test-beam measurements with prototyp modules
Standard Model Higgs decays

Important channels at LHC:

- $H \rightarrow \gamma \gamma$
- $WH, t\bar{t}H$, $H \rightarrow \gamma \gamma, H \rightarrow b\bar{b}$
- $H \rightarrow Z Z^{(*)} \rightarrow l^+ l^- l^+ l^- \quad (*)$
- $H \rightarrow W W^* \rightarrow l^+ \nu l^- \bar{\nu}$
- $H \rightarrow Z Z \rightarrow l^+ l^- \nu \bar{\nu} \quad (**)$
- $H \rightarrow Z Z \rightarrow l^+ l^- \text{ jet jet}$
- $H \rightarrow W W \rightarrow l\nu \text{ jet jet}$

(*) see talk of Th. Trefzger (Tuesday 3:40 pm) for details
(**) see talk of D. Costanzo (Monday 4:20 pm) for details
Signal \[\sigma \times B_r = 43 \text{ fb} \]
\[(m_H = 100 \text{ GeV}) \]

\[\gamma\gamma^- \text{ background (irreducible)} \quad \frac{d\sigma}{dm_{\gamma\gamma}} \sim 1200 \text{ fb/GeV} \]
\[(m_{\gamma\gamma} = 100 \text{ GeV}) \]

\[\text{QCD Jet background (reducible)} \quad \frac{\sigma_{\gamma\gamma}}{\sigma_{\gamma\gamma}} \sim 1000 \]
\[\frac{\sigma_{\gamma\gamma}}{\sigma_{\gamma\gamma}} \sim 2 \cdot 10^6 \]

Background rejection study:
- based on 10^6 fully simulated jet events
- $P_T > 20 \text{ GeV}$:
 jet rejection $\sim 10^3$
 (isolation, had. leakage, shower profile)
- add. π^0 rejection with first calo. sampling,
 fine η segmentation

QCD background at the level of 10% of the $\gamma\gamma$ continuum background
\[\frac{\sigma_M}{M} = \frac{1}{2} \left(\frac{\sigma_{E_1}}{E_1} \oplus \frac{\sigma_{E_2}}{E_2} \oplus \frac{\sigma_\theta}{\tan \theta/2} \right) \]

(ii) Degradation of performance due to detector material (conversions...)

<table>
<thead>
<tr>
<th>Energy resolution</th>
<th>low L</th>
<th>high L</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster size</td>
<td>10%</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>(\sqrt{E}) & (\sqrt{E}) & (\sqrt{E})</td>
<td></td>
</tr>
<tr>
<td>angular resolution</td>
<td>40 mrad / (\sqrt{E})</td>
<td></td>
</tr>
<tr>
<td>(\gamma) efficiency</td>
<td>80 %</td>
<td></td>
</tr>
<tr>
<td>incl. conversions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\chi^2/\text{ndf} \quad 22.21/23 \]

Constant 70.6
Mean 100.0
Sigma 1.306

mass resolution from full simulation:

\[\sigma_m = 1.31 \text{ GeV} \]

for \(m_H = 100 \text{ GeV}\)

unconverted and converted (shaded) \(\gamma\)'s
$H \rightarrow \gamma \gamma$ Signals

Analysis cuts:

- **Two isolated photons**
 \[P_T^1 > 40 \text{ GeV and } P_T^2 > 25 \text{ GeV} , \ |\eta| < 2.5 \]

- **exclude barrel - endcap transition region**
 \[1.42 < |\eta| < 1.57 \]

Signal significance: \(100 \text{ fb}^{-1}\)

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>100</th>
<th>120</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal events</td>
<td>960</td>
<td>1200</td>
<td>930</td>
</tr>
<tr>
<td>$\gamma\gamma$ background</td>
<td>44700</td>
<td>30300</td>
<td>20800</td>
</tr>
<tr>
<td>γ-jet, jet-jet background</td>
<td>6700</td>
<td>4400</td>
<td>3900</td>
</tr>
</tbody>
</table>

| Stat. significance | 4.7 σ | 6.9 σ | 6.3 σ |
Associated Production

\[WH \rightarrow \gamma\gamma \, l \quad \text{and} \quad t\bar{t}H \rightarrow \gamma\gamma \, l \]

- additional lepton, \(\Rightarrow \) improved S/B ratio

- however low rates:
 Example: \(m_H = 100 \text{ GeV}, \int \mathcal{L} dt = 100 \text{ fb}^{-1} \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected signal:</td>
<td>15.6 events</td>
</tr>
<tr>
<td>background:</td>
<td>6.6 events</td>
</tr>
<tr>
<td>Stat. significance (Poisson):</td>
<td>4.9 (\sigma)</td>
</tr>
</tbody>
</table>

- irreducible background \((W\gamma\gamma, Z\gamma\gamma, t\bar{t}\gamma\gamma)\) dominant

\(\Rightarrow \) additional confirmation of a low mass Higgs signal

\[\frac{S}{\sqrt{B}} \quad \text{versus} \quad \text{Higgs mass (GeV)} \]

- 100 fb\(^{-1}\)
- no K factors
Additional Channels for a low mass Higgs?

\[t\bar{t}H, \ H \rightarrow b\bar{b} \]

\[t\bar{t} \ H \rightarrow Wb \ W\bar{b} \ b\bar{b} \rightarrow l\nu b \ q\bar{q}\ b\bar{b} \]

- **Isolated Lepton:** (provides the trigger)
 - Electrons: \(P_T > 20 \text{ GeV}, \ |\eta| < 2.5 \)
 - Muon: \(P_T > 6 \text{ GeV}, \ |\eta| < 2.5 \)

- **Full reconstruction of the top quarks**

 require: 4 tagged b jets, \(P_T > 15 \text{GeV}, \ |\eta| < 2.5 \)
 2 non-b jets, \(P_T > 15 \text{GeV}, \ |\eta| < 2.5 \)

 reconstruct both W's from the \(q\bar{q} \) and \(l - P_T^{miss} \)-system, use W-mass constraint in case of neutrino

- **Pair two b-jets with the two W's**
 select that pairing that minimizes
 \[\chi^2 = (M_{qqb} - M_{top})^2 + (M_{\nu b} - M_{top})^2 \]

- **require both rec. top masses to be in a window of**
 \(m_{top} \pm 2\sigma_m \)

![Graphs showing data for different values of \(\sigma \) and \(m_{jjb} \) or \(m_{\nu b} \)]

top reconstruction efficiency: \(\sim 50\% \)
Expected Rates for 30 fb^{-1}

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal events</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>total background ($t\bar{t}jj$, ...)</td>
<td>145</td>
<td>150</td>
<td>130</td>
</tr>
<tr>
<td>Stat. sign. 30 fb^{-1}</td>
<td>6.7σ</td>
<td>5.0σ</td>
<td>3.6σ</td>
</tr>
<tr>
<td>Stat. sign. 100 fb^{-1}</td>
<td>7.2σ</td>
<td>6.4σ</td>
<td>3.1σ</td>
</tr>
</tbody>
</table>

Conclusion:

- Signal extraction in low mass region looks possible
- Good b-tagging is essential
- Knowledge of the background shape is important at low mass
 (dominant background is $t\bar{t}jj$ ← input from top analysis)
Scenario after 100 fb\(^{-1}\):

- ATLAS has a good sensitivity over the full mass range from 90 GeV to \(\sim 1\) TeV
- In most of the mass range two channels are available
Summary of the Standard Model Higgs Search

Scenario after 30 fb$^{-1}$:

- The full mass range can already be covered by ATLAS after running three years at low luminosity
Determination of Higgs Parameters

Mass, width, rates, branching ratios,......

- combine the information from the various channels
- errors considered:
 - statistical errors
 - errors on the background subtraction
 - systematic error on absolute energy scale,
 assumed uncertainty:
 $\pm 0.1\%$ for lepton/photon channels (conservative)
 $\pm 1.0\%$ for hadronic channels
 - systematic error on the momentum resolution
 (based on calibration with Z events)
Precision on the Higgs mass:

- Higgs mass can be measured with a precision of 0.1% up to masses of \(\sim 400 \text{ GeV} \)
- still at the level of \(\pm 1\% \) at 700 GeV
- no theoretical errors taken into account (mass shifts due to interference effects between resonant and non-resonant production)
- uncertainty from structure functions is expected to be small
Precision on the Higgs width:

- exp. measurement of width of Higgs signal; unfold detector resolution \(\Rightarrow \Gamma_{Higgs} \pm \Delta \Gamma_{Higgs} \)
- measurement only possible if \(\Gamma_{Higgs} \sim \Gamma_{exp.} \), i.e. \(m_H > 200 \text{ GeV} \)

main uncertainties:

- energy/momentum resolution
- uncertainties due to radiative decays of the Z (calibration of the resolution function using Z decays, \(\pm 1.5\% \))
Higgs rates and branching ratios:

- deduce $\sigma \cdot Br$ from measured signal rates
- main uncertainty: absolute error on the luminosity LHC goal: $\pm 5\%$
- assume an add. uncertainty of $\pm 10\%$ on the background subtraction

- uncertainty on $\sigma \cdot Br$ is at the level of $\pm 7\%$ over a large mass range, if 5% uncertainty on the luminosity can be achieved

work ongoing on: branching ratios, spin
The supersymmetric Higgs sector

5 Higgs particles: \(h, H, A \)
\(H^+, H^- \)

The MSSM Higgs sector is determined by two parameters: generally chosen to be: \(m_A, \tan \beta \)

tree level mass relations are significantly modified by radiative corrections

LEP/LHC interest: upper mass bound for the lightest SUSY higgs:
\[m_h < 115 \text{ GeV} \quad \text{for } A_t = 0 \]

i.e. no mixing scenario, conservative assumption for LHC

dependence on \(m_A \) and \(\tan \beta \):

accessible at LHC through the \(\gamma \gamma \) and \(b \bar{b} \) (associated production) decay mode.
ATLAS studies of the MSSM Higgs sector concentrate on two scenarios:

1. SUSY particle masses are large, $m_{SUSY} = 1$ TeV, Higgs boson decays to SUSY particles are kinematically forbidden

2. Studies in the framework of SUGRA models
 - SUSY particles are light and appear in Higgs decays, competing with SM decay modes
 - Light Higgs particles appear in decays of SUSY particles
 Search for the $h \rightarrow b \bar{b}$ decay

later: after SUSY discussion
Important Channels in the MSSM Higgs search

• The Standard Model decay channels
 \- \ h \ \rightarrow \ \gamma \gamma
 \- \ h \ \rightarrow \ bb
 \- \ H \ \rightarrow \ ZZ^* \ \rightarrow \ l^+l^-l^+l^-

(\gamma \gamma \ \text{and} \ ZZ^* \ \text{decay modes are suppressed w.r.t. SM})

evaluation of performance based on SM results

• Modes strongly enhanced at large tan β:
 \- \ H/A \ \rightarrow \ \tau^+\tau^-
 \- \ H/A \ \rightarrow \ \mu^+\mu^-

• Other interesting channels:
 \- \ H/A \ \rightarrow \ t\bar{t}
 \- \ H/A \ \rightarrow \ Zh \ \rightarrow \ l^+l^- \ \gamma\gamma
 \hspace{1cm} \rightarrow \ l^+l^- \ \bar{b}b
 \- \ H \ \rightarrow \ hh
 \- \ t \ \rightarrow \ H^+b, \ \ H^+ \ \rightarrow \ \tau\nu

assume: \ \ m_{\text{SUSY}} = 1 \ \text{TeV}

\ \ m_{\text{top}} = 175 \ \text{GeV}

\ \ A_t = 0. \ \ (\text{pessimistic for LHC})

i.e. no mixing, SUSY particles do not appear in Higgs decays
The three main channels

$h \rightarrow \gamma \gamma$

$t\bar{t}h, h \rightarrow b\bar{b}$

$A, H \rightarrow \tau\tau$
after 3 years at low luminosity: ~80% of the parameter space can be covered
Summary of the MSSM Higgs Search

- Full parameter space covered, SM and MSSM can be distinguished for almost all cases

- Most part of the parameter space covered by at least two channels, except low m_A region (covered by LEP200)

- If h discovered at LEP200: \Rightarrow heavy Higgs bosons (A/H) should be observable at LHC for $m_A < \sim 2 \ m_{top}$

- If A,h discovered at LEP200: the charged Higgs should be seen at LHC

- Discovery of heavy Higgses ($m_A > 500$ GeV) seems to be difficult ($t\bar{t}$ decay mode)
The Search for SUSY

- If SUSY exists at the electroweak scale, a discovery at LHC should be easy

- Gluinos and squarks are strongly produced.

 They decay through cascades to the lightest SUSY particle $\tilde{\chi}_1^0$.

 \Rightarrow combination of Jets, Leptons, E_T^{miss}

 ![Diagram of SUSY decay process]

 1. Step:
 Look for deviations from the Standard Model
 Example: Multijet $+$ E_T^{miss}-Signature

 2. Step:
 Establish SUSY mass scale, use inclusive variables
 Example: effective mass distribution

 3. Step:
 Determine Model parameters
Squarks and Gluinos

Experimental signature:
Several jets with large transv. momentum missing transverse energy

background:
top production
W + Jet-, Z + jet-production

| \(\int \mathcal{L} dt \) | \\
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\tilde{q}} = 2 m_{\tilde{g}})</td>
<td>1050</td>
</tr>
<tr>
<td>(m_{\tilde{q}} \sim m_{\tilde{g}})</td>
<td>1800</td>
</tr>
<tr>
<td>(m_{\tilde{q}} = m_{\tilde{g}} / 2)</td>
<td>2600</td>
</tr>
</tbody>
</table>
SUSY Mass scale

Simple experimental cuts:

- $E_T^{miss} > \min(100 \text{ GeV}, 0.2 \ M_{eff})$
- At least 4 jets with $E_T > 50 \text{ GeV}$ and $P_T^1 > 100 \text{ GeV}$
- Transverse sphericity $S_T > 0.2$
- No μ or isolated e with $P_T > 20 \text{ GeV}$ and $|\eta| < 2.5$

define effective mass:

$$M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$$

$$M_{SUSY} = \min (M_{\tilde{g}}, M_{\tilde{u}_R})$$

- good correlation between M_{eff} and M_{SUSY}
 (spread is shown for 100 minimal SUGRA models
 selected at random, $m_0, m_{1/2}$ and A_0 varied)
Determination of Model Parameters

- Determination of model parameters is difficult (two missing $\tilde{\chi}_1^0$, not enough constraints to reconstruct mass peaks)

- Reconstruct partially the decay chain

 possible starting points:

 $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h \rightarrow \tilde{\chi}_1^0 b\bar{b}$

 $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^\pm \ell^\mp \rightarrow \tilde{\chi}_1^0 l^+l^-$

 $\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 W \rightarrow \tilde{\chi}_1^0 q\bar{q}$

- start at the bottom of the decay chain, work backwards
 example: endpoint of $m(l^+l^-)$ determines $(m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$

- measure combinations of masses precisely

- global fit \Rightarrow constrain model parameters

Which modes are available depends on the SUSY model and parameters.

ATLAS: discussed in framework of SUGRA models, LHCC studies, 1996
The LHCC SUGRA Points

![Graphs showing LHCC SUGRA points for different values of tanβ](image)

bricked and cross-hatched regions are excluded by theoretical constraints or by experimental data

SUGRA parameters:

- m_0: common scalar mass at GUT scale
- $m_{1/2}$: common gaugino mass at the GUT scale
- $\tan \beta$: common trilinear term
- A_0: common trilinear term
- $\text{sgn}(\mu)$: sign of Higgsino mass parameter

use point 5 to illustrate the methods
Point 5: Mass Spectrum and decay modes

SUGRA Parameters

- $m_0 = 100$ GeV
- $m_{1/2} = 300$ GeV
- $A_0 = 300$ GeV
- $\tan \beta = 2.1$
- $\text{sign}(\mu) = +$

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{g}</td>
<td>770</td>
</tr>
<tr>
<td>\tilde{q}_L</td>
<td>690</td>
</tr>
<tr>
<td>\tilde{q}_R</td>
<td>660</td>
</tr>
<tr>
<td>\tilde{t}_1</td>
<td>490</td>
</tr>
<tr>
<td>$\tilde{\ell}_L$</td>
<td>240</td>
</tr>
<tr>
<td>$\tilde{\ell}_R$</td>
<td>157</td>
</tr>
<tr>
<td>χ_1^0</td>
<td>121</td>
</tr>
<tr>
<td>χ_2</td>
<td>232</td>
</tr>
<tr>
<td>h</td>
<td>93</td>
</tr>
<tr>
<td>H</td>
<td>640</td>
</tr>
</tbody>
</table>

The total cross section is dominated by $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{g}$, and $\tilde{g}\tilde{g}$ -production; large SUSY cross section: $\sigma_{SU SY} = 20$ pb

Decay modes of $\tilde{\chi}_2^0$:

$\text{Br} \ (\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h) = 70\%$

$\text{Br} \ (\tilde{\chi}_2^0 \rightarrow \tilde{\ell}_R l) = 10\%$ per lepton flavour
\[pp \rightarrow \tilde{q}_L \tilde{q}_R : \quad \tilde{q}_R \rightarrow \tilde{\chi}_1^0 q \]
\[\tilde{q}_L \rightarrow \tilde{\chi}_2^0 q \rightarrow \tilde{\chi}_1^0 h q \rightarrow \tilde{\chi}_1^0 b \bar{b} q \]

The \(h \rightarrow b \bar{b} \) is a clean signature/tag in SUSY events; \(E_T^{\text{miss}} \)-cut can be used to suppress the large SM background.

Selection cuts:
- 2 tagged b-jets, \(P_T > 50 \text{ GeV} \)
- veto 3. b-jet
- 2 non b-jets (jet\(_1\), jet\(_2\)) \(P_T > 100 \text{ GeV} \)
- \(E_T^{\text{miss}} > 300 \text{ GeV} \)
- veto isolated leptons

Integrated Luminosity: \(30 \text{ fb}^{-1} \)

\begin{align*}
\text{1940 signal events} & \quad \Rightarrow m_h = 93 \pm 1 \text{ GeV} \\
\text{620 SUSY background} & \quad \text{75 SM background}
\end{align*}

next steps:
- select events in mass window around the \(h \)-mass pair b-jets with two other jets (veto add. jets \(\Rightarrow \tilde{q}_L \tilde{q}_R \) enriched):
 - \(m(bb, \text{jet}_2) \) is sensitive to \(\tilde{q}_L \) -mass
 \(\Delta m_{\tilde{q}_L} = \pm 1.5\% \)
 - \(P_T(\text{jet}_1) \) (hardest jet) is sensitive to \(\tilde{q}_R \)-mass
 \(\Delta m_{\tilde{q}_R} = \pm 20 \text{ GeV} \)
\[\tilde{\chi}_2^0 \rightarrow \tilde{l}_R \rightarrow \tilde{\chi}_1^0 l l \]

Selection cuts:
- 2 leptons, same flavour, opp. charge
- large jet multiplicity
- \(E_T^{miss} > 300 \, \text{GeV} \)

very sharp edge on invariant mass of two leptons:

\[m_{l+l^-}^{max} = m_{\tilde{\chi}_2^0} \sqrt{1 + \frac{m_{lR}^2}{m_{\tilde{\chi}_2^0}^2}} \sqrt{1 + \frac{m_{\tilde{\chi}_1^0}^2}{m_{lR}^2}} \]

- endpoint can be measured with a precision of \(\pm 500 \, \text{MeV} \)
 \(\Rightarrow \) provides constraint in global fit \((m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{l}_R}) \)

- ratio of \(P_T \) of the two leptons is sensitive to the \(\tilde{l}_R \) mass
Top production in decays of $\tilde{g}, \tilde{t}, \tilde{b}$

Select inclusive $t\bar{t} \rightarrow WWb\bar{b} \rightarrow q\bar{q} q\bar{q} b\bar{b}$ signal:
(two tagged b-jets, four add. jets, consistent with WW mass hypothesis, E_T^{miss} cut)

use sidebands of the W-mass spectrum to subtract the combinatorial background

Examples:

1. $\tilde{t}_1 \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0 t\tilde{\chi}_1^0$

P_T(top) is sensitive to $m_{\tilde{t}_1}$
(needs high luminosity)

2. $\tilde{q}_R \tilde{g}, \quad \tilde{g} \rightarrow \tilde{t} t \rightarrow tt\tilde{\chi}_1^0$

m_{tt} is sensitive to $m_{\tilde{g}}$
Summary of Measurements in Point 5

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Expected value (GeV)</th>
<th>Error for 30 fb⁻¹ (GeV)</th>
<th>Error for 300 fb⁻¹ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_h</td>
<td>93</td>
<td>±1.0</td>
<td>±0.2</td>
</tr>
<tr>
<td>$m_{\ell^+\ell^-}$ edge</td>
<td>109</td>
<td>±0.5</td>
<td>±0.2</td>
</tr>
<tr>
<td>m_{ℓ_R}</td>
<td>157</td>
<td>±1.9</td>
<td>±0.5</td>
</tr>
<tr>
<td>m_{ℓ_L}</td>
<td>240</td>
<td>±10</td>
<td>±3</td>
</tr>
<tr>
<td>$m_{\tilde{q}_L}$</td>
<td>690</td>
<td>±12</td>
<td>±7</td>
</tr>
<tr>
<td>$m_{\tilde{q}_R}$</td>
<td>660</td>
<td>±20</td>
<td>±10</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>770</td>
<td>±20</td>
<td>±11</td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$</td>
<td>490</td>
<td></td>
<td>±50</td>
</tr>
</tbody>
</table>

Results of final parameter fit:

<table>
<thead>
<tr>
<th>SUGRA parameter</th>
<th>Error for 30 fb⁻¹</th>
<th>Error for 300 fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_0 = 100$ GeV</td>
<td>±5 GeV</td>
<td>±3 GeV</td>
</tr>
<tr>
<td>$m_{1/2} = 300$ GeV</td>
<td>±8 GeV</td>
<td>±4 GeV</td>
</tr>
<tr>
<td>$\tan\beta = 2.1$</td>
<td>±0.11</td>
<td>±0.02</td>
</tr>
</tbody>
</table>

- m_0, $m_{1/2}$ and $\tan\beta$ can be determined with a precision at the percent level

- $sgn \mu$ unambiguously determined

($BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h)$)

- A_0 remains unconstraint, due to small influence on the phenomenology at the el.weak scale
Similar results have been obtained for the other points:

I. Hinchliffe et al., Phys. Rev. D55, 5520

ultimate fit:
D. Froidevaux et al., LHCC workshop, Okt. 1996

More on ATLAS SUSY:
I. Hinchliffe, Gauge Mediated SUSY Breaking,
Tuesday 4:15 pm

F. Paige, More on SUGRA signatures,
Thursday 9:35 am
Lightest Higgs h:

- Decay of $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ is kinematically closed in the allowed SUGRA parameter space

- SUSY particles in loops affect the production and decays

$\sigma \cdot Br(h \rightarrow \gamma\gamma)$ is found to be in the range of $\pm10\%$ of the SM value

Observation of h in the SM channels is preserved
$h \rightarrow \gamma \gamma$

$t\bar{t}h, h \rightarrow b\bar{b}$
* Use $h \rightarrow b\bar{b}$ decay mode in SUSY events to discover the h

* Analysis as described above for SUGRA point 5

excluded regions in the SUGRA parameter space

$tan\beta = 10, \mu > 0$
Heavy Higgses H/A:

* H and A Higgs bosons are heavy in many SUGRA models

* Decay modes are strongly affected by SUSY particles

* $H, A \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0, \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$ decay channels are open over a significant fraction of the SUGRA parameter space
Decay mode: $H, A \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 l^+ l^- \tilde{\chi}^0_1 l^+ l^-$

* Search for four leptons, 2 pairs SF,OS ($P_T > 20$ GeV (1.,2.lepton), $P_T > 7$ GeV (3.,4.lepton))

* tight jet veto to suppress SUSY background

* E_T^{miss} cut to suppress SM background

excluded regions in the SUGRA parameter space
Conclusions

The ATLAS experiment at the LHC can make substantial contributions in the Search for Higgs and SUSY:

* The discovery of a SM Higgs is possible over the full mass range \(90 \text{ GeV} < m_H < 1 \text{ TeV}\) after a few years of running

* The MSSM Higgs sector is challenging for LHC experiments (em calorimetry, b-tagging, \(\tau\)-identification, \(E_T^{\text{miss}}\)-resolution and jet-spectroscopy)

 - With moderate luminosity \(30 fb^{-1}\) about 80% of the \((m_A, \tan \beta)\) plane can be covered.
 - Full coverage at high luminosity

* ATLAS has a large potential to discover SUSY particles and to measure their masses

* The Parameters of the SUSY model can be determined or largely constraint by many measurements