Physics at the LHC and sLHC

- Introduction
- Early measurements at the LHC
- The physics reach of the (s)LHC
 - Searches for Physics Beyond the SM
 - Higgs bosons
 - Precision physics

Karl Jakobs Physikalisches Institut University of Freiburg / Germany

Key Questions of Particle Physics

1. Mass: What is the origin of mass?

- How is the electroweak symmetry broken ?
- Does the Higgs boson exist ?
- 2. Unification: What is the underlying fundamental theory ?
 - Can the interactions be unified at larger energy?
 - How can gravity be incorporated ?
 - What is the nature of the Dark Matter in the Universe ?
 - Is our world supersymmetric ?
 - ·

3. Flavour: or the generation problem

- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?

- Supersymmetry
- Extra dimensions
-
- Little Higgs models
- Invisibly decaying Higgs bosons
- Leptoquarks
- New gauge bosons
-
- Composite squarks and leptons
- ...

The role of the LHC

1. Explore the TeV mass scale

- What is the origin of the electroweak symmetry breaking ?
- The search for "low energy" supersymmetry
- Other scenarios beyond the Standard Model

sLHC can extend the mass reach !

Look for the "expected", but we need to be open for surprises

2. Precise tests of the Standard Model

- There is much sensitivity to Physics Beyond the Standard Model in the precision area
 - * Standard measurements (m_W, m_t) at the LHC
 - * Rare Decays at the sLHC

The link between SUSY and Dark Matter ?

The ATLAS and CMS experiments

The experiments were ready for collisions in 2008,they will be in better shape in 2009.

Cross Sections and Production Rates

High-p_T QCD jets
$$g^{n}$$
 g^{n} g

- Large cross sections for QCD jet, W/Z and tt production
- First physics results expected in these areas however: already sensitivity to new physics with early data; reach depends strongly on energy and integrated luminosity

Energy dependence: 10 vs 14 TeV ?

- At 10 TeV, more difficult to create high mass objects...
- Below about 200 GeV, this suppression is <50% (process dependent)

	√s [TeV]	Cross section
₩-> _V	14	20.5 nb
	10	14.3 nb
Z->	14	2.02 nb
	10	1.35 nb
ttbar	14	833 pb
	10	396 pb

 Above ~2-3 TeV the effect is more marked

14 TeV simulation results will be shown throughout the talk, unless stated otherwise

Towards First

Physics Results

in 2010

Physics with 20 – 200 pb⁻¹:

- Establish Standard Model signals
- Use them to understand the detector performance
- Look for first, striking deviations from the Standard Model (however: $\sqrt{s} = 7$ TeV)

"This could be the discovery of the century. Depending, of course, on how far down it goes." First goals (2010) (?)

• Understand and calibrate detector and trigger

in situ using well-known physics samples

e.g. - Z \rightarrow ee, $\mu\mu$ tracker, calorimeter, muon chambers calibration and alignment

- tt \rightarrow b ℓ v bjj 10² events / day after cuts at 10³² cm⁻² s⁻¹

 \rightarrow b-tag performance

1 pb⁻¹, low p_T muon triggers

Jets from QCD production

- Rapidly probe perturbative QCD in at a new energy (above Tevatron)
- New physics sensitivity at high E_T
 - compositeness
 - new resonances at high mass

• Even with JES uncertainties expected with early data, compositeness scales of 3 TeV can be reached with 50 pb⁻¹ at \sqrt{s} = 10 TeV (close to present Tevatron reach of Λ = 2.7 TeV)

		95% CL limits
14 TeV	300 fb ⁻¹	40 TeV
	3000 fb ⁻¹	60 TeV
28 TeV	300 fb ⁻¹	60 TeV
	3000 fb ⁻¹	85 TeV

Early Surprises ??

 as already mentioned, the experiments must be open for surprises / unknowns / unexpected discoveries

- requires unbiased measurements of
 - inclusive lepton spectra
 - dileptons spectra.....
 - ETmiss spectrum.....

-

One example of many....

$Z' \rightarrow e^+e^-$ with SM-like couplings (Z_{SSM})

√s = 14 TeV

Mass (TeV)	Events / fb ⁻¹ (after cuts)	Luminosity needed for a 5σ discovery + (10 obs. events)
1	~160	~70 pb ⁻¹
1.5	~30	~300 pb ⁻¹
2	~7	~1.5 fb ⁻¹

Discovery window above Tevatron limits m ~ 1 TeV, perhaps even in 2010/11 (?)

Z' mass reach as function of the luminosity

- LHC reach: ~ 4 TeV with 100 fb-1 (somewhat model dependent)
- Gain in reach: ~ 1 TeV i.e. 25-30% in going from LHC to sLHC

Search for

Supersymmetry

- First hints of supersymmetry might show up as well already in early data.....
- Ultimate mass reach needs the sLHC

(theorists don't tell us the mass scale)

Search for Supersymmetry

• Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature

Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution

2. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations

Supersymmetry Reach: LHC and SLHC

Impact of the SLHC

Extend the discovery region for squarks and gluinos by roughly 0.5 TeV, i.e. from \sim 2.5 TeV \rightarrow 3 TeV

This extension involved high E_T jets/leptons and large missing E_T \Rightarrow Not much compromised by increased pile-up at SLHC

 $m_{1/2}$: universal gaugino mass at GUT scale m_0 : universal scalar mass at GUT scale

SLHC: tackle difficult SUSY scenarios

Squarks: 2.0-2.4 TeV Gluino: 2.5 TeV Can discover the squarks at the LHC but cannot really study them

$$M_{eff} = E_T^{miss} + \sum_{jets} E_{T,jet} + \sum_{leptons} E_{T,lepton}$$

P_{T}^{1} >700 GeV & E_{T}^{miss} > 600 GeV

eg. Benchmark Point K in hep-ph/0306219

Measurements of some difficult scenarios become possible at the sLHC

Extra Dimensions: KK Gravitons at the sLHC

Randall Sundrum modelPredicts KK graviton resonances

- k= curvature of the 5-dim. Space
- m₁ = mass of the first KK state

TeV scale extra dimensions

7th Int. "Hiroshima" Symposium on Semiconductor Tracking Detectors, August 2009

Where is the

Higgs Boson ?

- 1. Discovery of a Higgs-like resonance
- 2. Determination of its parameters
- 3. Higgs self coupling / potential (?)

LHC Higgs boson discovery potential

- Comparable performance in the two experiments [at high mass: more channels (in WW and ZZ decay modes) available than shown here]
- Several channels and production processes available over most of the mass range
 - \rightarrow calls for a separation of the information + global fit (see below)
- Detection of a Standard Model Higgs boson does not require the sLHC

Important changes w.r.t. previous studies:

• ttH \rightarrow tt bb disappeared in both ATLAS and CMS studies from the discovery plot

New hope for $H \rightarrow bb$ decays at the LHC: W/Z H, $H \rightarrow bb$

The most important channels at the TEVATRON at low mass!

But: signal to background ratio less favourable at the LHC

Follow idea of J. Butterworth, et al. [PRL 100 (2008) 242001]

Select events (\approx 5% of cross section), in which H und W bosons have large transverse momenta: $p_T > 200 \text{ GeV}$

$\underline{\text{High } p_T \text{ } W/\text{Z } H, \quad H \to bb}$

ATL-PHYS-PUB-2009-088

- Different backgrounds for different channels
- Still good sensitivity including systematics

(e.g. S/JB = 3.0 for 15% uncertainty on all backgrounds)

Combined:

 $\frac{3}{\sqrt{B}} = 3.7$

(Pile-Up not yet included)

7th Int. "Hiroshima" Symposium on Semiconductor Tracking Detectors, August 2009

Is it a Higgs Boson ? - can the LHC measure its parameters ?-

1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV/c²)
 (γγ and ZZ→ 4ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

- Relative couplings (Z/W, t/W, t/W) can be measured with a precision of ~20% (for 300 fb⁻¹)
- Improvements at the sLHC possible, but not impressive, systematics limited
- Additional information from rare decay modes (not accessible at the LHC),

e.g. $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$, ttH, $H \rightarrow \gamma\gamma$

3. Spin and CP

Angular correlations in $H \rightarrow ZZ(*) \rightarrow 4 \ell$ and $\Delta \phi_{jj}$ in vector boson fusion are sensitive to spin and CP (achievable precision is statistics limited, requires high luminosity \rightarrow sLHC might contribute, details depend on how well vector boson fusion can be measured)

4. Higgs boson self coupling

No measurement possible at the LHC;

Very difficult at the sLHC, there might be sensitivity in HH \rightarrow WW WW for m_H ~ 160 GeV Situation needs to be re-assessed with more realistic simulations

(ii) Measurement of Higgs Boson Couplings

Global likelihood-fit (at each possible Higgs boson mass) Input: measured rates, separated for the various production modes

Output: Higgs boson couplings, normalized to the WW-coupling

Relative couplings (Z/W, τ /W, t/W) can be measured with a precision of ~20% (for 300 fb⁻¹)

Rare Higgs Decays Modes accessible at the sLHC

Channel	m _H	S/√B_LHC (600 fb⁻¹)	S/√B_sLHC (6000 fb⁻¹)
$\begin{array}{l} H \rightarrow Z \gamma \rightarrow \ell \ell \gamma \\ H \rightarrow \mu \mu \end{array}$	~ 140 GeV	~ 3.5	~ 11
	130 GeV	~ 3.5 (gg+VBF)	~ 9.5 (gg)

(iv) Higgs boson self-coupling ?

To finally establish the Higgs mechanism the Higgs boson self-coupling has to be measured:

$$\lambda^{_{SM}}_{_{HHH}} = 3\,rac{m_{H}^{2}}{v} \;, \;\;\;\; \lambda^{_{SM}}_{_{HHHH}} = 3\,rac{m_{H}^{2}}{v^{2}}$$

Cross sections for HH production:

small signal cross-sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

⇒ no significant measurement possible at the LHC need Super LHC $L = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}$, 6000 fb⁻¹

Most sensitive channel:

$$gg \to HH \to WW \; WW \to \ell \nu \; jj \;\; \ell \nu \; jj$$

- accessible in mass range around 160 GeV
- bb- or $\gamma\gamma$ decay modes at lower masses are hopeless

Selection (old analysis):

• 2 isolated, high P_T , like sign leptons

(from different Higgs bosons)

• 4 high P_T jets, compatible with W-mass

m_H	Signal	$t ar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
200 GeV	220	90	60	1500	1600	30	3.8

- Note: background contributions (tt and WWW) underestimated
 - Estimates are based on fast detector simulation
 - No pile-up effects and no realistic sLHC performance assumed
 - ⇒ Study needs to be updated with more realistic simulations, before more reliable estimates can be given

not find the

Higgs Boson ?

- Study of longitudinal gauge boson scattering is the key High luminosities, i.e. sLHC, required to make quantitative measurements (strong physics case)
- If no Higgs, expect strong $V_L V_L$ scattering (resonant or non-resonant) at ~ 1TeV
- Also the question of a composite Higgs boson must be addressed at high energy (in spite of a light Higgs boson, the longitudinal gauge boson scattering amplitude might violate unitarity)

WZ resonances in Vector Boson Scattering

Example: Vector resonance (ρ -like) in W_LZ_L scattering from Chiral Lagrangian model m = 1.5 TeV \Rightarrow 300 fb⁻¹ (LHC) vs. 3000 fb⁻¹ (sLHC)

Lepton cuts: $p_T^1 > 150 \text{ GeV}$, $p_T^2 > 100 \text{ GeV}$, $p_T^3 > 50 \text{ GeV}$; $E_T^{\text{miss}} > 75 \text{ GeV}$

7th Int. "Hiroshima" Symposium on Semiconductor Tracking Detectors, August 2009


```
\begin{array}{l} \underline{\text{Expected precision}:} \\ \hline \text{Tevatron (2 fb^{-1}):} \\ \delta m_W &= \pm 25 \text{ MeV/c}^2 \\ \delta m_t &= \pm 1.5 \text{ GeV/c}^2 \\ \hline \text{LHC (10 fb^{-1}):} \\ \delta m_W &\sim \pm 15 \text{ MeV/c}^2 \\ \delta m_t &\sim \pm 1.0 \text{ GeV/c}^2 \end{array}
```

The experimental precision is limited experimentally by the precise knowledge of the lepton energy scale

sLHC will not help !

sLHC Precision physics

 Precision Measurement of triple and quartic gauge boson couplings

• Rare top quark decays

(search for / limits on FCNC)

$$\begin{array}{ll} t \rightarrow q \ g & (q = u,c) \\ t \rightarrow q \ Z & (q = u,c) \\ t \rightarrow q \ g & (q = u,c) \end{array}$$

Sensitivities for branching ratios down to 10^{-6} can be reached, however, b-tagging is assumed to work at 10^{35} cm⁻² s⁻¹ (similar performance as at 10^{34} cm⁻² s⁻¹)

Summary / Conclusions

sLHC:

- Appears as a natural extension to fully exploit the physics potential of the LHC facility
- Gives access to higher masses (SUSY, or other BSM scenarios,....)
- Might have a vital role to play in the investigation of the nature of electroweak symmetry breaking; (regardless whether there is a Higgs-like resonance or not, the scattering of longitudinal gauge bosons at high energy must be studied)
- For many key physics studies at the sLHC the basic signatures including b-tagging, forward jet tagging,..... have to be present

\rightarrow The new / upgraded tracking detectors have to work !

More details / references:

- F. Gianotti et al., Eur. Phys. J. C39 (2005) 293; hep-ph/0204087.
- M. Mangano, *Physics opportunities for the sLHC*, SLHC kickoff meeting, CERN, April 2008.
- G. Giudice, *Physics Motivations for sLHC*, Physics at LHC conference, Split 2008.
- A. De Roeck, SLHC Physics Impact, XXXVII SLAC Summer Institute, 2009.

Backup slides

Event Pile-up at various luminosities (CMS simulation)

 $H \to Z Z \to \mu \mu e e$ event with $m_{H} = 300 \; GeV$ embedded

 $p_T > 1$ GeV cut, i.e. all soft tracks removed

What do we already know?

Direct searches at LEP

 $m_{H} > 114.4 \text{ GeV/c}^2 (95\% \text{ CL})$

Direct searches at the TEVATRON

Exclude 160 GeV < m_H < 170 GeV (95% CL)

• Electroweak precision measurements

m_H < 163 GeV (95% CL) (191 GeV incl. LEP Limit)

7th Int. "Hiroshima" Symposium on Semiconductor Tracking Detectors, August 2009

ttH, $H \rightarrow bb$

- Appeared to be a promising search channel at low mass some years ago
- Access to t and b Yukawa couplings

- Need precise background normalization
- Has to come from data!
- Pile-Up: impact on selection efficiency

and mass resolution

Strongly Coupled Vector Boson System

If no Higgs, expect strong V_LV_L scattering (resonant or non-resonant) at ~ 1TeV

• In general rate limited at the LHC

sLHC:

- Degradation of forward jet tagging and central jet veto due to huge pile-up
- However: factor ~ 10 in statistics
 → 5-8σ excess in W⁺_L W⁺_L scattering
 → other low-rate channels accessible

sLHC reach on gauge boson couplings

Precise determinations of the self-couplings of EW gauge bosons

5 parameters describing weak and EM dipole and quadrupole moments of gauge bosons. The SM predicts their value with accuracies at the level of **10**⁻³, which is therefore the goal of the required experimental precision

K. Jakobs

7th Int. "Hiroshima" Symposium on Semiconductor Tracking Detectors, August 2009