The Physics Potential of the ATLAS Experiment at the LHC

- Introduction, Detector Aspects
- Standard Model Physics
 - W mass and couplings
 - Top Quark Physics
- Search for the Higgs Boson
 - SM and MSSM Higgs Bosons
 - Measurement of Higgs Boson Parameters
- Physics beyond the Standard Model
 - SUSY signatures
 - New Gauge bosons, Leptoquarks,.....

Karl Jakobs University of Mainz 55099 Mainz, Germany The experimental scenario at the LHC

- p p collisions at $\sqrt{s} = 14$ TeV
- starting date: ~ 2005
- initial luminosity:

 $\mathcal{L} = 1.0 \ 10^{33} \ \mathrm{cm}^{-2} \ \mathrm{sec}^{-1}$

 $\int \mathcal{L}dt = 10 f b^{-1}$

per year
 (expected period of 3 years)

- <u>high luminosity:</u> $\mathcal{L} = 1.0 \ 10^{34} \ \mathrm{cm}^{-2} \ \mathrm{sec}^{-1}$ $\boxed{\int \mathcal{L} dt = 100 \ fb^{-1}} \text{ per year}$
- <u>ultimate reach:</u>

 $\int \mathcal{L} dt = 300 \ fb^{-1} < 10$ years

• $\sigma_{inel.} = 70 \text{ mb}$

 \Rightarrow 23 inelastic pp-collisions per bunch crossing, i.e. every 25 ns

 $\Rightarrow \sim 700$ charged particles with $P_T > 150$ MeV per crossing

Detector Requirements

• Good measurement of leptons and photons

(over momentum range from a few GeV $(b \to l \nu)$ to a few TeV $(W' \to l \nu)$)

- Good measurement of missing transverse energy E_T^{miss} (calorimeter coverage down to $\mid \eta \mid < 5.0$)
- Efficient b-tagging
- fast detectors (LHC bunch crossing time: 25 ns)
- rad. hard detectors and electronics

The ATLAS Detector

- stand alone muon toroid system
- reliable liquid argon calorimetry down to $\mid \eta \mid < 5.0$
- silicon pixel and strip layers, transistion radiation tracker

ATLAS Inner Detector

b-tagging performance (high luminosity):

Cross sections and production rates

$\mathcal{L} = 1.0 \cdot 10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$

Process	σ	Events/s	Events/year
			_
$W \to e\nu$	15 nb	15	10 ⁸
$Z \rightarrow ee$	1.5 nb	1.5	10 ⁷
$tar{t}\ bar{b}\ QCD$ jets $(P_T>200~{ m GeV})$	800 pb 500 µb 100 nb	0.8 10 ⁵ 10 ²	10 ⁷ 10 ¹² 10 ⁹
$egin{array}{c} ilde{g} ilde{g}\ (m_{ ilde{g}}=1{ m TeV})\ { m Higgs} \end{array}$	1 pb	0.001	104
$(m_H = 0.2 \text{ TeV})$ $(m_H = 0.8 \text{ TeV})$	10 pb 1 pb	0.01 0.001	10 ⁵ 10 ⁴

• Large production rates

LHC is a top, b, W, Z ... factory

- Mass reach for new particles up to TeV range
- Precision measurements are dominated by systematic uncertainties

Physics motivation

- W mass measurement \Rightarrow test of the Standard Model: $m_Z, m_W, m_{top} \rightarrow m_H$
 - year 2005: $\Delta m_W < 30$ MeV (LEP2 + TeVatron)
 - LHC goal: $\Delta m_W \sim 15$ MeV
- Test of QCD in W-production cross section measurement, distribution of $P_T(W)$

Experimental numbers:

- $\int \mathcal{L}dt = 10 \ fb^{-1}$: $\Rightarrow 60 \cdot 10^6$ well measured $W \to l\nu$
- background conditions from pile-up events at low lumi. (2 evts./bunch crossing) similar to TeVatron today
- \Rightarrow standard transverse mass technique can be used:

Preliminary	estimate	of	Δm_W
-------------	----------	----	--------------

source	Δm_W (CDF)	Δm_W (ATLAS)
	$W \to e\nu$	$W \to e \nu$
Statistics	145 MeV	< 2 MeV
E/p scale	120 MeV	15 MeV
E/p resolution	80 MeV	5 MeV
Recoil model	60 MeV	5 MeV
W width	20 MeV	7 MeV
PDF	50 MeV	10 MeV
Radiative decays	20 MeV	<10 MeV
$P_T(W)$	45 MeV	5 MeV
Background	10 MeV	5 MeV
Total	230 MeV	< 25 MeV

- Total error per lepton species and per experiment estimated to be ± 25 MeV.
- main uncertainties: lepton energy scale (goal is uncertainty of $\pm 0.02\%$)
- many systematics can be controlled in situ, using the $Z \rightarrow ll$ sample $(P_T(W),$ recoil model, detector resolution,)

Triple Gauge Boson couplings

- Probe non-Abelian structure of $SU(2) \times U(1)$ and sensitive to New Physics
- general assumptions (Lorentz invariance, P,C inv.): $\Rightarrow WW\gamma$ and WWZ couplings specified by five parameters: $g_1^Z, \lambda_\gamma, \lambda_Z, \kappa_\gamma, \kappa_Z$

 $WW\gamma$ -vertex: related to

- magnetic moment $\mu_W = \frac{e}{2M_W} \left(g_1^Z + \kappa_\gamma + \lambda_\gamma\right)$

- quadrupole moment

Standard Model: $g_1^Z = \kappa_V = 1$ $\lambda_V = 0$

year 2005: known to better than 10^{-2} from LEP2+TeVatron

- $W\gamma \rightarrow l\nu\gamma$ studied $WZ \rightarrow l\nu ll$ studied
- $WW \rightarrow l\nu l\nu$ large $t\overline{t}$ background
- Sensitivity from:
 - cross section measurements: λ -type, increase with s
 - P_T and angular distributions: constrain κ -type

ATLAS sensitivity on TGC

$\int \mathcal{L}dt = 30 \ fb^{-1}$

Coupling	95% C.L.
Δg_Z^1	0.008
λ_{γ}	0.0025
λ_Z	0.0060
$\Delta \kappa_{\gamma}$	0.035
$\Delta \kappa_Z$	0.070

Systematics under study

Top Physics

Physics motivation:

• Measurement of top parameters

mass, couplings (V_{tb}) , rare top decays, study of polarisation and single top production

(aim to improve on measurements from the TeVatron) $\sigma(t\bar{t}) \sim 830 \text{ pb} \implies 10^7 t\bar{t} \text{ pairs per year at low L}$

• $t\bar{t}$ production is the main background for New Physics (Higgs, SUSY,...)

 $(t\overline{t} \rightarrow W \ b \ W \ b \ \rightarrow \ l \ \nu \ b \ jet \ jet \ b,$ high P_T leptons, b-jets, jets, P_T^{miss})

• $W \rightarrow jet jet decays provide a calibration of the hadronic/jet energy scale$

Measurement of m_{top}

- year 2005: $\Delta m_{top} \sim 3 \text{ GeV}$ (TeVatron)
- Best channel for mass measurement:

 $t\overline{t} \rightarrow Wb \ Wb \ \rightarrow \ l \ \nu \ b \ jet \ jet \ b$

• after all cuts: 130.000 $t\overline{t}$ events in 10 fb^{-1} , $S/B\sim$ 65

Contribution	Δm_{top} (GeV)
statistics	< 0.07
u,d,s jet scale	0.3
b-jet scale	0.7
b-fragmentation	0.3
initial state rad.	0.3
final state rad.	1.2
background	0.2
Total	\sim 1.5 GeV

Other Measurements

- Cross section measurement, $\sigma_{t\bar{t}} < 10\%$ (limited by uncertainty on luminosity)
- Sensitivity to FCNC top couplings:

			$\int \mathcal{L}dt = 100 \ fb^{-1}$
$BR(t \to Zq)$	<	10^{-4}	5σ discovery limit
$BR(t ightarrow \gamma q)$	<	10^{-4}	5σ discovery limit
$BR(t \rightarrow gq)$	<	$7 \cdot 10^{-3}$	95% C.L.

• Single Top production: $\sigma \sim 300$ pb (40% of $t\bar{t}$)

- probe W tb vertex, \rightarrow sensitive to new physics
- measure V_{tb} to ~ 10% (syst. limited)
- measure W, top polarisation \rightarrow anomalous couplings,

Standard Model Higgs decays

Important channels at LHC:

- $H \to \gamma \gamma$, $WH, t \overline{t} H, \qquad H \to \gamma \gamma$
- $WH, t\bar{t}H, \qquad H \to b\bar{b}$
- $H \rightarrow Z \ Z^{(*)} \rightarrow l^+ l^- \ l^+ l^-$
- $H \to W W^* \to l^+ \nu \ l^- \nu, \ WH \to WWW^{(*)} \to l\nu l\nu l\nu$
- $H \to Z \ Z \to l^+ l^- \ \nu \overline{\nu}$
- $H \to Z \ Z \to l^+ l^-$ jet jet
- $H \to W \ W \to l\nu \ jet \ jet$

 $H \rightarrow \gamma \gamma$ Signals

Signal $\sigma Br = 43 \text{ fb}, (m_H = 100 \text{ GeV})$ $\gamma\gamma$ - background
(irreducible) $d\sigma/dm_{\gamma\gamma} \sim 1200 \text{ fb/GeV}$
 $(m_{\gamma\gamma} = 100 \text{ GeV})$ QCD Jet background $\sigma_{\gamma,jet}/\sigma_{\gamma\gamma} \sim 1000$, (reducible)
 $\sigma_{jet,jet}/\sigma_{\gamma\gamma} \sim 2 \cdot 10^6$

Analysis:

- Two isolated photons, $P_T^1 >$ 40 GeV and $P_T^2 >$ 25 GeV, $\mid \eta \mid < 2.5$
- Good γ /jet separation \Rightarrow QCD jet background at the level of 10-20% of the irreducible $\gamma\gamma$ background
- good mass resolution: $\sigma_m = 1.3$ GeV for $m_H = 100$ GeV

Signal significance: 100 fb^{-1}

m_H (GeV)	100	120	140
Signal events	960	1200	930
$\gamma\gamma$ background	44700	30300	20800
γ -jet, jet-jet background	6700	4400	3900
Stat. significance	4.7 σ	6.9 σ	6.3 σ

$t \overline{t} H$, $H ightarrow b \overline{b}$

complex final state:

 $t\overline{t} \ \mathsf{H} \ \rightarrow \ Wb \ W\overline{b} \ \ b\overline{b} \ \rightarrow \ \ \mathbf{l}\nu b \ \ \ q\overline{q}\overline{b} \ \ \ b\overline{b}$

- Isolated Lepton: (provides the trigger)
- Full reconstruction of both top quarks require: 4 tagged b jets, $P_T > 15 GeV$, $|\eta| < 2.5$ 2 non-b jets, $P_T > 15 GeV$, $|\eta| < 2.5$

reconstruct both W's

 $(q\overline{q} \text{ and } l - P_T^{miss}$ -system, use W-mass constraint)

• Pair two b-jets with the two W's

 $\int \mathcal{L}dt = 30 \ fb^{-1}$: $m_H = 120 \ \text{GeV}$

Signal: 40 events Backgr.: 130 events

Stat. sign. = 3.6 σ

Conclusions:

- Signal extraction in low mass region looks possible
- Good b-tagging is essential
- Knowledge of the background shape is important at low mass (dominant background is $t\bar{t}jj \Leftarrow$ input from top analysis)

$H \to WW^{(*)} \to l\nu l\nu$

Difficulties:

- No reconstructed mass peak, final state contains two neutrinos
 ⇒ signal claim from excess of events above the Standard Model background
- Small signal and large backgrounds

$\sigma BR \ (H \to WW^{(*)} \to l\nu l\nu)$	0.8 pb,	$m_H = 170 { m GeV}$
$WW^{(*)} \rightarrow l\nu l\nu$	4.8 pb	
$t\overline{t} \to WWb\overline{b} \to l\nu l\nu + X$	38.6 pb	

Signal selection:

- 2 isolated leptons: $P_T^1>$ 20 GeV, $P_T^2>$ 10 GeV, $|\eta|<$ 2.5
- exploit angular correlation between the two leptons (spin correlations in $H \rightarrow WW^{(*)}$ decays)

• Jet Veto in central region, (reject $t\bar{t}$ background)

M.Dittmar, H.Dreiner, Phys.Rev. D55 (1997) 167.

Transverse mass distributions

 $\underline{H \to WW^{(*)} \to l\nu \ l\nu}$

Associated production channel $WH \rightarrow WWW^{(*)} \rightarrow l\nu \ l\nu \ l\nu$

 $\int \mathcal{L}dt = 100 \ fb^{-1},$ $m_H = 160 \ \text{GeV}$ Signal: 25 events Backgr.: 10 events Stat. sign. = 6.1 σ

(incl. 5% syst.)

Summary of the Standard Model Higgs Search

Scenario after 100 fb $^{-1}$:

- ATLAS has a good sensitivity over the full mass range from 90 GeV to \sim 1 TeV
- In most case more than one channel available
- The full mass range can already be covered by ATLAS after running three years at low luminosity

Measurement of Higgs Boson parameters

Higgs mass:

no theoretical errors, e.g. mass shift for large Γ_H (resonant/non-resonant interference effect)

dominant systematic uncertainty: <a>I/jet scale

Couplings to bosons:

direct measurement:

$$\frac{\sigma \times BR(H \to WW^{(*)})}{\sigma \times BR(H \to ZZ^{(*)})}$$

$$= \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

QCD corrections cancel

ATLAS studies of the MSSM Higgs sector concentrate on two scenarios:

- 1. SUSY particle masses are large, $m_{SUSY} = 1$ TeV, Higgs boson decays to SUSY particles are kinematically forbidden
- 2. Studies in the framework of SUGRA models
 - SUSY particles are light and appear in Higgs decays, competing with SM decay modes
 - Light Higgs particles appear in decays of SUSY particles Search for the $h\to b\overline{b}$ decay

later: after SUSY discussion

Important Channels in the MSSM Higgs search

• The Standard Model decay channels

$$- h \rightarrow \gamma \gamma$$

 $- h \rightarrow b \overline{b}$

 $- H \rightarrow ZZ^* \rightarrow l^+l^-l^+l^-$

 $(\gamma \gamma \text{ and } ZZ * \text{ decay modes are suppressed w.r.t. SM})$ evaluation of performace based on SM results

- Modes strongly enhanced at large $\tan \beta$:
 - $H/A \rightarrow \tau^+ \tau^-$

$$- H/A \rightarrow \mu^+\mu^-$$

• Other interesting channels:

assume:
$$m_{SUSY} = 1 \text{ TeV}$$

 $m_{top} = 175 \text{ GeV}$
 $A_t = 0.$ (pessimistic for LHC)

i.e. no mixing, SUSY particles do not appear in Higgs decays

The three main channels

 $h
ightarrow \gamma \gamma$

 $t\overline{t}h,h
ightarrow b\overline{b}$

Summary of the MSSM Higgs Search

- Full parameter space covered, SM and MSSM can be distinguished for almost all cases
- Most part of the parameter space covered by at least two channels, except low m_A region (covered by LEP200)
- if h discovered at LEP200: \Rightarrow heavy Higgs bosons (A/H) should be observable at LHC for $m_A < \sim 2 \ m_{top}$
- if A,h discovered at LEP200: the charged Higgs should be seen at LHC
- Discovery of heavy Higgses ($m_A > 500$ GeV) seems to be difficult ($t\bar{t}$ decay mode)

Higgs in SUGRA

Lightest Higgs h:

- Decay of $h\to \tilde{\chi}^0_1\tilde{\chi}^0_1$ is kinematically closed in the allowed SUGRA parameter space
- SUSY particles in loops affect the production and decays

 $\sigma \cdot Br(h \to \gamma \gamma)$ is found to be in the range of $\pm 10\%$ of the SM value

Observation of h in the SM channels is preserved

 $h
ightarrow \gamma \gamma$

 $t\overline{t}h,h\rightarrow b\overline{b}$

- Use $h \rightarrow b\overline{b}$ decay mode in SUSY events to discover the h
- Analysis as described above for SUGRA point 5

excluded regions in the SUGRA parameter space $\tan\beta=10,\ \mu>0$

 $\mathsf{h}\,\to b\overline{b}$

 $H, A \rightarrow Neutralinos$

- H and A Higgs bosons are heavy in many SUGRA models
- Decay modes are strongly affected by SUSY particles
- $H, A \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0, \tilde{\chi}^+ \tilde{\chi}^+$ decay channels are open over a significant fraction of the SUGRA parameter space

Decay mode: $H, A \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 l^+ l^- \tilde{\chi}_1^0 l^+ l^-$

excluded regions in the SUGRA parameter space

The Search for SUSY

- If SUSY exists at the electroweak scale, a discovery at LHC should be easy
- Gluinos and squarks are strongly produced.

They decay through cascades to the lightest SUSY particle $\tilde{\chi}_1^0$

 \Rightarrow combination of Jets, Leptons, E_T^{miss}

• 1.Step:

Look for deviations from the Standard Model Example: Multijet + E_T^{miss} -Signature

• 2. Step:

Establish SUSY mass scale, use inclusive variables Example: effective mass distribution

• 3. Step: Determine Model parameters

Squarks and Gluinos

Experimental signature:

Several jets with large transv. momentum missing transverse energy

define effective mass:

• good correlation between M_{eff} and M_{SUSY} (spread is shown for 100 minimal SUGRA models selected at random, $m_0, m_{1/2}$ and A_0 varied)

	$ \begin{array}{c c} & \text{Gluino mass limits} \\ \int \mathcal{L}dt = 1 \ fb^{-1} \ \left \ \int \mathcal{L}dt = 100 \ fb^{-1} \end{array} \right $		
$m_{ ilde{q}}=2~m_{ ilde{g}}$	1050 GeV	1600 GeV	
$m_{\widetilde{q}} \sim m_{\widetilde{g}}$	1800 GeV	2300 GeV	
$m_{\widetilde{q}}=m_{\widetilde{g}}$ / 2	2600 GeV	3600 GeV	

Determination of Model Parameters

- Determination of model parameters is difficult (two missing $\tilde{\chi}_1^0$, not enough constraints to reconstruct mass peaks)
- Reconstruct partially the decay chain

possible starting points: $\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}h \rightarrow \tilde{\chi}_{1}^{0} \ b\overline{b}$ $\tilde{\chi}_{2}^{0} \rightarrow \tilde{l}^{\pm}l^{\mp} \rightarrow \tilde{\chi}_{1}^{0} \ l^{+}l^{-}$ $\tilde{\chi}^{+} \rightarrow \tilde{\chi}_{1}^{0}W \rightarrow \tilde{\chi}_{1}^{0} \ q\overline{q}$

- start at the bottom of the decay chain, work backwards example: endpoint of $m(l^+l^-)$ determines $(m\tilde{\chi}_2^0 m\tilde{\chi}_1^0)$
- measure combinations of masses precisely
- global fit \Rightarrow constrain model parameters

Which modes are available depends on the SUSY model and parameters.

ATLAS: discussed in framework of SUGRA models, 5 study points m_0 , $m_{1/2}$ and $\tan\beta$ can be determined with a precison at the percent level

The LHCC SUGRA Points

bricked and cross-hatched regions are excluded by theoretical constraints or by experimental data

SUGRA parameters:

m_0	common scalar mass at GUT scale
$m_{1/2}$	common gaugino mass at the \ensuremath{GUT} scale
tanβ	
A ₀	common trilinear term
$sgn(\mu)$	sign of Higgsino mass parameter

use point 5 to illustrate the methods

Point 5: Mass Spectrum and decay modes

		Particle	Mass (GeV)
SUGRA I	Parameters	$ ilde{g}$	770
		\widetilde{q}_L	690
m_{\cap}	= 100 GeV	$ ilde{q}_R$	660
0		\overline{t}_1	490
$m_{1/2}$	= 300 GeV	$ ilde{\ell}_L$	240
	-300 GeV	$ ilde{\ell}_R$	157
А0	= 300 GeV	χ_1^0	121
$tan \beta$	= 2.1	χ_2^0	232
\cdot \cdot		h^{-}	93
$sign(\mu)$	= +	H	640

total cross section is dominated by $\tilde{q}\tilde{q}$, $\tilde{q}\tilde{g}$, and $\tilde{g}\tilde{g}$ -production; large SUSY cross section: $\sigma_{SUSY} = 20$ pb

Decay modes of $\tilde{\chi}_2^0$: Br $(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h) = 70\%$ Br $(\tilde{\chi}_2^0 \rightarrow \tilde{l}_R l) = 10\%$ per lepton flavour $\begin{array}{ll} pp \to \tilde{q}_L \tilde{q}_R \vdots & \tilde{q}_R \to \tilde{\chi}_1^0 q \\ & \tilde{q}_L \to \tilde{\chi}_2^0 q \to \tilde{\chi}_1^0 h q & \to \tilde{\chi}_1^0 b \overline{b} q \end{array}$

The $h \rightarrow b\overline{b}$ is a clean signature/tag in SUSY events; E_T^{miss} -cut can be used to suppress the large SM background

Selection cuts:

- 2 tagged b-jets, $P_T > 50 \text{ GeV}$
- veto 3. b-jet
- 2 non b-jets (jet₁, jet₂) P_T > 100 GeV
- $E_T^{miss} > 300 \text{ GeV}$
- veto isolated leptons

 $\tilde{\chi}_2^0 \to \tilde{l}_R l \to \tilde{\chi}_1^0 l l$

Selection cuts:

- 2 leptons, same flavour, opp. charge
- large jet multiplicity
- $E_T^{miss} > 300 \text{ GeV}$

very sharp edge on invariant mass of two leptons: $m_{l^+l^-}^{max} = f(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}, m_{\tilde{l}_R})$

Summary of Measurements in Point 5

Measurement	Expected	Error for	Error for
	value (GeV)	30 fb ⁻¹ (GeV)	300 fb ⁻¹ (GeV)
m_h	93	± 1.0	±0.2
$m_{\ell^+\ell^-}$ edge	109	± 0.5	±0.2
$m_{ ilde{\ell}_R}^{\circ}$	157	± 1.9	± 0.5
$m_{ ilde{\ell}_I}^{\circ_n}$	240	± 10	±3
$m_{\widetilde{a}L}$	690	± 12	±7
$m_{\widetilde{a}_R}^{i_E}$	660	±20	± 10
$m_{\tilde{a}}^{m}$	770	±20	± 11
$m_{ ilde{t}_1}^{s}$	490		± 50

Results of final parameter fit:

SUGRA parameter	Error for 30 fb ⁻¹	Error for 300 fb^{-1}
$m_0 = 100 \text{ GeV}$	±5 GeV	±3 GeV
$m_{1/2} = 300 { m GeV}$	± 8 GeV	\pm 4 GeV
$tan\beta = 2.1$	± 0.11	± 0.02

- m_0 , $m_{1/2}$ and $\tan\beta$ can be determined with a precison at the percent level
- $sgn \ \mu$ unambiguously determined $(Br(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h))$
- A₀ remains unconstraint, due to small influence on the phenomenology at the el.weak scale

Similar results have been obtained for the other points

Beyond SUSY, a few examples

Excited quarks: $q^* ightarrow q\gamma$, up to:	$m\sim$ 6 TeV
Leptoquarks, up to:	$m\sim$ 1.5 TeV
Monopoles: $pp ightarrow \gamma \gamma pp$, up to:	$m\sim$ 20 TeV
Lepton flavour viol. $ au o \mu \gamma$:	$10^{-6} - 10^{-7}$
Compositeness, up to: from di-jet and Drell-Yan, needs calorimeter linearity better than 2%	$\Lambda \sim 40$ TeV

Z'
ightarrow ll, jj, up to: $m \sim 5 {
m TeV}$

W'
ightarrow l
u, up to:

 $\int \mathcal{L} dt = 100 \ fb^{-1}$

 $m\sim$ 6 TeV

Conclusions

- The ATLAS experiment at the LHC has a huge discovery potential for new physics:
 - SM Higgs: full mass range
 - MSSM Higgs: cover $(m_A, \tan\beta)$ plane fully
 - SUSY: $m_{\tilde{q}},\ m_{\tilde{g}}$ up to \sim 2 TeV, large discovery potential in MSSM, GMSB, RPV models
 - W', Z', … up to \sim 5 TeV
- Great potential also for precision measurements:
 - m_W to \sim 20 MeV
 - many measurements in the top sector
 - m_H to 0.1%
 - fundamental SUGRA parameters to $\sim \%$ level