

Couplings to fermions and bosons

- Assume only one scale factor for fermion and vector couplings:
 $$\begin{split} \kappa_V &= \kappa_W = \kappa_Z \\ \kappa_F &= \kappa_t = \kappa_b = \kappa_\tau \end{split}$$
- Assume that $H \rightarrow \gamma\gamma$ and $gg \rightarrow H$ loops and the total Higgs boson width depend only on κ_V and κ_F (no contributions from physics beyond the Standard Model)

 $\overline{\mathbf{v}}$

 Sensitivity to relative sign between κ_F and κ_V only from interference term in H → γγ decays (assume κ_V > 0)

Results:

- Data consistent with the SM expectation; Two-dimensional consistency: 12%
- 68% CL intervals: $\kappa_F \in [0.76, 1.18]$ $\kappa_V \in [1.05, 1.22]$

Ratio of couplings to the W and Z bosons

• Custodial symmetry requires $\lambda_{WZ} := \kappa_W / \kappa_Z = 1$

 Sensitivity via VBF and VH production and H → WW and H → ZZ rates

68% CL intervals: $\lambda_{WZ} \in [0.61, 1.04]$

Constraints on production and decay loops

- Test on contributions from other particles contributing to loop-induced processes
- Assume nominal couplings for all SM particles $\kappa_i = 1$ and that the new particles do not contribute to the Higgs boson width
- Introduce effective scale factors κ_{q} and κ_{γ}

Best fit values:

$$\kappa_g = 1.04 \pm 0.14$$

 $\kappa_\gamma = 1.20 \pm 0.15$

Summary of coupling scale factor measurements

$$\lambda_{FV} = \kappa_F / \kappa_V$$
$$\kappa_{VV} = \kappa_V \kappa_V / \kappa_H$$

If assumption of no contributions from new particles to the Higgs boson width is relaxed, only the ratio of k_F/k_V can be measured

Extended fit, decouple H $\rightarrow \gamma \gamma$ event rate from the measurement of λ_{WZ}

- κ_V constrained at ±10% level
- Couplings to fermions indirectly observed (5σ)
- κ_W/κ_Z found to be consistent with one
- No evidence for significant anomalous contributions to the gg → H and H → γγ loops

(for fixed nominal couplings of SM particles and no BSM contributions to Higgs width)

Spin and Parity

Wolfgang Pauli and Niels Bohr studying the motion of a gyro (1952, at the opening of the institute for theoretical physics in Lund /Sweden) Standard Model Higgs boson: $J^P = 0^+$

→ strategy is to falsify other hypotheses (0⁻, 1⁻, 1⁺, 2⁻, 2⁺)

and demonstrate consistency with the 0⁺ hypothesis

Spin 1: strongly dis-favoured by observed $H \rightarrow \gamma\gamma$ decays, Landau-Yang theorem

J^P = 0⁻ versus J^P=0⁺

$(H \rightarrow ZZ^{(*)} \rightarrow 4\ell \text{ events})$

- Sensitive variables:
 - Masses of the two Z bosons
 - Production angle θ^*
 - Four decay angles Φ_1 , Φ , θ_1 and θ_2
- Perform multivariate analysis (Boosted decision tree, similar sensitivity using matrix-element method)

Exclude J^P=0⁻ (vs. 0⁺) with 97.8% CL

$J^{P} = 1^{+/-}$ versus $J^{P} = 0^{+}$ $(H \rightarrow ZZ^* \text{ and } H \rightarrow WW^* \text{ events})$

- $H \rightarrow ZZ^*$, as before: BDT separation based on masses and angles •
- $H \rightarrow WW^*$: $m_{\ell\ell}, \Delta \phi_{\ell\ell}, p_T(\ell\ell), m_T$ carry information on spin, ٠ combine these variables using a BDT analysis

$J^{P} = 2^{+}$ versus $J^{P} = 0^{+}$ (H $\rightarrow \gamma\gamma$, H $\rightarrow ZZ^{*}$, and H $\rightarrow WW^{*}$ events)

- Spin 2: consider graviton-like tensor, equivalent to a Kaluza-Klein graviton (Y. Gao et al, Phys. Rev. D81 (2010) 075022)
- Production via gluon fusion and qq annihilation possible; Studies are performed as a function of the qq annihilation fraction (f_{qq})
- Specific model 2⁺_m: minimal couplings to SM particles (f_{aa} = 4% at LO, however, large uncertainties)

 Observed exclusion (combination of γγ, ZZ* and WW*) of J^P = 2⁺ (versus the SM J^P =0⁺) exceeds 99.9%, independent of f_{qq}; Complementary behaviour of the different channels

Example: $H \rightarrow \gamma\gamma$ contribution

Use decay angle w.r.t. collision axis in the Collins-Soper frame

 $\cos \theta^*$ distribution in signal region, after background subtraction

Exclude $J^{P}=2^{+}$ (produced via gluon fusion, $f_{qq}=0$) (vs. 0⁺) via $H \rightarrow \gamma\gamma$ decays with 99.3% CL

g momme g

Conclusions

- A milestone discovery announced in July 2012
- Signals have been impressively confirmed with additional data; discovery phase has turned into the measurement phase
- ATLAS data are consistent with the expectations for the Standard Model Higgs boson (within present uncertainties)
 - Production rates and coupling strengths
 - Evidence for VBF production
 - Evidence for spin-0 (0⁻ disfavoured)
- Exciting times ahead of us to study the Higgs boson with higher precision (> 2015) and look for surprises (deviations? more Higgs bosons? ...)

