The ATLAS Experiment at the LHC -status and expectations for physics -

- ATLAS Status and Commissioning
- Expected first physics with ATLAS
- Prospects for 1, 10 and 30 fb⁻¹
 - Top
 - Higgs Bosons
 - New Physics (a few examples)

Karl Jakobs Physikalisches Institut University of Freiburg / Germany

The role of the LHC

1. Explore the TeV mass scale

- What is the origin of the electroweak symmetry breaking ?
- The search for "low energy" supersymmetry
- Other scenarios beyond the Standard Model

-

Look for the "expected", but we need to be open for surprises

2. Precise tests of the Standard Model

- There is much sensitivity to Physics Beyond the Standard Model in the precision area
- Many Standard Model measurements can be used to test and to tune the detector performance

This Talk (ATLAS):

- Top Quark Physics
- Higgs Searches
- A few Exotica
- J. Nash (CMS):
- Standard Model (QCD, el.weak)
- SUSY
- More Exotica

The ATLAS experiment

Overall weight

7000 Tons

A historical moment: Closure of the LHC beam pipe ring on 16th June 2008 ATLAS was ready for data taking in August 2008

ATLAS Commissioning

with cosmic rays.....

Trigger timing with beam splash events

Few days of beam halo and splash events helped enormously to adjust timing of different triggers

1 bunch crossing number = 25 ns

	R- φ accuracy	R or z accuracy	# channels
Pixel	10 µm	115 μm	80.4M
SCT	17 μm	580 μm	6.3M
TRT	130 μm		351k

2008 Status and commissioning:

- The critical path issue was the evaporative cooling system repair and cleaning of the plant, after a failure on 1st May 2008, which ended late July
- Considerable running experience with the evaporative cooling system gained by now;
- 2.5% of channels lost due to cooling leaks and heater problems in endcaps (much can be recovered in shutdown)
- Meanwhile: significant data with all three subdetectors taken

A combined barrel + endcap track

- Hits in:
 - TRT (endcap)
 - SCT (endcap and barrel)
 - Pixels (endcap and barrel)
- Very useful for alignment

Inner Detector commissioning results

Mean x residuals of pixel barrel layer 0 (after various alignment steps)

Turn-on of transition radiation produced from cosmic muons (Oct. 2008)

SCT residuals (will improve with better alignment and calibration)

The Calorimeters

- Fine granularity in region of Inner Detector acceptance, |η| < 2.5:
 - $-\sigma/E \sim 10\%/\sqrt{E \oplus 0.7\%}$
 - Linearity to ~0.1%
- Coarser granularity in the other regions sufficient for jet reconstruction and ${\sf E_T}^{\sf miss}$ measurements
 - σ/E ~ 50% / √E ⊕ 3% (barrel / endcap)
 - σ/E ~ 100%/√E ⊕ 10% (forward)

Commissioning since ~3 years

- Good performance, small number of "dead channels":
 - EM: ~0.01%
 - HEC: ~0.1%
 - (+ Low voltage power supply problems, impacting 1/4 of an endcap)
 - FCal: none
 - Tile Calorimeter: ~1.5%

Most of these can be recovered during the shutdown

- Effort is now more focussed on:
 - * Long term stability
 - * Prediction of the signal
 - * Extraction of calibration constants

Calorimeter commissioning results

 $iEl > 2 \sigma$ $iEl > 2 \sigma$ iTrigger L1Calo Toy MC i = priori good" ionisation pulses i = priori good" ionisation puls

The Muon Spectrometer

Chamber resolution	z/R	ф	time
MDT	35 μm		
CSC	40 µm	5 mm	7 ns
RPC	10 mm	10 mm	1.5 ns
TGC	2-6 mm	3-7 mm	4 ns

Goal: 10% stand-alone muon resolution for 1 TeV tracks

Status of commissioning:

- All chambers installed and used in global -cosmic and beam- running (for CSC: only short runs in combined mode acquired, still working on ROD debugging)
- Noise under control and low number of "dead channels" e.g. MDT: 1.5%, CSC: < 0.1%, TGC: 0.03% (recovery during shutdown possible)
- Excellent timing for RPC and TGC triggers achieved;

Trigger system stable up to the nominal rate of 100 kHz in ATLAS (random triggers)

 Combined muon reconstruction achieved (muon system + Inner Tracker)

Muon spectrometer commissioning results

Good correlation between MDT and RPC

8 inner + 6 middle + 6 outer hits

Towards First

Physics Results

Cross Sections and Production Rates, the first 10 pb⁻¹

Events for 10 pb⁻¹, $\sqrt{s} = 14$ TeV

Inelastic pp (minimum bias events)	large (prescaled)
$W \rightarrow e v$	10 ⁵
$Z \rightarrow ee$	10 ⁴
tt $\rightarrow evb qqb$	10 ³
Higgs (130 GeV)	10
Gluinos (1 TeV)	1

Physics with 10 – 100 pb⁻¹:

- Establish Standard Model signals
- Use them for calibration (tag and probe methods,....)
- Tune Monte Carlos
- Basic SM cross section measurements

• Look for surprises (e.g. high mass di-lepton resonances,..., black holes)

<u>10 vs 14 TeV ?</u>

Top Quark Physics

at the LHC

Physics Motivation:

- Electroweak precision test via top quark mass
- Special role in el. weak symmetry breaking ? Yukawa coupling ~ 1
- Test of perturbative QCD, strong production
- Sensitive to new physics via rare decays

Early Physics: Top cross section without / with b-tagging

Large cross section: ~ 830 pb

Reconstructed mass distribution after a simple selection of $tt \rightarrow Wb Wb \rightarrow \ell_V b qqb$ decays:

Top Quark Mass

<u>Analysis steps</u>: (1-lepton channel, most promising)

- Event selection
- Reconstruction of hadronic W (e.g. χ^2 method,...)
- Reconstruction of hadronic top (several methods for b-quark assignment, e.g. use the one closest to the hadronic W)
- Likelihood fit of reconstructed top mass

Expected syst. uncertainties (1-lepton, 1 fb⁻¹):

Systematic uncertainties	χ^2 minimization method	
Light Jet Energy Scale	$0.2 { m GeV}/\%$	
b Jet Energy Scale	$0.7 \mathrm{GeV}/\%$	←
ISR/FSR	$\simeq 0.3 \text{ GeV}$	
b quark fragmentation	$\leq 0.1 \ { m GeV}$	
Background	negligible	
Method	0.1 to 0.2 GeV	

main syst. uncertainty: b-jet energy scale

Expected LHC precision, 10 fb⁻¹: $\Delta m_t < \sim 1 \text{ GeV}$

From a combination of different methods with different systematics; might be conservative

Rare top decays

FCNC decays into $q\gamma$, qZ and qg

BR in Standard Model: $\sim 10^{-12}$ for $q\gamma$ and qZ

~ 10^{-10} for qg

Process	Expected 95% C.L. sensitivity (1 fb ⁻¹)
$\textbf{t} \rightarrow \textbf{q} \; \gamma$	6.8 · 10 ⁻⁴
$t \to q \; Z$	2.8 · 10 ⁻³
$t \rightarrow q g$	1.2 · 10 ⁻²

Expected 5σ discovery sensitivity for 100 fb⁻¹: for qg and qZ final states: ~ 10^{-4}

IFCA meeting, SLAC, Oct. 2008

```
Early Surprises ??
```

 as already mentioned, the experiments must be open for surprises / unknowns / unexpected discoveries

- requires unbiased measurements of
 - inclusive lepton spectra
 - dilepton spectra.....
 - ETmiss spectrum.....

-

One example of many....

$Z' \rightarrow e^+e^-$ with SM-like couplings (Z_{SSM})

Mass (TeV)	Events / fb ⁻¹ (after cuts)	Luminosity needed for a 5σ discovery + (10 obs. events)
1	~160	~70 pb⁻¹
1.5	~30	~300 pb⁻¹
2	~7	~1.5 fb ⁻¹

Discovery reach above Tevatron limits $m \sim 1$ TeV, perhaps in 2009... (?)

LHC reach for BSM Physics with higher luminosity

(a few examples for 30 and 100 fb⁻¹)

	30 fb ⁻¹	100 fb ⁻¹
Excited Quarks $Q^* \rightarrow q \gamma$	M (q*) ~ 3.5 TeV	M (q*) ~ 6 TeV
Leptoquarks	M (LQ) ~ 1 TeV	M (LQ) ~ 1.5 TeV
$\begin{array}{l} Z^{c} \to \ell\ell, j j \\ W^{c} \to \ell v \end{array}$	M (Z') ~ 3 TeV M (W') ~ 4 TeV	M (Zʻ) ~ 5 TeV M (Wʻ) ~ 6 TeV _
Compositeness (from Di-jet)	Λ ~ 25 TeV	Λ ~ 40 TeV

$$\int \mathcal{L} dt = 100 \ fb^{-1}$$

IFCA meeting, SLAC, Oct. 2008

The Search for

The Higgs boson

The first Higgs at ATLAS

Standard Model Higgs Boson Searches

- $\begin{array}{ll} \text{2.} & m_H \sim 170 \; \text{GeV} & (\text{fast discovery possible via WW decay modes}) \\ & H \rightarrow \text{WW} \rightarrow \ell_{V} \; \ell_{V} \; \text{ and } \; qqH \rightarrow qqWW \rightarrow qq \; \ell_{V} \; \ell_{V} \end{array}$
- 3. Light Higgs, $m_H \sim 120 \text{ GeV}$ $H \rightarrow \gamma\gamma$, $qqH \rightarrow qq\tau\tau$ and $ttH \rightarrow tt$ bb (?)

(most difficult case)

$\underline{\mathsf{H}} \to \mathbf{Z}\mathbf{Z}^* \to \boldsymbol{\ell}\boldsymbol{\ell} \ \boldsymbol{\ell}\boldsymbol{\ell} \qquad \text{and} \qquad \mathbf{H} \to \mathbf{W}\mathbf{W} \to \boldsymbol{\ell}\nu \ \boldsymbol{\ell}\nu$

Updated ATLAS and CMS studies (NLO cross-sections, more realistic detector simulations), previous estimates confirmed

Discovery reach in $H \rightarrow \tau \tau$

Signal and background conditions in the vector boson fusion mode:

 $qq H \rightarrow qq \tau \tau \rightarrow qq \ell \nu \nu had \nu$ Nevts (30fb⁻¹) / 5GeV/c² Signal (135GeV/c²) EW/QCD 27+jets CMS ttbar W+jets ----- Fit to Signal --- Fit to $Z/\gamma^* (\rightarrow 2\tau)$ ---- Fit to ttbar W+jets - Sum of fits **ℓ-had channel** • 3 2 ٥٢ 200 50 100 150 250 ٥ M_{ττ} [GeV/c²]

Experimental challenge:

- Identification of hadronic taus
- good E_T^{miss} resolution
 (ττ mass reconstruction in collinear approximation)
- control of the Z $\rightarrow \tau \tau$ background shape in the high mass region

γ-jet and jet-jet (reducible)

 $\begin{array}{l} \sigma_{\gamma j+j j} ~\sim~ 10^6 ~\sigma_{\gamma \gamma} & \mbox{ with large uncertainties} \\ \rightarrow \mbox{ need } R_j > 10^3 & \mbox{ for } \epsilon_\gamma \approx ~80\% \mbox{ to get} \\ & \sigma_{\gamma j+j j} ~\ll~ \sigma_{\gamma \gamma} \end{array}$

- Main exp. tools for background suppression:
 - photon identification
 - γ / jet separation (calorimeter + tracker)
 - Comparable results for ATLAS and CMS
 - Improvements possible by using more exclusive γγ + jet topologies

Note: also converted photons need to be reconstructed, large amount of material in the LHC trackers

$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$

- Complex final states: $H \rightarrow bb, t \rightarrow bjj, t \rightarrow b\ell v$ $t \rightarrow b\ell v, t \rightarrow b\ell v$
- Main backgrounds:
 - combinatorial background from signal (4b in final state)
 - ttjj, ttbb, ttZ,...
 - Wjjjjjjj, WWbbjj, etc. (excellent b-tag performance required)

 Updated ATLAS and CMS studies: matrix element calculations for backgrounds → larger backgrounds (ttjj and ttbb)

 $t \rightarrow bij, t \rightarrow bij$

estimated uncertainty on the background: $\pm 25\%$ (theory, $+ \exp(b-tagging)$) \Rightarrow Normalization from data needed to reduce this (non trivial,...)

LHC discovery potential for 30 fb⁻¹

- Full mass range (up to ~ 1TeV) can be covered after a few years at low luminosity [at high mass: more channels (in WW and ZZ decay modes) available than shown here]
- Comparable performance in the two experiments
- Combining the two experiments, a 95% C.L. exclusion limit can be set with only 0.4 fb⁻¹ over most of the mass range (~130 – 600 GeV)

Important changes w.r.t. previous studies:

- $H \rightarrow \gamma \gamma$ sensitivity of ATLAS and CMS comparable
- ttH \rightarrow tt bb disappeared in both ATLAS and CMS studies

Is it a Higgs Boson ?

-can the LHC measure its parameters ?-

1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV) ($\gamma\gamma$ and ZZ \rightarrow 4 ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

Relative couplings (Z/W, τ /W, t/W) can be measured with a precision of ~20% (for 300 fb⁻¹)

3. Spin and CP

Angular distributions in the decay channel $H \to ZZ(^*) \to 4 \ell$ are sensitive to spin and CP eigenvalue

4. Higgs self coupling

Possible channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell_V jj \ \ell_V jj$ (like sign leptons) Small signal cross-sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,... \Rightarrow no significant measurement possible at the LHC; very difficult at a possible SLHC (6000 fb⁻¹), limited to mass region around 160 GeV

Updated MSSM scan for different benchmark scenarios

Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

ATLAS preliminary, 30 fb^{-1,} 5₀ discovery

MHMAX scenario $(M_{SUSY} = 1 \text{ TeV/c}^2)$ maximal theoretically allowed region for m_h

Nomixing scenario $(M_{SUSY} = 2 \text{ TeV/c}^2)$ (1TeV almost excl. by LEP) small $m_h \rightarrow$ difficult for LHC

Gluophobic scenario (M_{SUSY} = 350 GeV/c²) coupling to gluons suppressed (cancellation of top + stop loops) small rate for g g \rightarrow H, H $\rightarrow \gamma\gamma$ and Z \rightarrow 4 ℓ

Small α scenario(M_{SUSY} = 800 GeV/c²)coupling to b (and t) suppressed(cancellation of sbottom, gluino loops) forlarge tan β and M_A 100 to 500 GeV/c²

The full parameter space is covered for all scenarios

Summary / Conclusions

- After more than 15 years of hard work The Large Hadron Collider and the experiments will start data taking next year... and Particle Physics will enter a new era
- The ATLAS experiment is well prepared to record the first data and extract the physics
- Interesting physics already expected in 2009/2010
- On the longer term: questions on the existence of
 - Higgs particles,
 - low energy supersymmetry (see next talk) or

- many other phenomena beyond the Standard Model at the TeV scale can be answered.

The answers will hopefully give guidance to theory and future experiments