

- Summary of the LHC Higgs boson discovery potential (standard channels)
- Vector boson fusion channels $qqH \rightarrow WW^* \rightarrow l \nu l \nu$ $qqH \rightarrow \tau \tau$
- Measurement of Higgs boson parameters

Karl Jakobs Universität Mainz 55099 Mainz, Germany

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

SM Higgs production at the LHC

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

Main search channels at the LHC

 \rightarrow look for final states with ℓ, γ ($\ell = e, \mu$)

Detector performance is crucial: b-tag, ℓ/γ E-resolution, γ/j separation, E_T^{miss} resolution, forward jet tagging,

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

• The Higgs boson discovery is possible over the full mass range already with $\sim 10 \text{ fb}^{-1}$

However:

- It requires the combination of both experiments and two channels ($H \rightarrow \gamma \gamma$ and ttH, $H \rightarrow$ bb) in the low mass region
- It will take time to operate, understand and calibrate the detectors

Higgs production via Weak Boson Fusion

 $\begin{array}{c|c} q & q \\ W, Z \\ W, Z \\ W, Z \\ W, Z \\ q', q & q', q \end{array}$

Motivation:

- •Additional potential for Higgs boson discovery
- •Important for the measurement of Higgs boson parameters
- (couplings to bosons, fermions (taus), total width)
- •Detection of an invisible Higgs

proposed by D.Rainwater and D.Zeppenfeld et al.: (hep-ph/9712271, hep-ph/9808468 and hep-ph/9906218)

 σ = 4 pb (20% of the total cross section for m_H = 130 GeV) however: distinctive signature of

- two high P_T forward jets
- little jet activity in the central region
- \Rightarrow **Experimental Issues:**
 - Forward jet reconstruction
 - Jets from pile-up in the central/forward region

ECFA/DESY workshop, St.Malo,April 2002

Forward tag Jets

Rapidity distribution of tag jets

Rapidity separation

Forward tag jet reconstruction has been studied in full simulation in ATLAS

Physics studies based on a fast simulation have been corrected for efficiency losses

Jets from pile-up events

Fake Jet rate in the central detector region has been studied in full simulation as a function of the LHC luminosity for the vector boson fusion process

- At low luminosity: a jet veto thresholds of 20 GeV looks feasible (consistent with TDR result)
- It has to be raised at high luminosity

Karl Jakobs

Signal cross sections:

m_H	(GeV)	120	140	160	170	180
$\sigma(qqH)$	(pb)	4.36	3.72	3.22	3.06	2.82
$\sigma \cdot BR(H \to WW^{(*)})$	(fb)	531	1785	2955	2959	2620
$\sigma \cdot BR(H o au au)$	(fb)	304	135	11.9	2.8	1.6
$\sigma \cdot BR(H o au au)$	(fb)	304	135	11.9	2.8	1

Background cross sections:

- QCD processes computed with PYTHIA Monte Carlo
- El.weak processes from matrix element calculation interfaced to PYTHIA

process	p_T -cutoff	cross-section
$t\bar{t}$		55.0 pb
QCD WW + jets		16.7 pb
$Z/\gamma^* + jets, \ Z/\gamma^* \to \tau \tau$	> 10 GeV	1742.0 pb
EW WW + jets		81.6 fb
EW $ au au + jets$		170.8 fb
$Z/\gamma^* + jets, Z/\gamma^* \rightarrow ee/\mu\mu$	> 10 GeV	3485.0 pb
ZZ		37.8 pb
$H \rightarrow ZZ$		0.26 - 2.5 pb

incl. W \rightarrow l v, Z \rightarrow ll branching ratios

$H \to WW^{(*)} \to l\nu l\nu$ selection criteria

1. Two isolated leptons:

 $P_T^1 >$ 20 GeV, $P_T^2 >$ 15 GeV and $|\eta| <$ 2.5;

2. Two tag jets:

 $P_T^1>$ 40 GeV, $P_T^2>$ 20 GeV and $\Delta\eta_{tags}=|\eta_{tag}^1-\eta_{tag}^2|>$ 3.8;

 $\eta_{tag}^{min} < \eta_{l_{1,2}} < \eta_{tag}^{max}$;

Tag jets should not be b-jets \Rightarrow b-jet veto ($\epsilon_b=0.70)$ for tag jets within $|\eta|<2.5$

3. Lepton Angular and Di-lepton mass cuts:

(exploit angular correlations (Spin-0 Higgs \rightarrow Spin-1 W's) \Rightarrow leptons are expected to have a small angular separation)

 $\begin{array}{ll} \Delta \phi_{ll} \leq 1.05, & \Delta R_{ll} \leq 1.8, & \cos \theta_{ll} \geq 0.2 \\ & M_{ll} < 85 \,\, {\rm GeV}, \quad P_T(l_{1,2}) < 120 \,\, {\rm GeV} \end{array}$

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

4. Real tau reconstruction:

Reconstruct τ momenta in the approximation that the τ direction is given by the direction of the charged leptons

$x_{ au}$: fraction of the au momentum carried by the lepton

expect: $0 \le x_{\tau} \le 1$ for real τ s

au- au-mass reconstruction possible: $m_{ au au}=m_{ll}/\sqrt{x_{ au_1}x_{ au_2}}$

 $Z \rightarrow au au$ rejection (in WW^* -analysis): require: $x_{ au_1}, x_{ au_2} > 0.0$ and $M_Z - 25 \text{ GeV} < M_{ au au} < M_Z + 25 \text{ GeV};$

- 5. Invariant mass of the two tag jets: $M_{jj} > 550$ GeV;
- 6. Transverse momentum balance: $|\vec{P}_T^{tot}| < 30$ GeV.

 $\vec{P}_T^{tot} = \vec{P}_T^{l,1} + \vec{P}_T^{l,2} + \vec{P}_T^{miss} + \vec{P}_T^{j,1} + \vec{P}_T^{j,2}$

(less sensitive to pile-up than jet veto)

7. Jet veto:

no jets with $P_T>$ 20 GeV in the pseudorapidity range $|\eta|<$ 3.2;

8. $Z/\gamma^* \rightarrow \tau \tau$ rejection: $m_T(ll\nu) > 30$ GeV.

Accepted signal and background cross sections:

- Lepton P_T cuts and Tag jet requirements
- Lepton angular and mass cuts
- Tau rejection, momentum balance and jet veto cuts
- Drell-Yan rejection

$$M_T = \sqrt{(E_T^{ll} + E_T^{\nu\nu})^2 - (\vec{p}_T^{e\mu} + \vec{p}_T^{miss})^2}$$

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

Accepted signal and background cross sections:

	signa	al (fb)		ba	ckground	d (fb)
	VV	gg	$t\overline{t}$	WW EW	+ <i>jets</i> QCD	γ^*/Z QCD
Lepton acceptance + Forward Tagging + Lepton angular cuts	29.6	121.9	5493	14.2	590.5	25222
+ Real τ rejection + Jet mass	6.64	1.34	15.3	0.50	0.17	5.93
$+ P_T^{tot}$	4.52	0.50	1.80	0.38	0.04	2.70
+ Jet veto + $M_{\rm m-Cut}$	3.87	0.34	0.42	0.34	0.03	1.70
	5.70	0.51	0.41	0.52	0.02	0.03
$H \to WW^{(*)} \to e\mu + X$						
incl. $ au o e, \mu$ contr.	4.32	0.33	0.50	0.35	0.03	0.03
$H \to WW^{(*)} \to ee/\mu\mu + X$						
incl. $ au o e, \mu$ contr.	3.92	0.30	0.48	0.36	0.04	0.12

Systematic uncertainties ?

- QCD backgrounds (incl. tt) have been computed in the PYTHIA parton shower approach
- tt+0,1, and 2 jet explicit matrix element calculation predicts a larger background

conservative estimate: σ (tt) = 1.08 fb (factor 2.1 larger)

For the evaluation of the signal significnce:

- use tt + 0, 1, and 2 jet matrix element prediction
- assign a systematic uncertainty of $\pm 10\%$ on the background

(can be measured in the experiment, using tt-events, normalization can be done outside the signal region)

Karl Jakobs

Final signal significance

m_H	(GeV)	130	140	150	160	170	180
Upper M_T bound for	(GeV)	140	150	160	175	190	220
mass window							
$H \to WW^{(*)} \to e\mu$	+X						
Signal	(5 fb ⁻¹)	4.7	8.3	13.3	21.6	21.7	18.1
Background	(5 fb^{-1})	3.1	3.8	4.3	5.5	6.2	6.9
Stat. significance	(5 fb ⁻¹)	2.1	3.3	4.7	6.5	6.3	5.2
$H \to WW^{(*)} \to ee/\mu$	$\mu + X$						
Signal	(5 fb^{-1})	4.4	8.3	14.1	20.4	22.8	18.3
Background	(5 fb ⁻¹)	4.2	4.7	5.5	6.4	7.3	7.9
Stat. significance	(5 fb ⁻¹)	1.8	3.0	4.6	6.0	6.2	5.1
$H \to WW^{(*)} \to l\nu \ j$	j + X						
Signal	(30 fb^{-1})	4.5	7.5	10.5	24.0	24.0	18.0
Background	(30 fb^{-1})	6.0	6.0	6.0	18.0	18.0	18.0
Stat. significance	(30 fb ⁻¹)	1.5	2.4	3.3	4.6	4.6	3.5

<u> $H \rightarrow \tau \tau$ decay channels</u>

Two decay modes considered: $H \rightarrow \tau \tau \rightarrow l^+ l^- P_T^{miss}$ $H \rightarrow \tau \tau \rightarrow l^\pm \nu \nu \ had \ \nu$

Similar selection as for the WW^* decay mode;

example: I-had decay mode:

- One isolated lepton (e or μ) $P_T(e) > 25$ GeV and $|\eta_e| \le 2.5$ or $P_T(\mu) > 20$ GeV and $|\eta_\mu| \le 2.5$
- One identified hadronic τ $P_T > 40$ GeV (hadr. τ reconstruction eff. of 50%)
- Two tag jets: $P_T^1>$ 40 GeV, $P_T^2>$ 20 GeV and $\Delta\eta_{tags}=|\eta_{tag}^1-\eta_{tag}^2|\geq$ 4.4
- Real Tau reconstruction: $0 < x_{\tau_l} < 0.75$ and $0 < x_{\tau_h} < 1$
- $(I-P_T^{miss})$ -transverse mass cut: $m_T(l\nu) = \sqrt{2P_T(l)P_T^{miss} \cdot (1 - \cos\Delta\phi)} < 30 \text{ GeV}$
- $M_{jj} > 700$ GeV and central jet veto
- Mass window cut of $\pm 10~\text{GeV}$

	Results	for	the	three	final	states	considered:	
--	---------	-----	-----	-------	-------	--------	-------------	--

 $m_{\rm H} = 120 \, {\rm GeV}$

	signa	l (fb)	ba			
	VV	gg	$t\bar{t} + jets$	$jets \mid \tau \tau + jets \mid QCD \mid EW$		Total
$H \to \tau \tau \to e \mu$	0.23	0.01	0.02	0.02	0.04	0.09
$H ightarrow au au ightarrow ee/\mu\mu$	0.24	0.02	0.05	0.04	0.08	0.17
$H ightarrow au au ightarrow l \ had P_T^{miss}$	0.50	0.02	0.06	0.05	0.14	0.25

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

m_H	(GeV)	110	120	130	140	150
$H \to \tau \tau \to e\mu$	P_T^{miss}					
Signal	(30 fb ⁻¹)	7.7	7.0	5.1	3.3	1.5
Background	(30 fb ⁻¹)	7.0	2.6	2.3	1.9	1.5
Stat. significance	(30 fb ⁻¹)	2.4	3.2	2.5	1.8	-
$H \rightarrow \tau \tau \rightarrow ee/\mu$	μP_T^{miss}					
Signal	(30 fb^{-1})	9.2	7.2	5.7	3.1	1.5
Background	(30 fb ⁻¹)	10.5	5.2	3.8	3.1	2.3
Stat. significance	(30 fb ⁻¹)	2.4	2.6	2.3	1.4	-
$H \to WW^{(*)} \to l$						
Signal	(30 fb^{-1})	19	15	13	10	5
Background	(30 fb^{-1})	15.0	6.5	5.9	4.1	3.7
Stat. significance	(30 fb ⁻¹)	4.1	4.6	4.2	3.7	2.1
combine	d					
Stat. significance	(30 fb^{-1})	5.1	6.1	5.5	4.5	2.6

Combined significance exceeds 5 σ for 110 GeV $< m_{H} <$ 135 GeV

mass resolution: 11 GeV for $m_H = 120$ GeV

<u>Combined significance of VBF channels</u> <u>for 10 fb</u>⁻¹

• Vector boson fusion channels (in particular WW*) are discovery channels at low luminosity

• For 10 fb⁻¹ in ATLAS: 5σ significance for $120 \le m_H \le 190 \text{ GeV}$ (after combination with the standard channels)

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

ATLAS Higgs discovery potential for 30 fb⁻¹

- Vector boson fusion channels improve the sensitivity significantly in the low mass region
- Several channels available over the full mass range (important for Higgs boson parameter determination)

Mass of Standard Model Higgs boson

VBF channels do not add much, dominated by standard ZZ and $\gamma\gamma$ channels

Mass of MSSM Higgs bosons

MSSM Higgs	<u>∆m/m</u> (%)	300 fb ⁻¹
h, A, H $\rightarrow \gamma \gamma$	0.1-0.4	
$H \rightarrow 4 \ell$	0.1-0.4	
$H/A \rightarrow \mu\mu$	0.1-1.5	
$h \rightarrow bb$	1–2	
$H \rightarrow hh \rightarrow bb \gamma\gamma$	1-2	
$A \to Zh \to bb \ \ell \ell$	1–2	
$H/A \rightarrow \tau \tau$	1-10	

Measurements of Higgs couplings

i) Ratio between W and Z partial widths

• Direct measurements

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

- QCD corrections cancel

VBF: $\sigma x BR (qqH \rightarrow qq WW^*) / \sigma x BR (H \rightarrow ZZ^*)$

- different processes, QCD corrections do not cancel, i.e. add. uncertainty
- working on $qqH \rightarrow qq ZZ^*$)
- Indirect measurement

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \gamma \gamma)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_\gamma}{\Gamma_g \Gamma_Z} \sim \frac{\Gamma_W}{\Gamma_Z}$$

(Use proportionality between Γ_W and $\Gamma_{\gamma,}$ needs theoretical input, 10% uncertainty assumed)

Karl Jakobs

Ratios of boson/fermion couplings

VBF:

allows a direct measurement of $\ \Gamma_{
m W}$ / $\ \Gamma_{
m au}$ in the mass range 120 - 150 GeV

- Direct measurement $-\frac{\sigma \times BR(qq \rightarrow qqH(H \rightarrow WW))}{\sigma \times BR(qq \rightarrow qqH(H \rightarrow \tau\tau))} = \frac{\Gamma_W \Gamma_W}{\Gamma_W \Gamma_\tau} = \frac{\Gamma_W}{\Gamma_\tau}$
- Indirect measurement $-\frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \gamma \gamma))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \gamma \gamma)} = \frac{\Gamma_W \Gamma_\gamma}{\Gamma_g \Gamma_\gamma} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$
 - $\frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)} = \frac{\Gamma_W \Gamma_W}{\Gamma_g \Gamma_W} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{ttH}(\mathsf{H} \to \mathsf{bb}))}{\sigma \times \mathsf{BR}(\mathsf{ttH}(\mathsf{H} \to \gamma\gamma))} = \frac{\Gamma_t \Gamma_b}{\Gamma_t \Gamma_\gamma} \sim \frac{\Gamma_b}{\Gamma_W}$$

* Uncertainties on the ratio arising through different production processes are not included

under study: qqH →qq bb

Karl Jakobs

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002

Conclusions

- 1. The large LHC Higgs boson discovery potential can be significantly enlarged by the Vector Boson Fusion channels
- 2. They are important for both a fast Higgs boson discovery in the WW* channel (130-190 GeV)

and

for the measurement of Higgs boson parameters

Karl Jakobs

ECFA/DESY workshop, St.Malo,April 2002