Results from analyses of physics and simulated data using different tools

-Brief Summary-

K. Jakobs & M. Heldmann
Physikalisches Institut
Universität Freiburg / Germany
Experimental issues in Charged Higgs Boson Searches

1. Identification of hadronic tau decays
 - significant branching ratios over large areas of parameter space

2. b-tagging, E_T^{miss} signatures
 - b-tagging is important, since multi-b final states appear
 - b-tag important for significant background rejections

3. Triggering on hadronic taus
 - in case of no accompanying leptons, dedicated hadronic tau triggers are needed
Identification of hadronic tau decays

Consensus about the general strategy: CDF, D0 → ATLAS, CMS

Standard approach:
Start from the calorimeter cluster information
- exploit shower shape variables
 (reconstruct π^0 in the calorimeter, depends on longitudinal and lateral calorimeter granularity)
- associate tracks to the calorimeter cluster
- apply calorimeter and track isolation
- additional handles: τ mass (track + π^0 mass)
 τ lifetime (impact parameter)
final step: multivariate analysis (likelihood, NN)
cuts may depend on P_T of the τ

Further discrimination (separate various τ decay modes)
DØ collaboration

Limitation: efficiency drop for low p_T taus,
→ alternative approaches: track based initialization for low p_T taus
Tau Efficiency & Fake Rate at CDF

- Tau efficiency after tight selection:

- Jet fake rate, using jet triggers:

Similar results from the DØ experiment
Simulation results from ATLAS and CMS

In addition: Methods on how to determine efficiencies from data are being studied
Future steps (work to do for the LHC analyses)

• consolidate τ ID algorithms
 (profit from the rich experience from the TeVatron, TeV4LHC very useful, …)

• work towards a complementary track-based τ ID approach to improve the performance at low PT

• discriminate between various decay channels

• refine and consolidate multivariate analyses

• study further ways to measure the τ tag efficiency from data
The trigger problem

All experiments have multi layer trigger system

- dedicated tau triggers at the Tevatron
 profit from tracking info at L1
 (not possible at the LHC)

 - e/μ + track
 - tau + ETMISS
 - di-tau trigger

LHC tau triggers:

- Single tau triggers have high thresholds
- Hadronic tau decay channels have to rely on
 tau + ETmiss and tau + jet and jet + ETmiss triggers

- Trigger efficiency seems to be adequate, given rather high PT thresholds in
 offline analyses (50-70% trigger eff. even for low H+ masses)
b-tagging and b-signatures in H+ events

- Several b-tagging algorithms in place for ATLAS and CMS (good performance expected, with degradation in forward and low-p_T region)

- b-tagging is an important tool in Charged Higgs analyses (in particular in the H+ → tb decay modes)

- b-tagging is essential in any Charged Higgs analyses using tb final states
 - difficult S/B conditions
 - improvements in b-tagging for soft and forward jets would certainly help however, some backgrounds irreducible (b-contents, gluon splitting, …)
 - situation appears to be difficult (tb does not seem to be the “gold plated” charged Higgs boson discovery channel)
ETmiss reconstruction

- ETmiss is an important signature (also for Charged Higgs boson searches)

- resolution is primarily determined by calorimeter resolution and response

- Important issues for future work: calorimeter calibration, response uniformity, ….
 - noise suppression
 - develop methods to determine resolution with data
 (validation, started already)
Conclusions

Search for the Charged Higgs boson at Hadron Colliders is extremely important

The experimental techniques are already well advanced

- ID of hadronic taus: some improvements still desirable
- Hadronic tau triggering seems feasible in combination with ETMISS /jets
- Additional complementary signatures: b-tagging, E_T^{miss}
- Top reconstruction is necessary, but difficult (Ketevi)

New analysis methods have been studied:

- Tau polarisation should be exploited in 1- and 3-prong-decays (improved signal significance)
- IDM method looks promising, however, real confirmation from Tevatron data still needed (+ consideration of all relevant backgrounds)
- And finally: updated LHC discovery contours as usual: increased background is suppressed by smarter ideas / more sophisticated cuts
Discovery potential with 3-prong selection

R. Kinnunen
Conclusions

Search for the Charged Higgs boson at Hadron Colliders is extremely important

The experimental techniques are already well advanced

- ID of hadronic taus: some improvements still desirable
- Hadronic tau triggering seems feasible in combination with ETMISS /jets
- Additional complementary signatures: b-tagging, E_T^{miss}
- Top reconstruction is necessary, but difficult (Ketevi)

New analysis methods have been studied:

- Tau polarisation should be exploited in 1- and 3-prong-decays (improved signal significance)
- IDM method looks promising, however, real confirmation from Tevatron data still needed (+ consideration of all relevant backgrounds)
- And finally: updated LHC discovery contours
 as usual: increased background is suppressed by smarter ideas / more sophisticated cuts
M. Flechl

Discovery Contour by Assamagan/Coadou (Atlfast, 2002)

- **new Fullsim contour** to be approved by ATLAS:
 - large samples of all relevant backgrounds [estimated bkg: increase by $O(10)$]
 - three new selection cuts
 - new b-/tau-tagging strategies
 - three selection cut value sets

- region $m_{H^\pm} < 165$ GeV covered similar to the contour to the right for $165 < m_{H^\pm} < 200$ GeV, steeper for higher masses
Conclusions (cont.)

Uppsala is a nice place to be, looking forward to forthcoming workshops

Possible Roadmap:

→ 2008: work on tooling (tau, btags, methods to get efficiencies from first data)

→ 2010: first results from data

→ 2012: I hope that we know whether a Charged Higgs exists or not

regardless of the outcome: we could continue to get lectures on how to drink the Uppsala Schnaps

A big Thanks to the Organizers (Tord, Johan,) for the perfect organization