Particle Detection and First Physics Results from the LHC

Karl Jakobs
Physikalisches Institut
Universität Freiburg / Germany
Outline of the lectures:

Part I: Introduction to LHC physics and detectors

Part II: Detection techniques and LHC detectors

- Interaction of charged particles with matter
- Measurement of Charged Particles
 (Momentum measurements, tracking of charged particles)
- Energy measurement
 - Interaction of neutral particles with matter
 - Energy measurements in calorimeters
- Muon detection at the LHC
- Experimental conditions at the LHC (triggering, data acquisition, …)
Part III: First Physics Results from the LHC

- Measurement of Standard Model Processes at the LHC
- Search for the Higgs Boson at the LHC
- Search for Physics Beyond the Standard Model
Exploring the interior of matter

- Eye, microscope (light)
- Electron microscope (electrons)
- Particle accelerators (synchrotron radiation)
- Particle accelerators (high energy particles)

New mass states accessible:

\[E = mc^2 \]
The Methods of Particle Physics

(i) Investigate the structure of matter
The discovery of the first elementary particle: the electron

1869: J.W. Hittorf (Germany)

“Heated cathodes in vacuum tubes emit radiation, which penetrates through space, and can be deflected in magnetic fields”

1897: J.J. Thomson (England)
Determines the ratio of charge to mass (e/m) using electric and magnetic fields

“These particles are a constituent of all matter. They are lighter than the lightest known atom (hydrogen) by a factor of more than 1000.”
The prototype scattering experiment:

Rutherford’s experiment 1911

LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom. By Professor E. Rutherford, F.R.S., University of Manchester*

§ 1. It is well known that the α and β particles suffer deflexions from their rectilinear paths by encounters with atoms of matter. The scattering is far more marked for the β than for the α particle on account of the much smaller momentum and energy of the former particle. There seems to be no doubt that such erratically moving particles pass through the atoms in their path, and that the deflexions observed are due to the strong electric field traversed within the atomic system. It has generally been supposed that the scattering of a pencil of α or β rays in passing through a thin plate of matter is the result of a multitude of small scatterings by the atoms of matter traversed. The observations, however, of Geiger and Marsden† on the scattering of α rays indicate that some of the α particles must suffer a deflexion of more than a right angle at a single encounter. They found, for example, that a small fraction of the incident α particles, about 1 in 20,000, were turned through an average angle of 90° in passing through a layer of gold-foil about 60,000 cm. thick, which was equivalent in stopping-power of the α particle to 180 milli-metres of air. Geiger † showed later that the most probable angle of deflexion for a pencil of α particles traversing a gold-foil of this thickness was about 0°87. A simple calculation based on the theory of probability shows that the chance of an α particle being deflected through 90° is vanishingly small. In addition, it will be seen later that the distribution of the α particles for various angles of large deflexion does not follow the probability law to be expected if such large deflexions are made up of a large number of small deviations. It seems reasonable to suppose that the deflexion through a large angle is due to a single atomic encounter, for the chance of a second encounter of a kind to produce a large deflexion must in most cases be exceedingly small. A simple calculation shows that the atom must be a seat of an intense electric field in order to produce such a large deflexion at a single encounter.

Recently Sir J. J. Thomson § has put forward a theory to

* Communicated by the Author. A brief account of this paper was communicated to the Manchester Literary and Philosophical Society in February, 1911.
§ Oeas. Lit. & Phil. Soc. xv, pt. 6 (1910).
Rutherford experiment (cont.):

Clear evidence for a hard scattering in the centre of the nucleus
High particle momenta (energies) are necessary to explore the interior of matter, the subatomic scale.

Quantum mechanics: the spatial resolution is inversely proportional to the particle momentum:

\[\Delta x = \frac{\hbar}{p} \]

The Rutherford experiment of the second generation:

1967: Stanford Linear Accelerator Centre (SLAC)
Scattering of high energy electrons on protons
Do protons have a substructure?
Results / comparisons of Rutherford experiment and SLAC

Probability $Z^2 \alpha^2$

Au target *Phil. Mag. xxi*, 669 (1911)

Probability α_s^2

Proton target *Phys. Lett. 46B*, 471 (1973)

Transverse momentum of scattering angle
Deep inelastic scattering experiments:

This triggered a whole series of experiment over the last 50 years

- From SLAC ep, en scattering (1967)
 → HERA experiments (e-p collider)
 at DESY/Germany (1991 – 2007)
The proton, as seen in the light of deep inelastic scattering:

• The proton is a composite particle made up of so called partons

• Partons = quarks and gluons

 valence quarks: u, u, d

 sea quarks, u-ubar, d-dbar, s-sbar, ...

 gluons

• The density of partons in the proton cannot be calculated from first principles, has to be determined from experiments

• Proton-proton scattering at high energies is equivalent to parton-parton scattering

Very relevant for the LHC
Parton Distribution functions (pdf)

Results from the extensive measurements at the HERA ep collider

$x = \text{momentum fraction of the parton}$
The methods of particle physics (cont.)

(ii) Search for New Particles / new states of matter

High energies are needed as well, according to Einstein’s formula:

\[E = \sqrt{p^2 c^2 + m^2 c^4} \]

E = energy, p = momentum
m = mass (rest mass)

For \(p = 0 \) this leads to:

\[E = mc^2 \]

energy ↔ matter
Units in particle physics:

<table>
<thead>
<tr>
<th>unit</th>
<th>conversion factor to SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy: eV</td>
<td>$1 \text{ eV} = 1,6 \cdot 10^{-19} \text{ J}$</td>
</tr>
<tr>
<td>Momentum: eV/c</td>
<td>$1 \text{ eV/c} = 1,8 \cdot 10^{-36} \text{ kg}$</td>
</tr>
<tr>
<td>Mass: eV/c²</td>
<td></td>
</tr>
</tbody>
</table>

A few examples, particle masses:

- $m(p) = 938.3 \text{ MeV/c}^2$, baryons (heavy hadrons, bound states, three valence quarks)
- $m(n) = 939.6 \text{ MeV/c}^2$
- $m(e) = 0.511 \text{ MeV/c}^2$, leptons (light particles, no strong interaction, no substructure seen so far)
- $m(\mu) = 105.7 \text{ MeV/c}^2$
- $m(\nu) < 0.3 \text{ eV c}^2$
- $m(\pi^±) = 139.6 \text{ MeV/c}^2$, mesons (hadrons, q-qbar bound states)
- $m(K^±) = 493.7 \text{ MeV/c}^2$
Experimental methods: particle accelerators

Linear accelerators

Storage rings

SLAC Linear Collider
Important accelerator laboratories

- Fermi-National-Accelerator-Laboratory, Chicago, USA
- Stanford Linear Accelerator Center, Stanford, USA
- Deutsches-Elektronen-Synchrotron, DESY, Hamburg, Germany
- KEK Tsukuba, Japan
- European Centre for Particle Physics, CERN, Geneva, Switzerland
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Organization</th>
<th>Interaction</th>
<th>Start Year - End Year</th>
<th>Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-factory</td>
<td>SLAC</td>
<td></td>
<td>20xx - (?)</td>
<td>> 500 GeV</td>
</tr>
<tr>
<td>ILC</td>
<td>??</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERA</td>
<td>DESY</td>
<td>$e^\pm p$</td>
<td>1992 - 2007</td>
<td>300 GeV</td>
</tr>
<tr>
<td>Tevatron</td>
<td>FNAL</td>
<td>$p\bar{p}$</td>
<td>1987 – 2011</td>
<td>1.96 TeV</td>
</tr>
<tr>
<td>LHC</td>
<td>CERN</td>
<td>$p\bar{p}$</td>
<td>since 2009</td>
<td>7.0 TeV</td>
</tr>
<tr>
<td>LHC</td>
<td>CERN</td>
<td>pp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Where do we stand today?
The building blocks of matter: Quarks und leptons

- Quarks: u, c, t, d, s, b
- Leptons: e, μ, τ

Masses (in GeV/c²):
- m(e) = 0.000511
- m(μ) = 0.1057
- m(τ) = 1.777
- m(u) = 0.005
- m(t) = ~173

For comparison: m(p) = 0.9383

Fundamental particles do not have any size. Here the different sizes are just a graphical way to show how different the masses are.
Forces and force carriers

Masses:

\[m_\gamma = 0 \quad \text{(Photon)} \]
\[m_g = 0 \quad \text{(Gluon)} \]

\[M_W = 80.399 \pm 0.023 \text{ GeV}/c^2 \]
\[M_Z = 91.1875 \pm 0.0021 \text{ GeV}/c^2 \]
The problem of mass

- Theoretical description (Quantum field theories) → massless particles

- A new (scalar) field (Higgs field) is postulated, penetrates vacuum (non-zero field content)

- Mass is "created" via interaction of particles with this field

- Prediction: new particle, the Higgs boson

proposed by P. Higgs (Scottish physicist)
[Theory: 1964, P. Higgs, R. Brout und F. Englert]
Why do we need the Higgs boson?

The Higgs boson enters the Standard Model to solve two fundamental problems:

- **Masses of the vector bosons W and Z:**

 Experimental results:

 \[M_W = 80.399 \pm 0.023 \text{ GeV} / c^2 \]
 \[M_Z = 91.1875 \pm 0.0021 \text{ GeV} / c^2 \]

 A local gauge invariant theory requires massless gauge fields

- **Divergences in the theory** (scattering of W bosons)

\[
-iM(W^+W^- \rightarrow W^+W^-) \sim \frac{S}{M_W^2} \quad \text{for} \quad s \rightarrow \infty
\]

(no Higgs boson)

\[
-iM(W^+W^- \rightarrow W^+W^-) \sim m_H^2 \quad \text{for} \quad s \rightarrow \infty
\]

(with Higgs boson)
Where do we stand today?

- The energy range up to ~100 GeV has been explored with incredible precision
- The Standard Model is consistent with all experimental data! (except clear evidence for neutrino masses)
- No Higgs boson seen (yet)

Only unambiguous example of observed Higgs

(P. Higgs, Univ. Edinburgh)

Summer 2010

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta\alpha^{(b)}_{\text{had}}(m_Z)$</td>
<td>0.02758 ± 0.00035 0.02768</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021 91.1874</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023 2.4959</td>
</tr>
<tr>
<td>σ^0_{had} [nb]</td>
<td>41.540 ± 0.037 41.479</td>
</tr>
<tr>
<td>R_l</td>
<td>20.767 ± 0.025 20.742</td>
</tr>
<tr>
<td>$A_{l,b}^0$</td>
<td>0.01714 ± 0.00095 0.01645</td>
</tr>
<tr>
<td>$A_{l,b}(P_\gamma)$</td>
<td>0.1465 ± 0.0032 0.1481</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066 0.21579</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030 0.1723</td>
</tr>
<tr>
<td>$A_{l,b}^0$</td>
<td>0.0992 ± 0.0016 0.1038</td>
</tr>
<tr>
<td>$A_{l,b}^0,c$</td>
<td>0.0707 ± 0.0035 0.0742</td>
</tr>
<tr>
<td>A_b</td>
<td>0.923 ± 0.020 0.935</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.027 0.668</td>
</tr>
<tr>
<td>$A_{l(SLD)}$</td>
<td>0.1513 ± 0.0021 0.1481</td>
</tr>
<tr>
<td>$\sin^2\theta_{\text{eff}}^{\alpha}(Q_l)$</td>
<td>0.2324 ± 0.0012 0.2314</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.399 ± 0.023 80.379</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.085 ± 0.042 2.092</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.3 ± 1.1 173.4</td>
</tr>
</tbody>
</table>

July 2010
Constraints on the Higgs boson mass

- \(m_H > 114.4 \text{ GeV} \) from direct searches at LEP
- \(m_H < 156 \text{ GeV} \) or \(m_H > 177 \text{ GeV} \) from direct searches at the Tevatron
Indirect limits from electroweak precision data \((m_W \text{ and } m_t)\)

Sensitivity to the Higgs boson and other new particles via quantum corrections:

\[
m_H = 92^{+34}_{-26} \text{ GeV/c}^2
\]

\[
m_H < 161 \text{ GeV/c}^2 \quad (95 \% \text{ CL})
\]
The open questions
Key questions of particle physics

1. **Mass**
 - What is the origin of mass?
 - Does the Higgs particle exist?

2. **Unification**
 - Can the interactions be unified?
 - Are there new types of matter, e.g. supersymmetric particles?
 - Are they responsible for the Dark Matter in the universe?

3. **Flavour**
 - Why are there three generations of particles?
 - What is the origin of the matter-antimatter asymmetry (Origin of CP violation)

Answers to some of these questions are expected on the TeV energy scale, i.e. at the LHC
Theoretical models for physics Beyond the Standard Model
Experimental methods: Detectors

The detectors measure:
- The energy and momentum of particles
- The identity of particles

The measurements are used to reconstruct the interaction process

→ Answers to physics questions
Detection principle

- Particles are detected via their interaction with matter, i.e. with the detector material; in general: full solid angle (4π) is covered; many particles \rightarrow high segmentation of detectors

- Different particles interact differently with the detector media \rightarrow possibility for their identification

- Energy is transferred to the sensitive material layers \rightarrow electrical or light signal
Detection principle (cont.)

(i) Tracking detectors:
- Measure the position (space information) of the particle several times; based on electromagnetic interaction, electric charge required
 \rightarrow track of charged particles
- If a magnetic field in tracking volume \rightarrow Lorentz force on charged particle
 \rightarrow curvature of track
 \rightarrow momentum p of charged particles
Lorentz force: \[\vec{F} = -q \, \vec{v} \times \vec{B} \]

For a homogenous magnetic field B perpendicular to the particle direction (velocity \(\vec{v} \), charge \(q \)):

\(\rightarrow \) circle (more general: a helix, i.e. no deflection in the direction of the magnetic field)

Radius of curvature: \[R = \frac{p}{q \cdot B} \]
(ii) **Calorimeters**: measure the energy of the particles, particles are stopped, their full energy is deposited, part of it is transferred to a detector medium.

Different particles \((e, \gamma, \pi, K, \ldots)\) differ in interactions and penetration length;

Usually two sections of the calorimeters:
- **Electromagnetic calorimeter**: \((e, \gamma)\) are stopped / absorbed;
- **Hadronic calorimeter**: hadrons are stopped \((\pi, K, p, n, \ldots)\)
- note: muons and neutrinos are NOT stopped / absorbed
(iii) Muon detectors:
- Due to their relatively large mass and their lepton nature, muons have a “small” interaction with the detector material;
- They penetrate the calorimeters and give signals in “tracking detectors” behind the calorimeters; these are called muon detectors;
- Signature: track, small signals in calorimeters, track in muon detector
(iv) How to detect neutrinos?

- Neutrinos interact only weakly, i.e. via the weak interaction, with the detector material

- Detector thickness is far too small to stop/absorb them

- They carry away energy and momentum

- Their presence can only be inferred via an apparent violation of energy and momentum conservations

 i.e. indirect detection of neutrinos

 (and other purely weakly interacting particles)
A typical particle detector
-ALEPH at LEP (~1990) as an example-

1. Central region: large tracking detector
2. Electromagnetic part of the calorimeter
3. Superconducting coil, high currents → high solenoidal magnetic field
4. Hadronic part of the calorimeter
5. Muon detector system
Experimental hall, ~140 m underground

Hadronic calorimeter in the “barrel” part of the detector (iron absorber + gas as sensitive medium)
A few collision events recorded with the ALEPH detector at LEP

Initial state: $e^+ e^- \text{ collisions}$

centre-of-mass energy $\sqrt{s} = 91 \text{ GeV}$
What process has occurred here?

\[e^- \rightarrow \gamma / Z \rightarrow \mu^- \]

\[e^+ \rightarrow \mu^+ \]
What process has occurred here?

- Production of a quark-antiquark pair in the final state.
- Quarks cannot exist as “free particles” and undergo fragmentation into final state hadrons (π^\pm, π^0, K^\pm, K^0, p, n, ..., B^\pm, B^0, ...).
- Depending on their lifetime, these particles decay inside the detector:
 - Prompt decays: e.g. $\pi^0 \rightarrow \gamma \gamma$, $\tau = 8.4 \cdot 10^{-17} \text{s}$, $c\tau = 25.1 \text{nm}$
 - Medium lifetime: B-hadrons: $B^0 \rightarrow D^0 \pi^+ \pi^-$, $\tau = 1.55 \cdot 10^{-12} \text{s}$, $c\tau = 464 \mu\text{m}$
 - “Stable” particles: π^\pm, $\tau = 2.6 \cdot 10^{-8} \text{s}$, $c\tau = 7.8 \text{m}$