2.3 Silicon Semiconductor detectors

- Semiconductor Detectors (mainly Silicon)
 - Motivation and history
- Basic Si properties
 - p-n-junction
- Strip Detectors
- Pixel Detectors

Use of Silicon Detectors

- Silicon detectors: a kind of solid-state ionisation chamber
- Si-detector concepts started in the 80s, but expensive and difficult at first
- Increased commercial use of Si-photolithography and availability of VLSI electronics lead to a boom for Si-Detectors in the 90s – and it still goes on, though we need R&D on Si radiation hardness...
- Nearly all high energy physics experiments use Silicon detectors as innermost high-precision tracking device
- High energy physics experiments are now exporting Si-technology back to the commercial world (Medical Imaging)

Evolution in Si-Detector Area

Basic Silicon Properties

- Silicon: type IV element, 1.1eV band gap
- Intrinsic conductivity very low $\sigma_i = e \cdot n_i (\mu_e + \mu_h)$
 - Carrier density at 300 K:
 - 1.5.10¹⁰ cm⁻³ compared to 5.10²² Si-Atoms per cm⁻³
 - often dominated by impurities
- "Doping": Small admixtures of type III or type V elements increase conductivity
 - Donors like Phosphorous give extra electron -> n-type Si
 - Acceptors (e.g. Boron) supply extra hole -> p-type Si
 - Contact between p- and n-Si forms p-n-junction
 - Doping dominates conductivity as n_i << n_D
 - for n-type Si: $\sigma_{D} = e \cdot n_{D} \cdot \mu_{e}$

p-n-Junction

- Diffusion of e⁻ from n-side and h⁺ from p-side
- Recombination on other side, free charges disappear around junction ("depletion")
- Neutral p- or n-Si becomes charged → E-Field
- External field can increase or decrease depletion zone
- Depletion is what we want for detectors!

Take a p-n-diode
 Segment it
 Apply a voltage
 Wait for a MIP to deposit charge
 Charges separate and drift in E-field
 n-type Si-bulk

- Take a p-n-diode ٠
- Segment it
- Apply a voltage
- Wait for a MIP to • deposit charge
- Charges separate • and drift in E-field
- This gives a signal • in the p-strips

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

 $W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

$$W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

 $W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

 $W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

 $W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

 $W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage to deplete Si from charges
- Depletion zone grows from p-n-junction towards the back side

 $W_{depletion} = \sqrt{2\varepsilon\rho\mu V_{bias}}$

Signal

- Depleted piece of Si, a MIP generates e⁻h⁺-pairs...
- e⁻h⁺-pairs separate in Efield, and drift to electrodes
- Moving charges -> electric current pulse
- Small current signal is amplified, shaped and processed in ASICs ("chips") on read-out electronics

Some subtleties

- Even under reverse bias, there is a permanent thermal current going into the amplifiers
- Amplifying this current consumes power, generates heat and noise
- Solution: decouple strips from amplifiers for DC signals only -> AC-coupling
- Integration of capacitors into Si-Detector possible (and common today)

More Subtleties

- Diodes need to be on same potential but electrically separated (to avoid shorting them)
- Solution: decouple strips with bias resistors

– ~ 1 MΩ

Schematic Si-Detector

- This detector will deliver 2D information – we need one more coordinate:
- Take another detector and place it on top with orthogonal strips
- Or segment the n-side
 (backside) as well
 -> double-sided detector
- Both will work but one has to think a bit about the angle of the two Si-planes

Angle between two Si-Detectors

N hits per readout cycle generate N² ambiguities in hit position

Ambiguities are reduced by stereo angle < 90°

ATLAS Reality: O(10) hits per detector module per 25 ns.

Stereo angle of few degrees.

Performance: Resolution & Rate

- Resolution σ :
 - Dominated by strip pitch d
 - Single strip hits: $\sigma = d/\sqrt{12}$
 - Double strip hits improve resolution (weighted average)
 - Ratio single/double hits gets worse for larger pitches –
 - → Resolution worsens rapidly with increasing pitch
 - Higher S/N -> more two-strip hits –
 → better resolution
 - Analogue readout has better resolution than binary
- Rate:
 - signal collection $t_{collect} \sim 10$ ns
 - signal shaping in front end electronics: t_{shape} ≥ t_{collect}
 - a lot of Si-detectors operate successfully at LHC speed (25ns)

	d	σ	
on	25 µm	2.6 µm	
	60 µm	9 µm	
se	100 µm	29 µm	

350

Resolution for analogue readout

Signal and Noise

- Noise "Signal" from strips has Gaussian shape
- MIPs deposit ~100 keV energy according to Landau distribution, broadened by noise
- Need to separate signal and noise

 → threshold value
 → efficiency
- Figure of merit: Signal-to-Noise ratio or S/N
- S/N also affects resolution!

Full Si-Detector System

- So far we only have a piece of Silicon with some electronics attached, which will give us a 3D space point...
- Will we find the Higgs with that?
- Need to put many (thousands) of Si-Detectors together in a smart way
 - − Require several space points → several layers
 - − Need to see all charged tracks → hermetically closed
 - For collider experiments (e.g. ATLAS, CMS) this means a multilayer cylindrical structure
- Some examples will follow

Wire Bonding

- Si detector needs connection to readout electronics
- High connection density with O(15) wires per mm
- Ultra-sonic bonding of ~20µm wires with semiautomatic system

Single Wire Bond Foot

2.4 Silicon Pixel detectors

Basic concept:

- segment a diode in 2 dimensions

- strips become pixels

 \rightarrow increased two-dimensional resolution \rightarrow space points

Si-Pixel Detectors: CCD

 Instead of strips measuring one dimension, have a matrix of points measuring two dimensions

as used in this

and in this

Pattern recognition is much easier! Compare reconstructing

...

P.Collins

these tracks

with this

....

or with this!

Si-Pixel Detectors: CCD

- First pixel detectors in HEP were CCDs derived from digital cameras
- CCD principle: MIP generates charge which is shifted out sideways to readout
- Very economic as N_{readout} < N_{pixel}
- CCDs work but are slow and do not tolerate out-of-time hits

From Paula Collins

Pixel Detector Overview

Different pixel detector types

- Hybrid Active Pixel Sensors (HAPS)
 - Detector and readout ASIC are sandwiched together
 (N = N)
 - (N_{readout} = N_{pixel}) Limitation from readout:
 - Pixel size > 120 x 120 μ m (2004)
 - Used widely in collider experiments
 - ATLAS: 100M pixels (50x400 μm²)
 - CMS: 23M pixels (150x150 μm²)

Monolithic Active Pixel Sensors (MAPS)

- Preamplifier integrated into detector, ASIC nearby
- Pixel size > 15 x 15 µm (2005)
- Current research topic in many groups, (MIMOSA, IReS Strasbourg)

2.4 The ATLAS and CMS central tracking detectors

Vertexing and *b*-jet tagging

• The innermost silicon detector must provide the required *b*-tagging efficiency

2nd I HC Vietnam School Saidon

The ATLAS Inner Detector (one end-cap)

The ATLAS Inner Detector

1. Al	R- φ accuracy	R or z accuracy	# channels
Pixel	10 µm	115 µm	80.4M
SCT	17 μm	580 μm	6.3M
TRT	130 μm	2.55	351k

σ/p_T ~ 0.05% p_T ⊕ 1%

Example: ATLAS SCT Module

From Module to Detector

SCT Endcap

Example: ATLAS SCT Module

ATLAS pixel detector

Drift Tubes (DT) in ATLAS: inner detector and muon spectrometer

Classical detection technique for charged particles based on gas ionisation and drift time measurement

Combining Tracking with particle ID: ATLAS TRT

 e/π separation via transition radiation: polymer (PP) fibres/foils interleaved with DTs

Electrons radiate \rightarrow higher signal Particle Identification by counting the number of high-threshold hits

Total: 370000 straws

Barrel ($|\eta| < 0.7$): 36 *r*- ϕ measurements / track Resolution ~130 µm / straw

18 end-cap wheels ($|\eta| < 2.5$): 40 or less *z*- ϕ points

Comparison between the ATLAS and CMS tracking systems

Both use solenoidal fields

- CMS: full silicon strip and pixel detectors
 high resolution, high granularity
- ATLAS: Silicon (strips and pixels)
 + Transition Radiation Tracker
 - high granularity and resolution close to interaction region

- "continuous" tracking at large radii

CMS tracking detector

	ATLAS	CMS
Magnetic field	2 T solenoid + independent muon + toroid: 0.5 T (barrel), 1 T (endcap)	4 T solenoid + return yoke
Tracker	Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$	Silicon pixels and strips (full silicon tracker) $\sigma/p_T \approx 1.5 \cdot 10^{-4} p_T + 0.005$