10. Experimentelle Tests der Quantenchromodynamik

- 10.1 Drei-Jet-Ereignisse in e⁺e⁻-Kollisionen
- 10.2 QCD-Effekte in der tief-inelastischen Lepton-Nukleon-Streuung
- 10.3 Test der QCD in Proton-Antiproton-Kollisionen
- 10.4 Bestimmung der starken Kopplungskonstanten α_s

1977: DESY macht die Gluonen sichtbar

Abb. 12.20. Daten für das Verhältnis R und die Vorhersagen des Quark-Parton-Modell (QPM) und der QCD. Die ψ - und Υ -Resonanzen sind gestrichelt angedeutet. (Marshall 1989)

Beiträge höherer Ordnung zur Jet-Produktion (2-, 3-, und 4-Jet-Ereignissen) in e⁺e⁻ Kollisionen</sup>

10.2 QCD-Effekte in der tief inelastischen Lepton-Nukleon-Streuung

HERA-Beschleuniger am DESY in Hamburg (1990 – 2007:) Elektron/Positron-Proton Kollisionen: 30 GeV e[±] auf 920 GeV p

QCD at HERA

H1 and ZEUS Combined PDF Fit

10.3 Test der QCD in Proton-Proton-Kollisionen

- Jet-Produktion
- Produktion von W- und Z-Bosonen
- Produktion von Top-Quarks

It is important to establish the Standard Model reference processes:

- Test of the theory itself
 Deviations → evidence for Physics beyond the Standard Model
- -Important to understand the detector performance
 - → understand the so called "Fake" or "instrumental" background, in particular for leptons (e,μ) and E_T^{miss}
- -Standard Model processes are important background processes for many searches for Physics Beyond the Standard Model "Physics Background"

Typical selections require: leptons, jets, E_T^{miss},

→ W/Z + jets and tt productions are omnipresent!

Cross sections for important hard scattering Standard Model processes at the Tevatron and the LHC colliders High p_⊤ jet events at the LHC

Event display that shows the highest-mass central dijet event collected during 2010, where the two leading jets have an invariant mass of 3.1 TeV. The two leading jets have (p_T , y) of (1.3 TeV, -0.68) and (1.2 TeV, 0.64), respectively. The missing E_T in the event is 46 GeV. From <u>ATLAS-CONF-2011-047</u>.

An event with a high jet multiplicity at the LHC

The highest jet multiplicity event collected by the end of October 2010, counting jets with p_T greater than 60 GeV: this event has eight. 1st jet (ordered by p_T): p_T = 290 GeV, η = -0.9, φ = 2.7; 2nd jet: p_T = 220 GeV, η = 0.3, φ = -0.7 Missing E_T = 21 GeV, φ = -1.9, Sum E_T = 890 GeV. The event was collected on 5 October 2010.

Theoretical calculations

Leading order

...some NLO contributions

$$rac{d\hat{\sigma}}{d\hat{t}}(ab
ightarrow cd) = rac{\mid M\mid^2}{(16\pi\hat{s}^2)}$$

$ \mathcal{M} ^2/g_s^4$	$ \mathcal{M}(90^{\circ}) ^{2}/g_{s}^{4}$
$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.2
$\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} \right) - \frac{8}{27}$	$\frac{\hat{s}^2}{\hat{u}\hat{t}}$ 3.3
$\frac{4}{9} \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	0.2
$\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} \right) - \frac{8}{27}$	$\frac{\hat{u}^2}{\hat{s}\hat{t}}$ 2.6
$\frac{32}{27} \; \frac{\hat{u}^2 + \hat{t}^{\; 2}}{\hat{u}\hat{t}} - \frac{8}{3} \; \frac{\hat{u}^2 + \hat{t}^{\; 2}}{\hat{s}^2}$	1.0
$\frac{1}{6} \frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}} - \frac{3}{8} \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$	0.1
$rac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} - rac{4}{9} \; rac{\hat{s}^2 + \hat{u}^2}{\hat{u}\hat{s}}$	6.1
$\frac{9}{4} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} + \frac{\hat{u}^2 + \hat{s}^2}{\hat{s}^2} \right)$	$\frac{\hat{t}^2}{2} + 3$ 30.4
	$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$ $\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} \right) - \frac{8}{27}$ $\frac{4}{9} \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$ $\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} \right) - \frac{8}{27}$ $\frac{32}{27} \frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}} - \frac{8}{3} \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$ $\frac{1}{6} \frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}} - \frac{3}{8} \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$ $\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} - \frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{u}\hat{s}}$

- Right: Results of the LO matrix elements for the various scattering processes, expressed in terms of the Mandelstam variables s, t and u. (Kripfganz et al, 1974);
- gg scattering is the dominant contribution under $\eta = 0$; (sensitivity to gluons, sensitivity to gluon self-coupling, as predicted by QCD)
- NLO predictions have meanwhile been calculated (2002).

The composition of the partons involved as function of the p_T of the jet at the Tevatron:

Tevatron, ppbar, \sqrt{s} = 1.96 TeV, central region $|\eta|$ < 0.4

- qq scattering dominates at high p_T
- However, gluons contribute over the full range

Jet reconstruction and energy measurement

- A jet is NOT a well defined object (fragmentation, gluon radiation, detector response)
- The detector response is different for particles interacting electromagnetically (e,γ) and for hadrons
 - → for comparisons with theory, one needs to correct back the calorimeter energies to the "particle level" (particle jet) Common ground between theory and experiment
- One needs an algorithm to define a jet and to measure its energy conflicting requirements between experiment and theory (exp. simple, e.g. cone algorithm, vs. theoretically sound (no infrared divergencies))
- Energy corrections for losses of fragmentation products outside jet definition and underlying event or pileup energy inside

Experimental issues

$d^{2}\sigma / dp_{T} d\eta = N / (\epsilon \cdot L \cdot \Delta p_{T} \cdot \Delta \eta)$

- In principle a simple counting experiment
- However, steeply falling p_T spectra are sensitive to jet energy scale uncertainties and resolution effects (migration between bins)
 - → corrections (unfolding) to be applied

 \rightarrow 10% cross section uncert. at $|\eta|$ <0.4

Major exp. errors: energy scale, luminosity (6%),...

Double differential cross sections, as function of p_T and rapidity y (full 2010 data set)

somewhat larger deviations in the forward region

- Data are well described by NLO pert. QCD calculations (NLOJet++)
- Experimental systematic uncertainty is dominated by jet energy scale uncertainty
- Theoretical uncertainties: renormalization/ factorization scale, pdfs, α_s , ..., uncertainties from non-perturbative effects

10⁻⁶

20 30

Double differential cross sections, as function of p_T and rapidity y: (full 2010 data set)

 $10^2 2 \times 10^2$

CMS: include full 2011 data set; comparison up to 2 TeV (central rapidities)

Data are well described by NLO pert. QCD calculations (NLOJet++)

10³

 $p_{_{\!\scriptscriptstyle T}}$ [ĞeV]

- Experimental systematic uncertainty is dominated by jet energy scale uncertainty
- Theoretical uncertainties: missing higher order corrections, parton density functions, α_s , ...,

Invariant di-jet mass spectra

Important for: - Test of QCD

- Search for new resonances decaying into two jets (→ next slide)

In addition to QCD test: Sensitivity to New Physics

- Di-jet mass spectrum provides large sensitivity to new physics
 - e.g. Resonances decaying into qq, excited quarks q*,
- Search for resonant structures in the di-jet invariant mass spectrum

CDF (Tevatron), $L = 1.13 \text{ fb}^{-1}$: $0.26 < m_{q^*} < 0.87 \text{ TeV}$

ATLAS (LHC), $L = 0.000315 \text{ fb}^{-1}$ exclude (95% C.L) q* mass interval

 $0.30 < m_{q^*} < 1.26 \text{ TeV}$

 $L = 0.036 \text{ fb}^{-1}$: $0.60 < m_{q^*} < 2.64 \text{ TeV}$

- Include new data at \sqrt{s} = 8 TeV (2012)
- Invariant di-jet masses up to 4.1 TeV

QCD aspects in W/Z (+ jet) production

- Important test of NNLO Drell-Yan QCD prediction for the total cross section
- Test of perturbative QCD in high p_T region (jet multiplicities, p_T spectra,....)
- Tuning and "calibration" of Monte Carlos for background predictions in searches at the LHC

Example: Drell-Yan production of W/Z bosons

Rapidity distributions for Z and W^{\pm} production at LO, NLO, and NNLO

How do W and Z events look like?

As explained, leptons, photons and missing transverse energy are key signatures at hadron colliders

→ Search for leptonic decays: $W \to \ell \nu$ (large $P_T(\ell)$, large E_T^{miss}) $Z \to \ell \ell$

A bit of history: one of the first W events seen; UA2 experiment

W/Z discovery by the UA1 and UA2 experiments at CERN (1983/84)

Transverse momentum of the electrons

W/Z selections in the ATLAS / CMS experiments

Electrons:

- Trigger: high p_T electron candidate in calorimeter
- Isolated el.magn. cluster in the calorimeter
- P_T> 25 GeV/c
- Shower shape consistent with expectation for electrons
- Matched with tracks

$Z \rightarrow ee$

• 76 GeV/ c^2 < m_{ee} < 106 GeV/ c^2

$W \rightarrow ev$

- Missing transverse momentum > 25 GeV/c
- Transverse mass cut M_T > 50 GeV

$$M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^{\nu} \cdot \left(1 - \cos \Delta \phi^{l,\nu}\right)}$$

Transverse mass (longitudinal component of the neutrino cannot be measured)

Vorlesung Physik V, Freiburg, WS 2012/13

Ingredients for cross-section measurements

$$\sigma_{W(Z)}^{\mathrm{tot}} \cdot BR(W(Z) \to \ell \nu \ (\ell \ell)) = \frac{N_{W(Z)}^{\mathrm{sig}}}{A_{W(Z)} \cdot C_{W(Z)} \cdot L_{W(Z)}}$$

- Number of W/Z signal candidates N^{sig} = N^{evt} N^{back}
 Estimated background (Physics background, "fake" background,...)
- C_{W(Z)}: reconstruction efficiencies, detector effects, ...
- A_{W(Z)}: acceptance (usually the final state products are measured in a so called fiducial region of the detector,

e.g. η coverage of the muon detector, p_T threshold of the reconstruction)

This last quantity can only be calculated with Monte Carlo, using theoretical inputs!!

(N)NLO calculations, parton density functions,

- Cross sections for $A_{W(Z)} = 1$ are called "fiducial cross sections"
- Less affected by theoretical / pdf uncertainties...
- L_{W(Z)}: integrated luminosity

W and Z production cross sections at hadron colliders

- Theoretical NNLO predictions in very good agreement with the experimental measurements (for pp, ppbar and as a function of energy)
- Good agreement as well between the ATLAS and CMS experiments

W and Z production cross sections at the LHC

Measured cross section values in comparison to NNLO QCD predictions:

Data are well described by NNLO QCD calculations

C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343.

Precision is already dominated by systematic uncertainties

[The error bars represent successively the statistical, the statistical plus systematic and the total uncertainties (statistical, systematic and luminosity). All uncertainties are added in quadrature.]

W cross sections at the LHC -charge separated, e/μ universality

Good agreement between data and NNLO QCD predictions for all measurements

W/Z + jet cross section measurements

- LO predictions fail to describe the data;
- Jet multiplicities and p_T spectra in agreement with NLO predictions within errors;

Jet multiplicities in W+jet production

p_⊤ spectrum of leading jet

Top Quark Physics

Why is Top-Quark so important?

The top quark may serve as a window to **New Physics** related to the electroweak symmetry breaking;

Why is its Yukawa coupling ~ 1 ??

$$M_{t} = \frac{1}{\sqrt{2}} \lambda_{t} v$$

$$\Rightarrow \lambda_{t} = \frac{M_{t}}{173.9 \text{ GeV}/c^{2}}$$

- A unique quark: decays before it hadronizes, lifetime ~10⁻²⁵ s no "toponium states" remember: bb, bd, bs..... cc, cs..... bound states (mesons)
- We still know little about the properties of the top quark:
 mass, spin, charge, lifetime, decay properties (rare decays), gauge couplings,
 Yukawa coupling,...

Top Quark Production

Pair production: qq and gg-fusion

Top-quark pair production in the Born approximation.

- NLO corrections completely known
- NNLO partly known approximate NNLO results:

$$\sigma_{\text{LHC}} = (887^{+9}_{-33} \text{ (scale)}^{+15}_{-15} \text{ (PDF)}) \text{ pb}$$
 (14 TeV),
 $\sigma_{\text{Tev}} = (7.04^{+0.24}_{-0.36} \text{ (scale)}^{+0.14}_{-0.14} \text{ (PDF)}) \text{ pb}$ (1.96 TeV).

		Tevatron 1.96 TeV	LHC 14 TeV
qq		85%	5%
gg		15%	95%
σ	(pb)	7.0 pb	887 pb

For LHC running at $\sqrt{s} = 7$ TeV, the cross section is reduced by a factor of ~ 5 , but it is still a factor 25 larger than the cross section at the Tevatron

Top Quark Decays

BR (t→Wb) ~ 100%

Dilepton channel:

Both W's decay via $W \rightarrow \ell \nu$ ($\ell = e \text{ or } \mu; 4\%$)

Lepton + jet channel:

One W decays via W $\rightarrow \ell \nu$ (ℓ =e or μ ; 30%)

Full hadronic channel:

Both W's decay via W→qq (46%)

Top Pair Branching Fractions

<u>Important experimental signatures</u>: : - Lepton(s)

- Missing transverse momentum
- b-jet(s)

First results on top production from the LHC

Event Selection:

- Lepton trigger
- One identified lepton (e,μ) with $p_T > 20$ GeV
- Missing transverse energy: E_T^{miss} > 35 GeV (significant rejection against QCD events)
- Transverse mass: M_T (I,v) > 25 GeV (lepton from W decay in event)
- One or more jets with p_T > 25 GeV and η < 2.5

Invariant mass distributions in the I-had channel

- Top fractions increase with number of b-tags
- Good description for all jet-multiplicity and b-tag combinations
- Data are consistent with top quark production with mass of 173 GeV

Top-quark production measured in many different decay modes

(i) Di-lepton selection in both ATLAS and CMS (0.7 fb⁻¹ – 1.14 fb⁻¹)

Multiplicity distributions of b-tagged jets (small backgrounds, mainly from Z+jet production)

Top pair production cross section measurements

-likelihood combination of all channels-

$$\sigma = 177 \pm 3 \text{ (stat)} \pm 7 \text{ (syst)} \pm 7 \text{ (lum)} \text{ pb}$$

$$\sigma$$
 = 165.8 ± 2.2 (stat) ± 10.6 (syst) ± 7.8 (lum) μ

- Perturbative QCD calculations (approx. NNLO) describe the data well;
- The two LHC experiments agree within the systematic uncertainties
- Total uncertainty already at the level of ±6%

10.4 Bestimmung der starken Kopplungskonstanten α_s

Summary of measurements of α_s as a function of the respective energy scale Q (from Particle Data Group).

Summary of measurements of α_s (m_Z^2), used as input for the world average value (from Particle Data Group).