Physics at Hadron Colliders
1. Introduction, Particle Accelerators

1.1 Why hadron collider?

1.2 Principles of particle accelerators

1.3 The Large Hadron Collider (LHC) at CERN

1.4 The Tevatron Collider at Fermilab
1.1 Why Hadron Collider?

Key questions investigated in particle physics:

(i) Structure of matter; fundamental constituents

\[\lambda = \frac{h}{p} \]

(ii) Search for new particles, new types of matter

\[E = mc^2 \]

For the investigation of both questions, high energies and thereby particle accelerators are needed
High Energy Particle Accelerators (last 25 years):

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>type, laboratory</th>
<th>energy \sqrt{s}</th>
<th>years of operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP-I</td>
<td>e^+e^- collider, CERN</td>
<td>91 GeV</td>
<td>1989 - 1994</td>
</tr>
<tr>
<td>LEP-II</td>
<td>e^+e^- collider, CERN</td>
<td>209 GeV</td>
<td>1995 - 2000</td>
</tr>
<tr>
<td>HERA-I</td>
<td>ep collider, DESY</td>
<td>27 + 800 GeV</td>
<td>1992 - 2000</td>
</tr>
<tr>
<td>HERA-II</td>
<td>ep collider, DESY</td>
<td>27 + 920 GeV</td>
<td>2002 - 2007</td>
</tr>
<tr>
<td>TeVatron Run I</td>
<td>ppbar collider, Fermilab</td>
<td>1.8 TeV</td>
<td>1987 - 1996</td>
</tr>
<tr>
<td>TeVatron Run II</td>
<td>ppbar collider, Fermilab</td>
<td>1.96 TeV</td>
<td>2002 - 2011</td>
</tr>
<tr>
<td>LHC, Run 1</td>
<td>pp collider, CERN</td>
<td>7 TeV</td>
<td>2010 - 2012</td>
</tr>
<tr>
<td>LHC, Run 2</td>
<td>pp collider, CERN</td>
<td>13 - 14 TeV</td>
<td>2015 - ……</td>
</tr>
</tbody>
</table>
Important parameters of accelerators:

• Beam energy, centre-of-mass energy \sqrt{s}

• Type of particles (ee, ep, or pp) and form of accelerator (circular or linear accelerator)

• Luminosity L, or integrated Luminosity
 (measured in units of cm$^{-2}$ s$^{-1}$)
Why a hadron collider?

e^+e^- colliders are excellent machines for precision physics!!

- e^+e^- are point-like particles, no substructure \rightarrow clean events
- complete annihilation, centre-of-mass system, kinematic fixed
Proton-proton collisions are more complex
Simulation of a pp collision at the LHC: \(\sqrt{s} = 14 \text{ TeV}, \quad L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \)

Reconstruction of particles with high transverse momenta reduces the number of particles drastically (interesting objects kept, background from soft inelastic pp collisions rejected)
Main drawbacks of e⁺e⁻ circular accelerators:

1. Energy loss due to synchrotron radiation
 (basic electrodynamics: accelerated charges radiate, x-ray production via bremsstrahlung, synchrotron radiation…….)

 - Radiated power (synchrotron radiation):
 Ring with radius R and energy E

 - Energy loss per turn:
 (2 GeV at LEP-II)

 - Ratio of the energy loss between protons and electrons:

Future accelerators:
• pp ring accelerators (LHC, using existing LEP tunnel)

• Or e⁺e⁻ linear accelerators, International Linear Collider ILC or CLIC (under study / planning)
Limiting factors:

e^+ e^- accelerators:

- Energy loss is circular rings
- Acceleration gradient in linear accelerators
 (ILC design, 40 MV / m)
- Fixed centre-of-mass energy....

pp accelerators:

- More complex interactions due to proton substructure
- Only part of the pp centre-of-mass energy available in the hard scattering process (see later)
 However: higher mass values can be reached with longer running times

- Limiting factor: Magnetic field in bending magnets
 (8.3 T in LHC magnets)
Accelerators at the energy frontier

Livingston plot

Exponential growth of \sqrt{s} with time
(at least in the past)

Factor 4 every 10 years

pp: discovery machines
(W/Z, top, Higgs,....)

e$^+$e$: precision
(LEP, QCD and el.weak)

Both required!
Today's open questions in particle physics
Key questions of particle physics

1. **Mass**
 - What is the origin of mass?
 - Does the Higgs particle exist?
 - Much progress: discovery of a Higgs boson at the LHC

2. **Unification**
 - Can the interactions be unified?
 - Are there new types of matter, e.g. supersymmetric particles?
 - Are they responsible for the Dark Matter in the universe?

3. **Flavour**
 - Why are there three generations of particles?
 - What is the origin of the matter-antimatter asymmetry (Origin of CP violation)

Answers to some of these questions are expected on the TeV energy scale, i.e. at the LHC
The role of the LHC

1. Explore the TeV mass scale
 - What is the origin of the electroweak symmetry breaking?
 After Higgs boson discovery: is it the Standard Model Higgs boson?
 What are its properties?

 - The search for “low energy” supersymmetry
 Can a link between SUSY and dark matter be established?

 - Other scenarios beyond the Standard Model
 - ……..

Look for the “expected”, but we need to be open for surprises
→ perform as many searches (inclusive, exclusive…) for as many final states as possible

2. Precise tests of the Standard Model
 - There is much sensitivity to physics beyond the Standard Model in the precision area

 - Many Standard Model measurements can be used to test and to tune the detector performance
Predictions for future precision (including LHC), compared to the Standard Model and its Minimal Supersymmetric Extension (MSSM)

Ultimate test of the Standard Model: compare direct prediction of Higgs boson mass with direct observation
many possible theoretical models exist and experimental guidance is needed.
Production Rates and Cross Sections at the LHC

Rates for the design luminosity: $\sqrt{s} = 7$ TeV, $L = 10^{33}$ cm$^{-2}$ s$^{-1}$:

- Inelastic proton-proton collisions: 10^8 / s
- bb pairs: 5×10^5 / s
- tt pairs: 1 / s
- $W \rightarrow e \nu$: 15 / s
- $Z \rightarrow e^+ e^-$: 1.5 / s
- Higgs (150 GeV): 0.02 / s
- Gluino, Squarks (1 TeV): 0.003 / s
1.2 Principles of particle accelerators
Circular accelerator principles

- **Cyclotron:** constant RF
 magnetic field radius ρ increases with energy
 used for smaller machines

- **Synchrotron:** $\rho = \text{const}$
 B increases with energy
 RF frequency adjusted slightly ($\beta = 0.999 \ldots 1.0$)

Most High Energy accelerators and all CERN ring accelerators (PS, SPS, LEP, LHC) are of this type
Basic parameters, Lorentz Force

\[F = q \left(E + \mathbf{v} \times \mathbf{B} \right) \]

charge \(q \), normally \(q = e \); \(q = Z e \) for ions

- Electric field \(\mathbf{E} \) provides the acceleration or rather energy gain
- The magnetic field \(\mathbf{B} \) keeps the particles on their path

\(\rho \) is the radius of curvature for motion perpendicular to the static magnetic field. Often called
- gyromagnetic or Larmor radius in astroparticle physics
- bending radius for accelerators

\(B \rho \) known as magnetic rigidity, units Tm

LHC
- Momentum \(p = 7 \text{ TeV/c} \)
- LHC bending radius \(\rho = 2804 \text{ m} \)
- Bending field \(B = 8.33 \text{ Tesla} \)
- magnets at \(1.9 \text{ K, super-fluid He} \)

Circular motion for
\[\mathbf{E} = 0 \]
\[\mathbf{v} \perp \mathbf{B} \]

\[B = \frac{p}{q \rho} \]

for \(q = e \) numerically
\(B \text{ [T]} = p \text{ [GeV/c]} \ 3.336 \text{ m} / \rho \)
high energy, \(v = c \) “\(p = E \)”
\(E < E_H = q B \rho \) Hillas criterion

Astroparticle
units \(10^{-4} \text{T} = 1 \text{Gauss} \); a.u. \(= 1.5 \times 10^{11} \text{m} \)

Solar system \(B = 10 \mu \text{G} \) \(E = 5 \text{ TeV} \) \(\rho = 11 \text{ a.u.} \)
Intergalactic \(B = 1 \text{nG} \) \(E = 5 \text{ PeV} \) (knee)
\(\rho = 1.7 \times 10^{19} \text{m} \) (4 % of galaxy-radius)
Luminosity and collision rates

Event rate for process with cross section σ

$$\dot{n} = \mathcal{L} \sigma$$

Luminosity from bunch crossings at frequency $f = f_{\text{rev}} n_b$

$$\mathcal{L} = \frac{N_1 N_2 f}{A}$$

for Gaussian bunches with rms sizes $\sigma_x \sigma_y$. $A = 4 \pi \sigma_x \sigma_y$

High luminosity: Large number of particles (N_1, N_2)
Small beam dimensions (A) in the interaction point
Large f (large number of bunches, \rightarrow small time difference between bunch crossings)

LHC:
$N = 1.15 \times 10^{11}$, $n_b = 2808$ (number of bunches)
bunch separation: 25 ns (corresponds to 7.5 m)

A: beams squeezed (using strong, large aperture quadrupoles close to the interaction region) from $\sigma = 0.2$ mm to 16 μm
for $N = N_1 = N_2$ particles per bunch with transverse r.m.s. beam size $\sigma = \sigma_x = \sigma_y$ and frequency f

Accelerator physicist express this often using the transverse emittance ε and the β function:

$$L = f \frac{N_1 N_2}{4\pi \sigma x \sigma y} = f \frac{N^2}{4\pi \sigma^2}$$

where

$$\varepsilon = \pi \sigma^2 / \beta$$

Relative beam sizes around IP1 (Atlas) in collision
Alternate gradient focusing

Quadrupole lens focusing in x, defocusing in y or vice versa

\[F = e (v \times B) \]

here

\[F = e (0, 0, v) \times (B_x, B_y, 0) = e (-v B_y, +v B_x, 0) \]

Combine F D
Defocusing when at small amplitude
Overall focusing

Normal (light) optics:
Focal length of two lenses at distance D
\[1/f = 1/f_1 + 1/f_2 - D/f_1 f_2 \]
is overall focusing with \(1/f = D/f^2 \)
for \(f = f_1 = -f_2 \)

Quad gradients in the LHC
\[K = 1/B_0 \quad \partial B_y/\partial x \approx 200 \text{T/m} \]

alternate gradient focusing

together with bending magnets
FODO lattice

N. C. Christofilos, unpublished manuscript in 1950 and patent
Betatron motion

Equation of motion of particles in a ring (with bending fields) and **quadrupoles** (field gradients $\propto \partial B / \partial r$)

In both transverse planes, here written with x for x, y:

$$x''(s) + k(s) x(s) = 0$$

known as Hill's equation, derived in 1801 to describe planetary motion

Generalised oscillator equation with position dependent, periodic restoring force $k(L+s) = k(s)$ given by the quadrupole gradients (+ the small weakly focusing bending term in the ring plane)

Solution:

$$x(s) = \sqrt{\epsilon \beta(s)} \cos(\mu(s) + \phi)$$

Phase advance

$$\mu(s) = \int_0^s \frac{ds}{\beta(s)}$$

Tune # of betatron oscillations

$$Q = \mu / 2\pi$$

$\beta(s)$ beta function, describes the focusing properties of the magnetic lattice

ϵ invariant, together with $\beta(s)$ amplitude. "single particle emittance"

Motion conveniently described in phase space (x, x') with local slopes or angles $x' = p_x / p$

and linear optics elements as matrices; with simple case for M, applies for IP to IP

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = M \begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix}$$

$$M = \begin{pmatrix} \cos 2\pi Q & \beta \sin 2\pi Q \\ -\frac{1}{\beta} \sin 2\pi Q & \cos 2\pi Q \end{pmatrix}$$

K. Jakobs

Hadron Collider Physics, Freiburg, SS 2015
Transverse beam size and emittance

Consider: beam of many particles on stable orbit and
Simple case: dispersion and slope $\beta' = 0$ by default at IP - relevant for experiments

\[
\begin{align*}
\text{beam size, r.m.s.} & \quad \sigma(s) = \sqrt{\varepsilon \beta(s)} \\
\text{beam divergence, r.m.s.} & \quad \theta(s) = \sqrt{\varepsilon / \beta(s)} \\
\text{product} & \quad \varepsilon = \sigma(s) \theta(s)
\end{align*}
\]

β-function: local machine quantity - focusing of lattice
Emittance ε: beam quantity - the average action related to phase space density or kind of beam temperature

Given by initial conditions (injected beam)
or equilibrium of quantum excitation and damping - 2nd lecture
in ideal machine: x, y, z motion uncoupled, 3 emittances $\varepsilon_x, \varepsilon_y, \varepsilon_z$

IP: squeeze β to a minimum, called β^* \rightarrow maximum of divergence, needs aperture

LHC $\varepsilon_N = \varepsilon \beta y = 3.75 \, \text{µm}$, at top $E_b = 7 \, \text{TeV}$: $\varepsilon = 0.503 \, \text{nm}$, $\beta^* = 0.55 \, \text{m}$, $\sigma^* = 16.63 \, \text{µm}$, $\theta^* = 30 \, \text{µrad}$
The CERN accelerator complex: injectors and transfer
1.3 The Large Hadron Collider (LHC)
Begin of a new era in particle physics
The full LHC accelerator complex

LHC ring is divided into 8 sectors

LHC: Large Hadron Collider
SPS: Super Proton Synchrotron
PS: Proton Synchrotron
PSB: Proton Synchrotron Booster
Linac: Linear Accelerator
LEIR: Low Energy Ion Ring
CNOS: Cern Neutrinos to Gran Sasso

> 50 years of CERN history still alive and operational
The Large Hadron Collider

... became a reality in 2008 after ~15 years of hard work

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>3.5 TeV (2010-2011)</td>
</tr>
<tr>
<td></td>
<td>7.0 TeV (nominal)</td>
</tr>
<tr>
<td>SC Dipoles</td>
<td>1232, 15 m, 8.33T</td>
</tr>
<tr>
<td>Stored Energy</td>
<td>362 MJ/Beam</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>25 ns</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>$1.15 \cdot 10^{11}$</td>
</tr>
<tr>
<td>Design luminosity</td>
<td>$10^{33} - 10^{34}$ cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>Int. luminosity</td>
<td>10 - 100 fb$^{-1}$ / year</td>
</tr>
</tbody>
</table>
LHC Layout

- 8 arcs (sectors)
- 8 long straight sections (700 m long):
 - IR1 to IR8

- 2 separate vacuum chambers
- beams cross in 4 points

IR5: CMS experiment
IR6: Beam dumping system
IR4: Radio frequency acceleration
IR7: Collimation
IR3: Collimation
IR2: ALICE experiment
IR1: ATLAS experiment
IR8: LHC-B experiment
Injection
Important components of the accelerator

- **Superconducting dipole magnets**
 (the largest challenge)
 - Magnetic field of 8.33 Tesla
 - in total 1232, 15 m long
 - Operation temperature of 1.9 K
 (helium cooling)

Magnetic field for dipoles

\[p \text{ (TeV)} = 0.3 \text{ B(T)} \times R \text{(km)} \]

For \(p = 7 \text{ TeV} \) and \(R = 4.3 \text{ km} \)

\[\Rightarrow B = 8.33 \text{ T} \]
\[\Rightarrow \text{Current 12 kA} \]
Important components of the accelerator

- **Superconducting dipole magnets** (the largest challenge)
 - Magnetic field of 8.33 Tesla
 - In total 1232, 15 m long
 - Operation temperature of 1.9 K (helium cooling)

- Eight acceleration structures, Field gradient of 5 MV/m

- Unprecedented complexity
 (in total: ~10,000 magnets powered by 1,700 electrical circuits, large stored energy, complex protection systems)
LHC Accelerator Challenge: Dipole Magnets

LHC magnets are cooled with pressurized superfluid helium

Coldest ring in the Universe? 1.9 K

Two beams in one dipole magnet, 8.33 Tesla
(opposite magnetic dipole fields, protons circulating in opposite directions)
15 m long, mass of 30 tons
A superconducting LHC dipole magnet
Distribution of conductors in the dipole coil
Dipole magnetic flux plot
Sample of superconducting cable
Production of superconducting wires & cables
Manufacturing of superconducting coils
Assembly of dipole cold masses
Descent of the last dipole magnet, 26 April 2007

30'000 km underground transports at a speed of 2 km/h!
The total stored energy of the LHC beams

Nominal LHC design: \(3 \times 10^{14}\) protons accelerated to 7 TeV circulating at 11 kHz in a SC ring

LHC: \(>100\) x higher stored energy and small beam size: \(\sim 3\) orders of magnitude in energy density and damage potential. Active protection (beam loss monitors, interlocks) and collimation for machine and experiments essential. Only the specially designed beam dump can safely absorb this energy.
Beam parameters, LHC compared to LEP

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>LEP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum at collision, TeV/c</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>Nominal design Luminosity, cm⁻²s⁻¹</td>
<td>1.00E+34</td>
<td>1.00E+32</td>
</tr>
<tr>
<td>Dipole field at top energy, T</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Number of bunches, each beam</td>
<td>2808</td>
<td>4</td>
</tr>
<tr>
<td>Particles / bunch</td>
<td>1.15E+11</td>
<td>4.20E+11</td>
</tr>
<tr>
<td>Typical beam size in ring, µm</td>
<td>200-300</td>
<td>1800/140 (H/V)</td>
</tr>
<tr>
<td>Beam size at IP, µm</td>
<td>16</td>
<td>200/3 (H/V)</td>
</tr>
</tbody>
</table>

- Energy stored in the magnet system: 10 GJoule
- Energy stored in one (of 8) dipole circuit: 1.1 GJ
- **Energy stored in one beam:** 362 MJ
- Energy to heat and melt one kg of copper: 0.7 MJ

the LEP2 total stored beam energy was about 0.03 MJ

Kin. energy of Airbus A380, 560t at 700 km/h.
LHC: From first ideas to realisation

1982: First studies for the LHC project
1983: Z discovered at SPS proton antiproton collider
1989: Start of LEP operation ~ 92 GeV, Z-factory
1994: Approval of the LHC by the CERN Council
1996: Final decision to start the LHC construction
1996: LEP2 operation towards ~ 200 GeV, W+W−
2000: End of LEP operation
2002: LEP equipment removed
2003: Start of the LHC installation - infrastructure
2005: Start of Magnet installation in LHC tunnel
2007: Installation complete, starting cooldown
2008: Commissioning with beam and first collisions
Proton-proton collisions at the LHC

Proton–proton:

2808 x 2808 bunches
Separation: 7.5 m (25 ns)

10^{11} protons / bunch

crossing rate of p bunches: 40 Mio / s

Luminosity: $L = 10^{34}$ cm$^{-2}$ s$^{-1}$

$\sim 10^9$ pp collisions / s

(superposition of > 20 pp interactions per crossing: pile-up)

~ 1600 charged particles in the detector

\Rightarrow high particle densities,
 high requirements on detectors
Incident on 19th Sep. 2008, repair, comeback.....

• A resistive zone developed in an electrical bus bar connection
• Electrical arc → punctured the helium enclosure
• Helium release under high pressure
• Relief discs unable to maintain the pressure rise below 0.15 MPa → large pressure forces

• Lot of repair work during 2009
 (14 quadrupole and 39 dipole magnets replaced, electrical interconnections repaired, larger helium pressure release ports installed,.....)

• A very successful re-start in Nov. 2009
LHC re-start in Nov. 2009

Protons, $E_{\text{beam}} = 0.45$ TeV
The first signals in the ATLAS experiment, 20. Nov 2009
Scientists at Cern in Geneva have restarted the Large Hadron Collider (LHC) experiment, which hopes to shed light on the origins of the universe.
Since 30. March 2010: collisions at 7 TeV
(.... first interesting results appeared soon)

- High energy jets (scattered quarks, gluons)
- Energy: ~0.5 TeV
A six-jet event at 7 TeV

6 Jet Event in 7 TeV Collisions
Production of W and Z bosons

- Hochenergetisches Elektron
- Fehlende Energie

W→ev candidate in 7 TeV collisions

\[p_T(e+) = 34 \text{ GeV} \]
\[\eta(e+) = -0.42 \]
\[E_T^{\text{miss}} = 26 \text{ GeV} \]
\[M_T = 57 \text{ GeV} \]
Production of the first top quarks in Europe

\[\text{tt} \rightarrow \text{Wb} \quad \text{Wb} \rightarrow \text{e\nu}b \ \mu\nu b \]

The fragmentation products of b-quarks (B-Hadrons) have a life time of 1.5 ps

= decay distance of \(\sim 2.5 \text{ mm} \)
Data taking in Run 1 (2010 – 2012)

- Excellent LHC performance in 2011 and 2012 (far beyond expectations)
- Peak luminosity seen by ATLAS: $7.7 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (world record, 2012)
- Excellent performance of the experiments in recording the data (efficiency ~93.5%, working detector channels >99%, speed of data analysis,...)

Until end 2012:

- > 10^{15} pp collisions
- ~10^{10} pp collisions recorded
- $25 \cdot 10^6 Z \rightarrow \mu\mu$ decays produced
• High efficiencies of the ATLAS and CMS experiments to collect and analyze the data
$Z \rightarrow \mu^+ \mu^-$ with 20 superimposed events
The Standard Model at the LHC

ATLÁS Preliminary

July 2012

LHC pp $\sqrt{s} = 7$ TeV
- Theory
- Data 2010 ($L = 35$ pb$^{-1}$)
- Data 2011 ($L = 1.0 - 4.7$ fb$^{-1}$)

LHC pp $\sqrt{s} = 8$ TeV
- Theory
- Data 2012 ($L = 5.8$ fb$^{-1}$)

$H \rightarrow ZZ$ (0.5 pb)

H (20 pb)
Discovery of the Higgs particle
Higgs-Teilchen offenbar entdeckt
From the editorial:

The top Breakthrough of the Year – the discovery of the Higgs boson – was an unusually easy choice, representing both a triumph of the human intellect and the culmination of decades of work by many thousands of physicists and engineers.
Decay observed into particles with same spin and electric charge sum = 0 → a new neutral boson has been discovered
Constraints on the Higgs boson mass (before LHC)

- $m_H > 114.4 \text{ GeV/c}^2$ from direct searches at LEP
- $m_H < 156 \text{ GeV/c}^2$ or $m_H > 177 \text{ GeV/c}^2$ from direct searches at the Tevatron

Indirect constraints from precision measurements (quantum corrections)

$m_H = 92^{+34}_{-26} \text{ GeV/c}^2$

$m_H < 161 \text{ GeV/c}^2$ (95% C.L.)
Constraints on the Higgs boson mass (before LHC)

- $m_H > 114.4 \text{ GeV/c}^2$ from direct searches at LEP
- $m_H < 156 \text{ GeV/c}^2$ or $m_H > 177 \text{ GeV/c}^2$ from direct searches at the Tevatron

February 2012

Indirect constraints from precision measurements (quantum corrections)
1.4 The Fermilab Tevatron collider
The Tevatron Collider at Fermilab

• Proton antiproton collider
 - 6.5 km circumference
 - Beam energy 0.98 TeV, \(\sqrt{s} = 1.96 \) TeV
 - 36 bunches, 396 ns separation (time between crossings)

• 2 Experiments: CDF and DØ

• Main challenges:
 - Antiproton production and storage
 → luminosity, stability of operation

Collider is running in so called Run II (since 2001)
[Run I from 1990 – 1996, int. luminosity: 0.125 fb\(^{-1}\), Top quark discovery]

• March 2001 – Feb 2006: Run II a, \(\int L \, dt = 1.2 \) fb\(^{-1}\)
• July 2006 - 2011: Run II b, \(\int L \, dt = 10 - 12 \) fb\(^{-1}\)
Tevatron performance

Peak luminosities of the machine as a function of time

- Peak luminosity of $4 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- Corresponds to ~ 10 interactions per bunch crossing
 (superposition of minimum bias events on hard collision)
The integrated Tevatron luminosity (until April 2011)

• After a slow start-up (2001 – 2003), the Tevatron accelerator has reached an excellent performance
• Today, Tevatron delivers a data set equal to Run I (~100 pb\(^{-1}\)) every 2 weeks
• Integrated luminosity delivered to the experiments so far ~ 10.8 fb\(^{-1}\)
• Anticipate an int. luminosity of ~12 fb\(^{-1}\) until end of 2011.

Data corresponding to an int. luminosity of up to ~8 fb\(^{-1}\) analyzed…
Challenges with high luminosity

Min. bias pileup at the Tevatron, at $0.6 \cdot 10^{32} \text{ cm}^2\text{s}^{-1}$... and at $2.4 \cdot 10^{32} \text{ cm}^2\text{s}^{-1}$

Average number of interactions:

LHC: initial “low” luminosity run

$(L=2 \cdot 10^{33} \text{ cm}^2\text{s}^{-1})$: $<N>=3.5$

TeV: $(L=3 \cdot 10^{32} \text{ cm}^2\text{s}^{-1})$: $<N>=10$
Comparison of the LHC and Tevatron machine parameters

<table>
<thead>
<tr>
<th></th>
<th>LHC (design)</th>
<th>Tevatron (achieved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre-of-mass energy</td>
<td>14 TeV</td>
<td>1.96 TeV</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>2808</td>
<td>36</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>25 ns</td>
<td>396 ns</td>
</tr>
<tr>
<td>Energy stored in beam</td>
<td>360 MJ</td>
<td>1 MJ</td>
</tr>
<tr>
<td>Peak Luminosity</td>
<td>10^{33}-10^{34} cm$^{-2}$s$^{-1}$</td>
<td>$3.5 	imes 10^{32}$ cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>Integrated Luminosity / year</td>
<td>10-100 fb$^{-1}$</td>
<td>~ 2 fb$^{-1}$</td>
</tr>
</tbody>
</table>

- 7 times more energy (after initial 3.5 TeV phase)
- Factor 3-30 times more luminosity
- Physics cross sections factor 10-100 larger