6.6 Vertexing and impact parameter measurement

An example of a fully reconstructed B-meson decay in the ALEPH experiment

Track measurements with a precision of a few µm near the interaction point improve the momentum measurement and allow to determine the decay vertex. This is especially important for B-hadrons

(typical lifetime of about 1.5 ps)
The life time of B-mesons can be measured from the decay length L, if the momentum of the B-meson (γ-factor) is measured as well.
Impact parameter measurement

The innermost silicon detector must provide the required b-tagging efficiency.

Good vertex resolution is achieved by placing the innermost (B) layer close to the beam pipe, and the next layer farer to it (lever arm), and by an excellent B-layer resolution.

Small multiple scattering term: $\sigma_{MS} \sim \frac{1}{p} \sqrt{x/X_0}$

Expected transverse IP resolution $\sim 13 \mu m$ for 100 GeV track.

Decay length significance

$R_{q\text{-light}} \sim 600$ for $\varepsilon_b = 0.5$
Estimation of the impact parameter resolution (2-point approximation):

\[\sigma_b = \frac{r_2}{r_2 - r_1} \]

\[\sigma_1 = 0 \]

\[\sigma_2 = 0 \]

\[\sigma_1 > 0 \]

\[\sigma_2 > 0 \]

\[\sigma^2 = \left(\frac{r_1}{r_2 - r_1} \sigma_2 \right)^2 + \left(\frac{r_2}{r_2 - r_1} \sigma_1 \right)^2 + \sigma_{MS}^2 \]

\[\sigma_{MS} \sim \frac{1}{p} \sqrt{\frac{x}{X_0}} \]
More general case of N measurement points:

- N points,
- precision σ_{mess} at each point

To optimize the impact parameter resolution:
- High precision measurement, small σ_{mess}
- Large lever arm (L)
- Place first detector plane as close as possible to the interaction point \Rightarrow small x
- Gain with number of layers, however, only $\sim 1/\sqrt{N}$

\Rightarrow Silicon strip and pixel detectors are essential!
Example: ATLAS pixel detector *

\[N = 3, \quad \sigma = 10 \mu m, \]
\[x_1 = 4.7 \text{ cm}, \quad x_2 = 9.1 \text{ cm}, \quad x_3 = 13.5 \text{ cm} \]
\[L = 8.8 \text{ cm}, \quad r = x_2/L = 1.03 \]
\[\sqrt{1 + \frac{12(N-1)}{(N+1)} r^2} = 2.65 \]

Impact parameter resolution

\[\sigma_{d_0} = 15.7 \mu m \quad \text{(linear, i.e. no field)} \]
\[\sigma_{d_0} = 45.5 \mu m \quad \text{(extrapolation with B-field)} \]

Note

- if curvature is used for extrapolation with N=3 the error on \(d_0 \) gets larger by a factor \(\sim 2.9 \).
- however, curvature is measured by the entire inner detector => error on \(d_0 \) similar to linear case

* from N. Wermes, Lectures at BND School 2015
Impact parameter resolution, including multiple scattering *)

- For **low momentum** tracks the momentum resolution and the impact parameter resolution are **dominated by multiple scattering**.
- The amount of **material** actually traversed by the particles depends on the polar angle:
 \[
 \frac{x}{\sin \theta}
 \]
- The momentum resolution tends to:
 \[
 \frac{\sigma_p}{p^2} \rightarrow k_p \frac{\sqrt{x/X_0}}{p\sqrt{\sin \theta}}
 \]
- The impact parameter resolution tends to:
 \[
 \sigma_{d_0} \rightarrow k_{d_0} \frac{\sqrt{x/X_0}}{p\sqrt{\sin \theta}}
 \]
- Since the MS error and the point measurement error are **independent of each other**, the total error is the sum in quadrature of the 2 terms with and w/o MS.
- For the **ATLAS** detector Monte Carlo studies have shown that the resolutions on momentum and impact parameter can be parametrized as:
 \[
 \frac{\sigma_{p_T}}{p_T^2} = 0.00036 \oplus \frac{0.013}{p_T \sqrt{\sin \theta}} \text{(GeV)}^{-1}
 \]
 \[
 \text{or}
 \]
 \[
 \frac{\sigma_{p_T}}{p_T} = 0.04\% p_T \oplus \frac{1.3\%}{\sqrt{\sin \theta}} \text{(GeV)}^{-1}
 \]
 \[
 \sigma_{ip} = \begin{cases}
 11 \mu m & \frac{73 \mu m}{p_T \sqrt{\sin \theta}}
 \end{cases}
 \]

* from N. Wermes, Lectures at BND School 2015
6.7 The ATLAS and CMS Central Tracking Detectors
The ATLAS Inner Detector (one end-cap)
The ATLAS Inner Detector

![Diagram of the ATLAS Inner Detector]

<table>
<thead>
<tr>
<th></th>
<th>R- ϕ accuracy</th>
<th>R or z accuracy</th>
<th># channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>10 μm</td>
<td>115 μm</td>
<td>80.4M</td>
</tr>
<tr>
<td>SCT</td>
<td>17 μm</td>
<td>580 μm</td>
<td>6.3M</td>
</tr>
<tr>
<td>TRT</td>
<td>130 μm</td>
<td></td>
<td>351k</td>
</tr>
</tbody>
</table>

$\sigma/p_T \sim 0.05\% \ p_T \oplus 1\%$
Example: ATLAS Si-Tracker SCT

4 cylindrical barrels with 2112 modules

Endcaps: 1976 modules on 2.9 disks

Only Silicon shown

5.6m x 1.04m