8. Physics of the Higgs Boson

- 8.1 The Higgs boson in the Standard Model
- 8.2 Properties of the Higgs boson
- 8.3 Higgs boson production at hadron colliders
- 8.4 The search for the Higgs boson at the Tevatron
- 8.5 Status and prospects for Higgs boson searches at the LHC

8.1 The Higgs boson in the Standard Model

(a brief summary, for more details, see lecture notes)

The structure of the Standard Model

Local gauge invariance

Fundamental principle: Prototype:

Free Dirac equation:

Lagrangian formalism:

 $i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$ $L = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi$

Quantum Electrodynamics (QED)

Local gauge transformation:

$$\psi(x) \to e^{i\alpha(x)}\psi(x)$$

(derivative: $\partial_{\mu}\psi \rightarrow e^{i\alpha(x)}\partial_{\mu}\psi + ie^{i\alpha(x)}\psi\partial_{\mu}\alpha$, $\delta_{\mu}\alpha$ term breaks the invariance of L)

Invariance of L under local gauge transformations can be accomplished by introducing a gauge field A_u , which transforms as:

$$A_{\mu} \rightarrow A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$
 where $e = g_e/4\pi = \text{coupling strength}$

Can be formally achieved by the construction of a "modified" derivative

 $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ieA_{\mu}$ (covariant derivative)

\rightarrow Lagrangian of QED:

$$L = i \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \overline{\psi} \psi + e \overline{\psi} \gamma^{\mu} A_{\mu} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

interaction term

where $F_{\mu\nu}$ is the usual field strength tensor:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Note:

(i) Imposing local gauge invariance leads to the interacting field theory of QED (ii) A mass term ($\frac{1}{2}m^2A_{\mu}A^{\mu}$) for the gauge field A_{μ} would violate gauge invariance

Similar for the Standard Model interactions:

Quantum Chromodynamics (QCD):

SU(3) transformations, 8 gauge fields,
8 massless gluons, Gluon self-coupling
- T_a (a = 1,...,8) generators of the SU(3) group (independent traceless 3x3 matrices)

- G_{μ} gluon fields

- g = coupling constant

$$D_{\mu} = \partial_{\mu} + igT_{a}G_{\mu}^{a}$$
$$G_{\mu}^{a} \rightarrow G_{\mu}^{a} - \frac{1}{g}\partial_{\mu}\alpha_{a} - f_{abc}\alpha_{b}G_{\mu}^{c}$$

Electroweak Interaction (Glashow, Salam, Weinberg): SU(2)_L x U(1)_Y transformations, 4 gauge fields, $(W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3}, B_{\mu})$

Physical states:

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{1} \mp i W_{\mu}^{2} \right)$$
$$Z_{\mu} = -\sin \theta_{W} B_{\mu} + \cos \theta_{W} W_{\mu}^{3}$$
$$A_{\mu} = \cos \theta_{W} B_{\mu} + \sin \theta_{W} W_{\mu}^{3}$$

Problems at that stage:

• Masses of the vector bosons W and Z:

Experimental results: $M_W = 80.399 \pm 0.023$ GeV / c² $M_Z = 91.1875 \pm 0.0021$ GeV / c²

A local gauge invariant theory requires massless gauge fields

• Divergences in the theory

(scattering of W bosons)

 $-iM(W^+W^- \rightarrow W^+W^-) \sim \frac{s}{M_W^2}$ for $s \rightarrow \infty$

Solution to both problems:

- create mass via spontaneous breaking of electroweak symmetry
- introduce a scalar particle that regulates the WW scattering amplitude

→ Higgs Mechanism

The Higgs mechanism

Spontaneous breaking of the SU(2) x U(1) gauge symmetry

Scalar fields are introduced

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
$$V(\phi) = \mu^2(\phi^*\phi) + \lambda(\phi^*\phi)^2$$

Lagrangian for the scalar fields:
 g, g' = SU(2), U(1) gauge couplings

Potential:

$$L_2 = \left| \left(i \partial_{\mu} - g \mathbf{T} \cdot \mathbf{W}_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^2 - V(\phi)$$

• For $\mu^2 < 0$, $\lambda > 0$, minimum of potential:

$$\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2$$
 $v^2 = -\mu^2 / \lambda$

$$\phi_0(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \Rightarrow$$

Particle content and masses

- Mass terms for the W[±] bosons:

$$M_{W^{\pm}} = \frac{1}{2}vg$$

- Remaining terms off-diagonal in W_{μ}^{3} and B_{μ} :

$$\frac{1}{8}v^{2}(W_{\mu}^{3}, B_{\mu})\begin{pmatrix}g^{2} & -gg'\\-gg' & g'^{2}\end{pmatrix}\begin{pmatrix}W^{3\mu}\\B^{\mu}\end{pmatrix} = \frac{1}{8}v^{2}\left[gW_{\mu}^{3} - g'B_{\mu}\right]^{2} + 0\left[g'W_{\mu}^{3} + gB_{\mu}\right]^{2}$$

- Massless photon: $A_{\mu} = \frac{g' W_{\mu}^3 + g B_{\mu}}{\sqrt{g^2 + {g'}^2}} \quad with \quad M_A = 0$

- Massive neutral vector boson:
$$Z_{\mu} = \frac{gW_{\mu}^3 - g'B_{\mu}}{\sqrt{g^2 + {g'}^2}}$$
 with $M_Z = \frac{1}{2}v\sqrt{g^2 + {g'}^2}$

Masses of the gauge bosons:

$$\begin{split} & \left| \left(-ig\frac{\tau}{2} \cdot \mathbf{w}_{\mu} - i\frac{g'}{2}B \right) \phi \right|^{2} \\ &= \frac{1}{8} \left| \left(\begin{array}{c} gW_{\mu}^{3} + g'B_{\mu} & g(W_{\mu}^{1} - iW_{\mu}^{2}) \\ g(W_{\mu}^{1} + iW_{\mu}^{2}) & -gW_{\mu}^{3} + g'B_{\mu} \end{array} \right) \left(\begin{array}{c} 0 \\ v \end{array} \right) \right|^{2} \\ &= \frac{1}{8} v^{2}g^{2} \left[(W_{\mu}^{1})^{2} + (W_{\mu}^{2})^{2} \right] + \frac{1}{8} v^{2} (g'B_{\mu} - gW_{\mu}^{3}) (g'B^{\mu} - gW^{3\mu} \\ &= \left(\frac{1}{2} vg \right)^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{8} v^{2} (W_{\mu}^{3}, B_{\mu}) \left(\begin{array}{c} g^{2} & -gg' \\ -gg' & g'^{2} \end{array} \right) \left(\begin{array}{c} W^{3\mu} \\ B^{\mu} \end{array} \right) \end{split}$$

Important relations in the Glashow-Salam-Weinberg model:

• Relation between the gauge couplings:

 \rightarrow Important prediction of the GSW with a Higgs doublet:

a Higgs doublet: $\frac{M_W}{M_Z} = \cos \theta_W$

or expressed in terms of the ρ parameter:

$$\frac{1}{2v^2} = \frac{g^2}{8M_W^2} = \frac{G_F}{\sqrt{2}} \qquad \Rightarrow \quad v = 246 \; GeV$$

where $G_F = Fermi$ constant, know from low energy experiments (muon decay)

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

$$\frac{g'}{g} = \tan \theta_W$$

Masses of the Fermions:

 The same Higgs doublet which generates W[±] and Z masses is sufficient to give masses to the fermions (leptons and quarks):
 e.g. for electrons: use an arbitrary coupling G_e

$$L_{3} = -G_{e}\left[(\overline{\nu}_{e}, \overline{e})_{L} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} e_{R} + \overline{e}_{R}(\phi^{-}, \overline{\phi}^{0}) \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L} \right]$$

• Spontaneous symmetry breaking:

$$L_3 = -\frac{G_e v}{\sqrt{2}} (\overline{e}_L e_R + \overline{e}_R e_L) - \frac{G_e}{\sqrt{2}} (\overline{e}_L e_R + \overline{e}_R e_L)h$$

mass term

interaction term with the Higgs field

• Important relation: coupling of the Higgs boson to fermions is proportional to their mass

$$\phi = \sqrt{\frac{1}{2}} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}$$

and finally..... a massive scalar with self-coupling, the **Higgs boson**:

• Mass:
$$m_h^2 = 2v^2 \lambda$$

(since λ is not predicted by theory, the mass of the Higgs boson is unknown)

• Self-coupling:
$$-\lambda vh^3 - \frac{1}{4}\lambda h^4$$

..... and:

• The additional diagram, with Higgs boson exchange, regulates the divergences in the longitudinal WW scattering

The Higgs boson as a UV regulator

Scattering of longitudinally polarized W bosons

$$-iM(W^+W^- \rightarrow W^+W^-) \sim \frac{s}{m_W^2} \quad \text{for} \quad s \rightarrow \infty$$

Higgs boson guarantees unitarity (if its mass is < ~1 TeV)

 $-iM(W^+W^- \rightarrow W^+W^-) \sim m_H^2$ for $s \rightarrow \infty$

8.2 Higgs boson properties

Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

$\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2\pi}} m_f^2 (M_H^2) M_H$
$\Gamma(H \rightarrow VV) = \delta_V \frac{G_F}{16\sqrt{2\pi}} M_H^3 (1 - 4x + 12x^2) \beta_V$
where: $\delta_z = 1$, $\delta_w = 2$, $x = M_v^2 / M_v^2$, β = velocity
(+ W-loop contributions)
$\Gamma(H \to gg) = \frac{G_F \alpha_a^2 (M_H^2)}{36\sqrt{2\pi^3}} M_H^3 \left[1 + \left(\frac{95}{4} - \frac{7N_f}{6}\right) \frac{\alpha_a}{\pi} \right]$
$\Gamma(H \rightarrow \gamma \gamma) = \frac{G_F \alpha_a^2}{128\sqrt{2\pi^3}} M_H^3 \left[\frac{4}{3}N_C e_t^2 - 7\right]^2$

Total width

Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

Constraints on the Higgs boson mass

- 1. Constraints from theory
- 2. Indirect limits from electroweak precision data (theory and experiment)
- 3. Limits from Direct Searches (LEP, Tevatron)

(i) Theory Constraints on the Higgs boson mass

• Unitarity limit:

If Higgs boson too heavy, the regulation of the WW cross section is less effective and unitarity is violated again

 \rightarrow m_H < ~1 TeV (as just discussed)

- Stricter limits from the energy dependence of the Higgs boson self coupling λ
 - Stability of the vacuum
 - Diverging coupling $\lambda(Q^2)$
 - \rightarrow next slides

Tighter Higgs mass constraints:

Stronger bounds on the Higgs-boson mass result from the energy dependence of the Higgs coupling λ (Q²) (if the Standard Model is assumed to be valid up to some scale Λ)

$$\lambda(Q^2) = \lambda_0 \left\{ 1 + \frac{3\lambda_0}{2\pi^2} \log\left(2\frac{Q^2}{v^2}\right) + \dots - \frac{3g_t^4}{32\pi^2} \log\left(2\frac{Q^2}{v^2}\right) + \dots \right\} \quad \text{where} \quad \lambda_0 = \frac{m_h^2}{v^2}$$

Upper bound: Lower bound:

diverging coupling (Landau Pole) stability of the vacuum (negative contribution from top quark dominates)

Mass bounds depend on scale Λ up to which the Standard Model should be valid

(ii) Indirect limits from electroweak precision data (m_w and m_t)

Motivation:

W mass and top quark mass are fundamental parameters of the Standard Model; The standard theory provides well defined relations between m_W , m_t and m_H

Electromagnetic constant measured in atomic transitions,

e⁺e⁻ machines, etc.

Fit in the constrained MSSM O. Buchmüller et al. (2010)

Results of the precision el.weak measurements: (LEWWG-2009):

$$m_H = 87^{+35}_{-26} \ GeV$$

$$m_H = 108^{+6}_{-6} GeV$$

(iii) Constraints from

direct searches at LEP

Higgs bosons searches at LEP

Higgs decay branching ratios for $m_{H}=115 \text{ GeV/c}^2$: BR (H \rightarrow bb) = 74%, BR (H \rightarrow $\tau\tau$, WW, gg) = 7% each, BR(H \rightarrow cc) = 4%

Decay modes searched for:

- $HZ \rightarrow bb qq$ - Four Jet channel:
- Missing energy channel: $\rightarrow bb vv$
- \rightarrow bb ee, bb $\mu\mu$ - Leptonic channel:
- Tau channels:

 \rightarrow bb $\tau\tau$, and $\tau\tau$ qq

Results of the final LEP analysis:

Final results have been published: CERN-EP / 2003-011:

Based on final calibrations of the detectors, LEP-beam energies, final Monte Carlo simulations and analysis procedures.

The reconstructed bb mass for two levels of signal purity (loose and tight cuts):

Clear peak in the background prediction in the vicinity of m_Z due to the $e^+e^- \rightarrow ZZ$ background, which is consistent with the data.

Final combined LEP result

Likelihood ratio	$Q := L_{S+B} / L_{E}$
Test statistics:	- 2 ln Q

	$1 - CL_b$	$\mathrm{CL}_{\mathbf{s}+\mathbf{b}}$
LEP	0.09	0.15
ALEPH	3.3×10^{-3}	0.87
DELPHI	0.79	0.03
L3	0.33	0.30
OPAL	0.50	0.14
Four-jet	0.05	0.44
All but four-jet	0.37	0.10

$$1- CL_B = 0.09 \quad \leftrightarrow$$

Signal significance = 1.7 σ

$M_{\rm H} > 114.4 \ GeV/c^2$ (95% CL)

expected mass limit: 115.3 GeV/c² (sensitivity)

8.3 Higgs boson production at Hadron Colliders

Higgs Boson production processes at Hadron Colliders

Gluon Fusion

Vector boson fusion

Relative importance of the various processes is different at the LHC and at the Tevatron

tt associated production

WH/ZH associated production

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

Production cross sections at the Tevatron

J. Baglio, A. Djouadi, arXiv:1003.4266

 $qq \rightarrow W/Z + H$ cross sections $gg \rightarrow H$

~10 x larger at the LHC (\sqrt{s} = 14 TeV) ~70-80 x larger at the LHC (\sqrt{s} = 14 TeV)

Gluon fusion:

- Dominant production mode
- Sensitive to heavy particle spectrum ...
 (e.g. 4th generation quarks)
 ...and the corresponding Yukawa couplings
 (important for coupling measurements, top Yukawa coupling)
- Large K-factors (NLO, NNLO corrections)
 - Difficult to calculate, loop already at leading order (calculation with infinite top mass is used as an approximation, however, this seems to be a good approximation)
 - Nicely converging perturbative series

Higher order corrections:

- Anastasiou, Melnikov (2002)
- Ravindran, Smith, van Neerven (2003)

Independent variation of renormalization and factorization scales (with 0.5 m_H < μ_F , μ_R < 2 m_H)

Vector boson fusion:

- Second largest production mode, Distinctive signature (forward jets, little jet activity in the central region)
- Sensitivity to W/Z couplings
- Moderate K-factors (NLO corrections)

Both NLO QCD and el.weak have been calculated

 Effective K-factor depends on experimental cuts

Example: typical VBF cuts $P_T(jet) > 20 \text{ GeV}$ $\eta < 4.5, \Delta \eta > 4, \eta_1 \cdot \eta_2 < 0$

Ciccolini, Denner, Dittmaier (2008)

WH / ZH associated production:

- Weak at the LHC, Relatively stronger at the Tevatron
- Allows for a Higgs-decay-independent trigger
 W → Iv, Z → II
- Sensitivity to W/Z couplings
- Moderate K-factors (NLO corrections)

Both NLO QCD and el.weak corrections available

Brein, Djouadi, Harlander, (2003) Han, Willenbrock (1990) Ciccolini, Dittmaier, Krämer (2003)

ttH associated production:

- Weak and difficult at the LHC
- Sensitivity to top-Yukawa coupling
- Moderate K-factors (NLO corrections)

NLO QCD corrections available, scale uncertainty drastically reduced

scale: $\mu_0 = m_t + m_H/2$ LHC: K ~ 1.2 Tevatron: K ~ 0.8

Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas (2001) Dawson, Reina, Wackeroth, Orr, Jackson (2001, 2003)

8.4 The Search for the Higgs Boson at the Tevatron

Useful Higgs Boson Decays at Hadron Colliders

at high mass: Lepton final states (via H → WW , ZZ)

at low mass: Lepton and Photon final states (via $H \rightarrow WW^*$, ZZ*)

Tau final states

The dominant **bb decay mode** is only useable in the associated production mode (ttH, W/Z H)

(due to the huge QCD jet background, leptons from W/Z or tt decays)

Searches for a low mass Higgs boson at the Tevatron

тн < 135 GeV:

Associated production WH and ZH with $H \rightarrow bb$ decay

Main low mass search channels

 $\ell + E_T^{miss} + bb: WH \rightarrow \ell \nu bb$ Largest VH production cross section, however, severe backgrounds

ll+bb: ZH → llbbLess background than WH Smallest Higgs signal

 E_T^{miss} + bb: $ZH \rightarrow \nu\nu bb$ 3x more signal than $ZH \rightarrow \ell\ell bb$ (+ $WH \rightarrow \ell\nu bb$ when lepton non-identified) Large backgrounds which are difficult to handle

Number of produced events (incl. decays) per 1 fb⁻¹

<u>WH (H \rightarrow bb) Signal, m_H = 115 GeV:</u> $\sigma \times BR = 14 \text{ fb}$ (per lepton)

Large backgrounds: W+jet productio

W+bb: σ×BR = 4×10⁴ fb W+cc: σ×BR = 1×10⁵ fb W+qq: σ×BR = 2×10⁶ fb

Additional backgrounds:

WW: $\sigma \times BR = 13 \text{ pb}$ tt: $\sigma \times BR = 7 \text{ pb}$ single top: $\sigma \times BR = 3 \text{ pb}$

+ multijet QCD background

General Search Strategy

- (i) Select events consistent with Z/W + 2 jets
 (large W+jet and Z+jet backgrounds)
- (ii) Apply b-tagging (most discriminating variable: dijet inv. mass)
 - even after b-tagging S:B ratio remains small, → needs advanced (multivariate) analysis tools
- (iii) Optimize separation power by multivariate discrimination (neutral networks, matrix elements,)
 - Major input variables:
 - dijet mass
 - P_T of the dijet system
 - $P_T of W/Z$
 - Sphericity
 - ΔR_{jj} , $\Delta \phi_{jj}$, $\Delta \eta_{jj}$

Example: $WH \rightarrow \ell_V bb$

DØ: WH \rightarrow Iv bb (I=e, μ) neural net

Sensitivity in the low mass region

- \cdot Limits for individual channels a factor of 5-10 away from SM cross section at $m_{\rm H}$ = 115 GeV
- $\cdot \rightarrow$ The combination of all contributing channels is crucial

Excluded cross section: (95% C.L., m _H = 115 GeV)				
D0:	$ σ_{95} = 6.9 \cdot \sigma_{SM} $			
CDF:	$ σ_{95} = 4.3 \cdot \sigma_{SM} $			

- Main systematic uncertainties for low mass channels:
 - Signal (total 15%): cross section, b-tagging, ID efficiencies
 - Background (total 25-30%): normalization of W/Z+jets heavy flavour samples, modelling of the multijet and W/Z+jet backgrounds, b-tagging

Searches for a high mass Higgs boson at the Tevatron

$$m_{H} > 135 \text{ GeV};$$

$$gg \rightarrow H \rightarrow WW \rightarrow \ell_{V} \ell_{V}$$

Number of produced events (incl. decays) per 1 fb⁻¹

 $gg \rightarrow H \rightarrow WW \rightarrow ||_{VV}$) Signal, m_H = 160 GeV σ×BR = 40 fb Associated WH and qqH production increase signal by ~30%

Significant di-boson backgrounds:

<u>Di-Boson</u> WW: $\sigma \times BR = 13 \text{ pb}$ WZ: $\sigma \times BR = 4.0 \text{ pb}$ ZZ: $\sigma \times BR = 1.5 \text{ pb}$

Additional backgrounds:

tt: $\sigma \times BR = 7 \text{ pb}$ single top: $\sigma \times BR = 3 \text{ pb}$

+ multijet QCD background

$H \rightarrow \ell^+ \ell^- \nu \nu$

- Dominant decay for $m_H > 135 \text{ GeV}$: $H \rightarrow W^*W$
- Leptons in final state
 - \rightarrow exploitation of gg \rightarrow H is possible
- Signal contribution also from W/Z+H and qqH production
 - \rightarrow Consider all sources of opposite sign di-lepton + E_T^{miss}

Split analysis in ee, $\mu\mu$, and $e\mu$ final states

- Backgrounds: Drell-Yan, dibosons, tt, W+jet, multijet production

 $H \rightarrow \ell^+ \ell^- \nu \nu$

To increase sensitivity:

DØ: Split the samples according to lepton flavour and combines the result

CDF: Split samples into jet multiplicity and lepton ID criteria: different signal and background composition

Veto events with tight b-tagged jet

Combined Tevatron limits

Tevatron experiments set a 95% CL exclusion of a SM Higgs boson in the mass region 158–173 GeV (first direct exclusion since LEP)

At $m_H = 115 \text{ GeV}$ Expected limit: 1.8 x σ_{SM}

Observed limit: 2.7 x σ_{SM}

Systematic uncertainties

Analyses are affected by significant systematic uncertainties; Example: The two most significant DØ analyses:

Source	$WH \rightarrow e\nu b\bar{b}$	Source	$H \rightarrow W^+ W^-$
Luminosity	6.1	Luminosity	6.1
Normalization	-	Jet Energy Scale	3.0
Jet Energy Scale	3.0	Jet ID	1-2
Jet ID	5.0	Tau Energy Scale/ID	-
Jet Triggers	-	Electron ID/Trigger	3-10
Electron ID/Trigger	4.0	Muon ID/Trigger	7.7-10
Muon ID/Trigger	-	b-Jet Tagging	-
b-Jet Tagging	3-9	Background σ	7-10
Background σ	7-20	Signal σ	11
Multijet	14	Multijet	2-20
Shape-Dependent Bkgd Modeling	2-10	Shape-Dependent Bkgd Modeling	5-20

- Systematic uncertainties for background rates are generally several times larger than the signal expectation itself
- To minimize the degrading effect of systematic uncertainties on the search sensitivity, the individual background contributions are fitted to the data observation by maximizing a likelihood function Nuisance parameters allow for variations within errors

• Each systematic uncertainty (incl. uncertainty on signal cross section) is folded into the signal and background expectation via Gaussian distributions (correlations preserved)