
- **10. Other Extensions of the Standard Model**
- 10.1 Introduction to Grand Unified Theories
- 10.2 Leptoquarks
- 10.3 Additional Gauge bosons, W' and Z' searches
- 10.4 Extra Space dimensions

10.1 Introduction to Grand Unified Theories (GUT)

- The SU(3) x SU(2) x U(1) gauge theory is in impressive agreement with experiment.
- However, there are still three gauge couplings (g, g', and $\alpha_{\rm s})$ and the strong interaction is not unified with the electroweak interaction
- Is a unification possible ?

Is there a larger gauge group G, which contains the SU(3) x SU(2) x U(1) ? Gauge transformations in G would then relate the electroweak couplings g and g' to the strong coupling α_s .

For energy scales beyond M_{GUT} , all interactions would then be described by a grand unified gauge theory (GUT) with a single coupling g_G , to which the other couplings are related in a specific way.

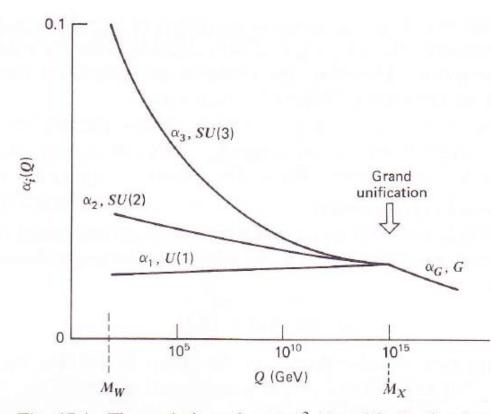


Fig. 15.4 The variation of $\alpha_i \equiv g_i^2/4\pi$ with Q, showing the speculative grand unification of strong $[SU(3)_{color}]$ and electroweak $[SU(2)_L \times U(1)_Y]$ interactions at very short distances $1/Q \approx 1/M_X$.

- Gauge couplings are energy-dependent, g₂ and g₃ are asymptotically free, i.e. their value decreases with energy, g₁ increases with energy
- Figure suggests that for some large energy scale Q = MX the three couplings merge into a single grand unified coupling g_G

for $Q > M_X$: $g_i(Q) = g_G(Q)$

- Assuming that there exists unification, the known / measured values of the coupling constants at low energy, i.e. at an energy scale m, can be used to estimate the Grand Unification Mass scale M_x
- The energy dependence of the three couplings is theoretically known, from the renormalization group equations.

Example: running of the strong coupling constant α_s :

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \frac{\alpha_s(\mu^2)}{12\pi} (33 - 2n_f) \log(Q^2/\mu^2)}$$

This can be written in the form:

$$\frac{1}{g_3^2(\mu)} = \frac{1}{g_3^2(Q)} + 2b_3\log\frac{Q}{\mu},$$

where:

$$\alpha_s(Q) = \frac{g_3^2(Q)}{4\pi}$$

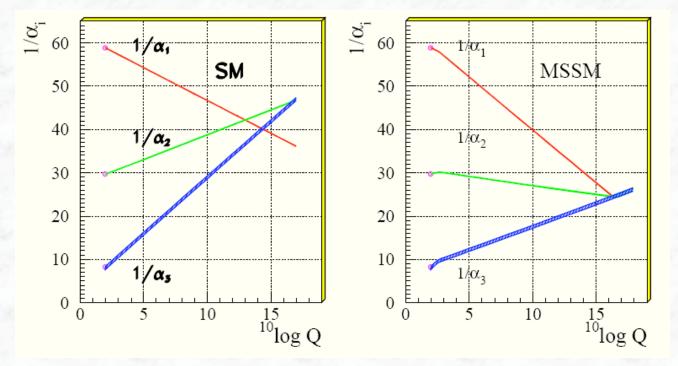
and

$$b_3 = \frac{1}{(4\pi)^2} \left(\frac{2}{3}n_f - 11\right)$$

• For $Q = M_X$ and $g_3 = g_G$ follows (i = 3) :

$$\frac{1}{g_i^2(\mu)} = \frac{1}{g_G^2} + 2b_i \log \frac{M_X}{\mu}$$

This relation is valid also for the SU(2) and U(1) gauge groups (i = 1,2). The b_i terms for these gauge couplings are given by (see textbooks):


$$b_{1} = \frac{1}{(4\pi)^{2}} \left(\frac{4}{3}n_{g}\right),$$

$$b_{2} = \frac{1}{(4\pi)^{2}} \left(-\frac{22}{3}\right) + b_{1},$$

$$b_{3} = \frac{1}{(4\pi)^{2}} (-11) + b_{1},$$

where n_g is the number of generations

- From these relations and the experimental measurements of the couplings, the mass scale M_x can be calculated.
- Within the Standard Model a mass scale of M_X ~10¹⁵ GeV is obtained, however, the coupling unification is not possible....

in contrast to the Supersymmetric extension of the Standard Model assuming a SUSY mass scale at the TeV-scale

for SUSY scenarios: $M_X \sim 10^{16} \text{ GeV}$

The SU(5) Model (Georgi, Glashow, ~1980):

- Georgi and Glashow have shown that SU(5) is the smallest gauge group that can contain the SU(3) x SU(2) x U(1) as subgroups (this is also possible for larger gauge groups)
- In SU(5) quarks and leptons are assigned to one multiplet

e.g. in the Stadard Model we have 15 left handed states:

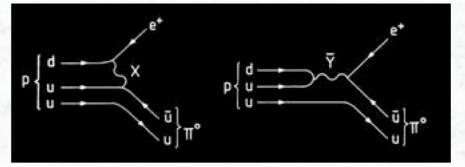
 $(u,d)_L$, $(v_e,e^-)_L$ (ubar, dbar)_L e^+_L

They are arranged in SU(5) multiplets: (dbar, v_e , e⁻) and (e⁺, u, d, ubar)

- Transitions between SU(5) multiplets are mediated by new gauge bosons, X and Y
- There should be 24 gauge bosons in total (N² -1), i.e. 12 X and Y bosons in addition to the 8 gluons, and 4 el.weak gauge bosons (W⁺,W⁻,Z, γ)

These gauge bosons carry weak isospin, electric charge and colour charge

The SU(5) Model (Georgi, Glashow, ~1980) (cont):


 Transitions mediated by X and Y bosons violate lepton number and baryon number conservation;

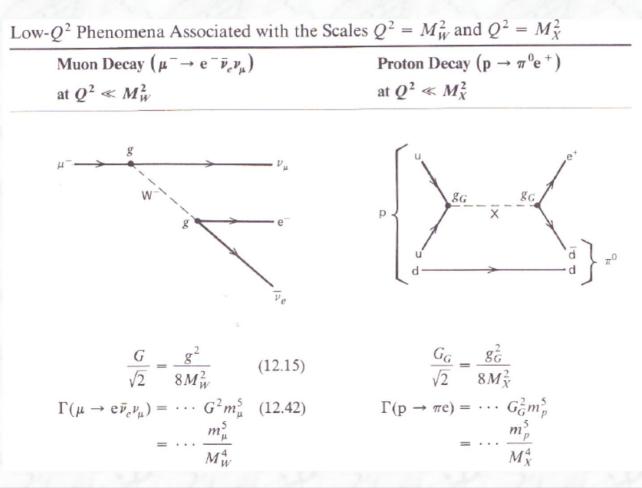
e.g. $u + u \rightarrow X \rightarrow e + dbar$

 At energies Q > M_X the strong colour force merges with the electroweak force and the sharp separation of particles into coloured quarks and colourless leptons disppears. This leads to lepton / baryon number-violating interactions.

(similar to the unification of the weak and electromagnetic interaction for energy scales $Q > m_W$, see HERA results on charged and neutral currents)

This has profound implications: The proton is predicted to decay!

The model has several nice features, among them: it predicts equality of electron and proton charge:


• Charge in each multiplett must be zero

 $\Rightarrow 3 Q_{dbar} + Q_v + Q_{e^-} = 0 \qquad \Rightarrow Q_d = 1/3 Q_{e^-}$ 2nd multiplett: $Q_u = -2 Q_d$

The combined result resolves the mystery of why $Q_p = -Q_e$

Can proton decay be detected?

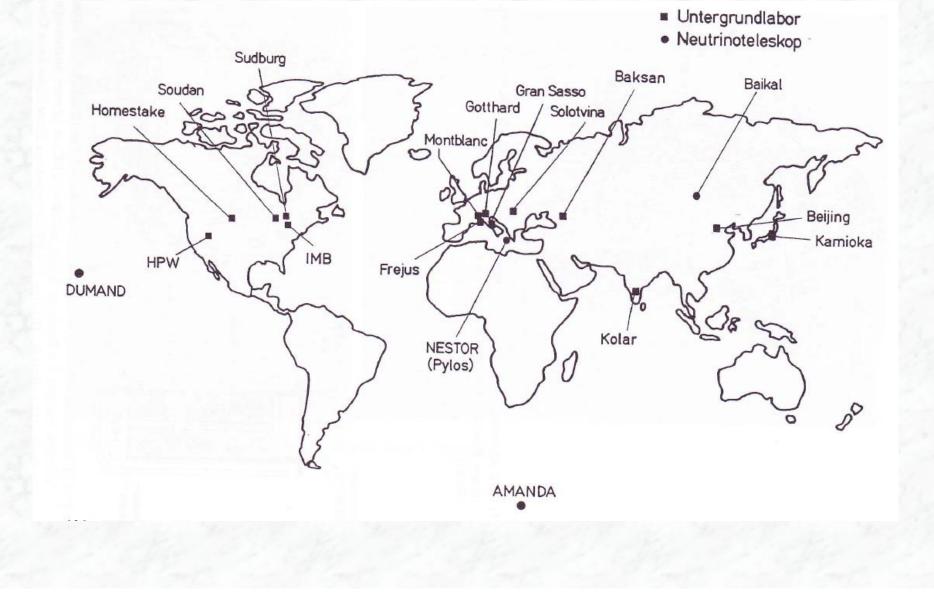
 Similar to the muon lifetime (which depends on m_W), the proton lifetime can be estimated:

Estimated lifetime: $M_X = 10^{14} \text{ GeV} \rightarrow \tau (p) \sim 10^{30} \text{ years}$ in SUSY models, lifetime is significantly longer (higher mass scale) > 10^{32} years

Results of experimental searches for proton decay:

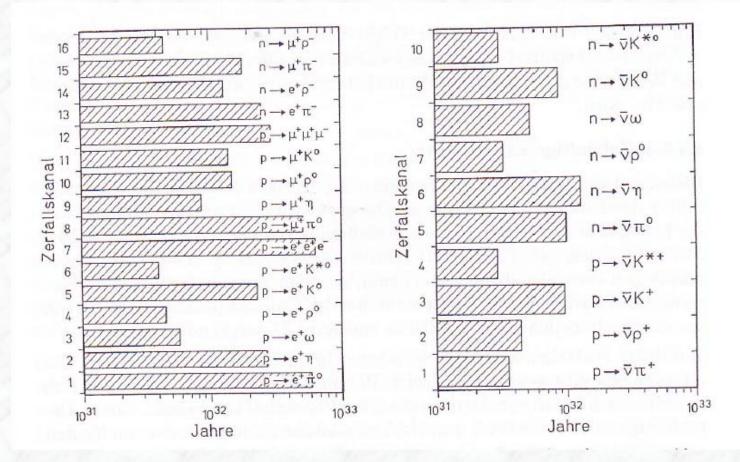
(i) Large mass calorimeter detectors

	KGF	NUSEX	Fréjus	Soudan II
$M_{\rm tot}$ [t]	140	150	912	1000
$M_{\rm eff}$ [t]	60	113	550	600
Tiefe [m]	2300	1850	1780	760
Wasseräquivalent [m]	7600	5000	4850	1800
Vertexauflösung [cm] Ort	10 Kolar- Goldmine	1 Mont-Blanc- Tunnel	0.5 Fréjus- Tunnel	~ 0.5 Soudan- Erzmine

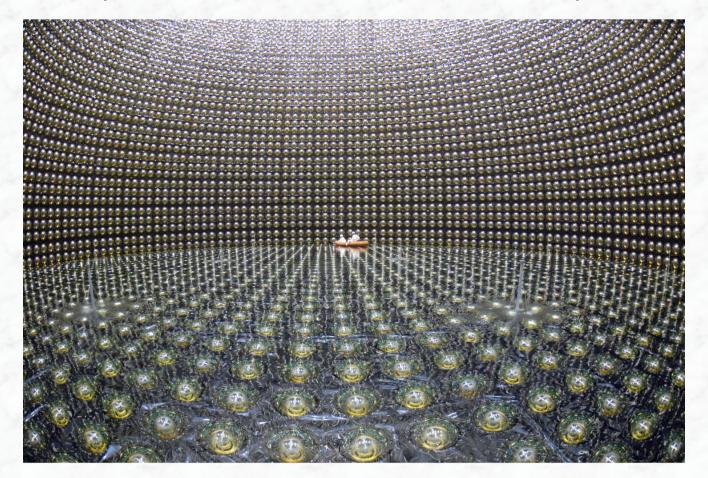

Tab. 4.3 Eigenschaften der Protonzerfallsexperimente (Eisenkalorimeter)

(ii) Large mass water Cherenkov detectors

Tab. 4.4 Eigenschaften der Protonzerfallsexperimente (Wasser-Cerenkov-Zähler).


	Kam I (II)	IMB I, III	HPW	Superkam
$M_{\rm tot}$ [t]	3000	8000	680	50000
$M_{\rm eff}$ [t]	880 (1040)	3300	420	22000
Tiefe [m]	825	600	525	825
Wasseräquivalent [m]	2400	1600	1500	2400
Vertexauflösung [cm] Ort	100 (20) Kamioka- Erzmine	100 Thiokol- Salzbergwerk	King- Silbermine	10 Kamioka- Erzmine

Overview on locations of proton decay experiments:

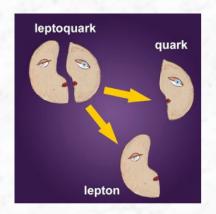


Results:

- so far no significant evidence for proton decay detected
- limits on lifetime in the order of 10³² years
 → simple SM + GUT models ruled out SUSY + GUT models still alive

The Super-Kamiokande detector, Kamioka mine, Japan

The Super-Kamiokande detector began operating in 1996, more than half a mile underground in a zinc mine in Kamioka, Japan. Japanese and American scientists erected a huge tank of water 138 feet tall to hunt for neutrinos and proton decay. The walls, ceiling, and floor of the 12.5-million-gallon tank are lined with 11,242 light-sensitive phototubes. These pick up and measure bluish streaks of light called Cherenkov radiation. Super-Kamiokande detects neutrinos that nuclear interactions in the sun and atmosphere produce.


The Super-Kamiokande detector, Kamioka mine, Japan

The Super-Kamiokande detector began operating in 1996, more than half a mile underground in a zinc mine in Kamioka, Japan. Japanese and American scientists erected a huge tank of water 138 feet tall to hunt for neutrinos and proton decay. The walls, ceiling, and floor of the 12.5-million-gallon tank are lined with 11,242 light-sensitive phototubes. These pick up and measure bluish streaks of light called Cherenkov radiation. Super-Kamiokande detects neutrinos that nuclear interactions in the sun and atmosphere produce. I.

10.2 The Search for Leptoquarks

 Leptoquarks are particles that couple to leptons and quarks, motivated by Grand Unified Theories (or any theory that "unifies" quarks and leptons in the same particle multiplet)

 They carry colour charge, weak isopin and electric charge, and are bosons (spin-0 or spin-1)

Example: X and Y bosons in GUTs

 Generalization: Leptoquarks LQ (see classification) Bosons: spin-0 or spin-1 el. charge: -5/3, -4/3, -2/3, -1/3, 1/3, 2/3weak isospin: 0, $\frac{1}{2}$, 1 Lepton .and. baryon number $\neq 0$

Leptoquark classification (Buchmüller, Rückl, Wyler)

TABLE 1	Leptoquark classifica	ation according to electroweak	
quantum nu	imbers		

Kopplung Type	Q	Coupling	β	F
an <u>SL</u>	-1/3	$\lambda_L(e_L u), -\lambda_L(v_e d)$	1/2	2
L.R-leptonogR	-1/3	$\lambda_R(e_R u)$	1	2
\tilde{S}_0^R	-4/3	$\lambda_R(e_R d)$	1	2
S_1^L	-4/3	$-\sqrt{2}\lambda_L(e_Ld)$	1	2
-	-1/3	$-\lambda_L(e_L u), \ -\lambda_L(v_e d)$	1/2	2
schwacher	+2/3	$\sqrt{2\lambda_L}(v_e u)$	0	2
Tsospin VL	-4/3	$\lambda_L(e_L d)$	1	2
	-1/3	$\lambda_L(\nu_e d)$	0	2
$V_{1/2}^{R}$	-4/3	$\lambda_R(e_R d)$	1	2
10.00	-1/3	$\lambda_R(e_R u)$	1	2
$\tilde{V}_{1/2}^L$	-1/3	$\lambda_L(e_L u)$	1	2
	+2/3	$\lambda_L(v_e u)$	0	2

$S_{1/2}^{L}$	-5/3	$\lambda_L(e_L \bar{u})$	1	0
	-2/3	$\lambda_L(v_e\bar{u})$	0	0
$S_{1/2}^{R}$	-5/3	$\lambda_R(e_R\bar{u})$	1	0
	-2/3	$-\lambda_R(e_R\bar{d})$	1	0
$\tilde{S}_{1/2}^L$	-2/3	$\lambda_L(e_L\bar{d})$	1	0
	+1/3	$\lambda_L(v_e \bar{d})$	0	0
V_0^L	-2/3	$\lambda_L(e_L \bar{d}), \lambda_L(v_e \bar{u})$	1/2	0
V_0^R	-2/3	$\lambda_R(e_R\bar{d})$	1	0
\tilde{V}_0^R	-5/3	$\lambda_R(e_R\bar{u})$	1	0
V_1^L	-5/3	$\sqrt{2}\lambda_L(e_L\bar{u})$	1	0
	-2/3	$-\lambda_L(e_L\bar{d}), \lambda_L(v_e\bar{u})$	1/2	0
	+1/3	$\sqrt{2}\lambda_L(\nu_e\bar{d})$	0	0

S = Skulare LQ V = Vehlor-LQ

> F = Fermion - Zahl F= L+3B B = BR (LQ -> lt q) gel. Lepton spez. Modell: 0, 1/2, 1

ially. 0 5 B 51

Leptoquarks at the electroweak scale ?

 Leptoquarks may also be light, with masses on the electroweak scale; (consistent with proton lifetime, if baryon and lepton number are separately conserved)

allowed decays: LQ $(-\frac{1}{3}) \rightarrow e^- u$, or LQ $(-\frac{4}{3}) \rightarrow e^- d$ LQ $(-\frac{1}{3}) \rightarrow v_e d$

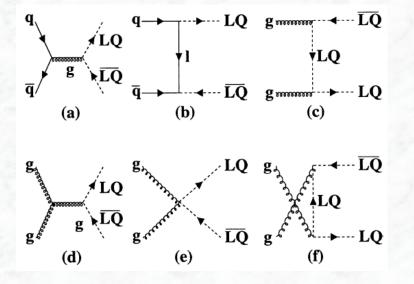
Decays proceed always as: LQ \rightarrow lepton + quark

Branching ratio β : = BR (LQ \rightarrow I q) charged lepton decay (1- β) = BR (LQ \rightarrow v q) neutral lepton decay

 β ist a free parameter ($0 \le \beta \le 1$), in general not fixed by the theory

Leptoquarks (in general form) may enhance flavour-changing neutral currents

to suppress these contributions: require that leptoquarks only couple to one generation of fermions


 \rightarrow LQs of 1st, 2nd, and 3rd generation

Search for Scalar Leptoquarks (LQ)

- <u>Production:</u> pair production via QCD processes (qq and gg fusion)
- <u>Decay:</u> into a lepton and a quark

$$\frac{LQ_{N}}{l_{N}} \qquad \begin{pmatrix} q_{N} \\ LQ_{N} \\ v_{N} \end{pmatrix} \qquad \begin{pmatrix} q_{N} \\ (1 - \beta) \\ v_{N} \end{pmatrix}$$

- β= LQ branching fraction to charged lepton and quark
- N = generation index Leptoquarks of 1., 2., and 3. generation

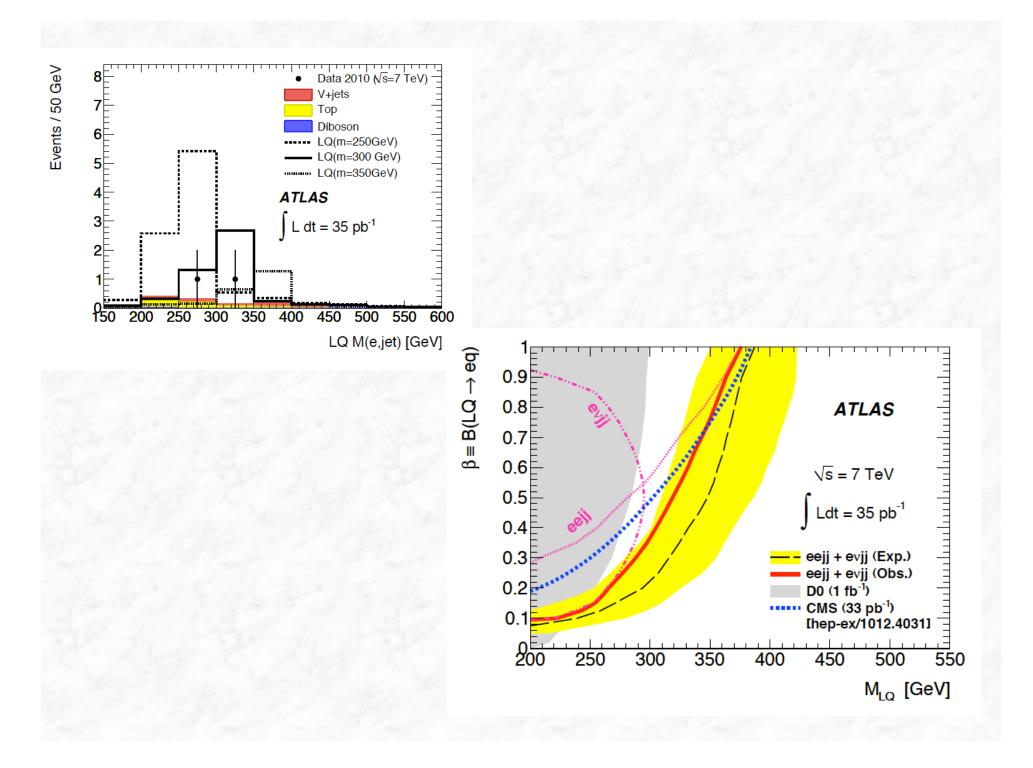
Experimental Signatures:

- two high p_T isolated leptons + jets .OR.
- one isolated lepton + E_T^{miss}+ jets .OR.
- E_T^{miss} + jets

Results from the ATLAS and CMS searches for leptoquarks

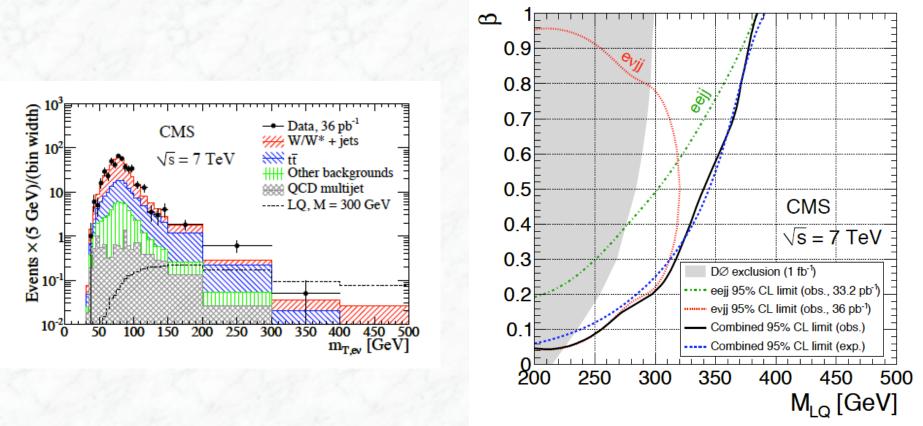
• Require two high P_T leptons and two high P_T jets .or. one high P_T lepton, E_T^{miss} , and two high P_T jets

(ll qq channel) (lv qq channel)


• Additional kinematic requirements:

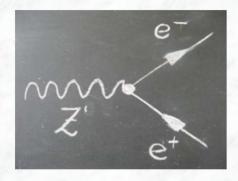
$eejj$ and $\mu\mu jj$		$\mu u jj$
	$M_{\rm T} > 200 { m ~GeV}$	
$\overline{M_{\rm LQ}} > 150 {\rm ~GeV}$	$M_{\rm LQ} > 180~{\rm GeV}$	$M_{\rm LQ} > 150 {\rm ~GeV}$
$p_{\rm T}^{\rm all} > 30 { m ~GeV}$	$M_{\rm LQ}^{\rm T} > 180~{\rm GeV}$	$M_{\rm LQ}^{\rm T} > 150 {\rm ~GeV}$
$S_{\mathrm{T}}^{\ell} > 450 \mathrm{GeV}$	$S_{\rm T}^{\nu} > 410 { m ~GeV}$	$S_{\mathrm{T}}^{\nu} > 400 \mathrm{GeV}$

where S_T is the total scalar sum of the transverse momenta (two leptons and two jets)


Data, backgrounds and signal expectation (36 pb⁻¹)

Source	eejj	e u jj	$\mu\mu j j$	$\mu u jj$
V+jets	0.50 ± 0.28	0.65 ± 0.38	0.28 ± 0.22	2.6 ± 1.4
Top	0.51 ± 0.23	0.67 ± 0.39	0.52 ± 0.23	1.6 ± 0.9
Diboson	0.03 ± 0.01	0.10 ± 0.03	0.04 ± 0.01	0.10 ± 0.03
$\rm QCD$	$0.02 \stackrel{+}{_{-}} \stackrel{0.03}{_{-}}$	0.06 ± 0.01	$0.00 \stackrel{+}{_{-}} \stackrel{0.01}{_{-}}$	$0.0~\pm~0.0$
Total Bkg	1.1 ± 0.4	1.4 ± 0.5	0.8 ± 0.3	4.4 ± 1.9
Data	2	2	0	4
LQ(250 GeV)	38 ± 8	9.6 ± 2.1	45 ± 10	13 ± 3
LQ(300 GeV)	17 ± 4	5.1 ± 1.1	21 ± 5	6.4 ± 1.4
LQ(350 GeV)	7.7 ± 1.7	2.6 ± 0.6	9.4 ± 2.1	$3.0~\pm~0.7$
LQ(400 GeV)	3.5 ± 0.8		4.4 ± 1.0	

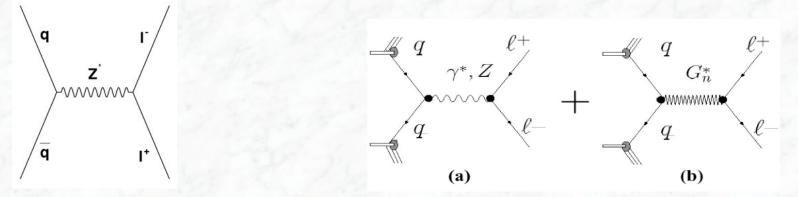
1st, 2nd and 3rd generation Leptoquarks



95% C.L. Mass Limits	1. Generation LQ	2. Generation LQ	3. Generation LQ	β = 0.5
CDF (Run II)	235 GeV/c ²	224 GeV/c ²	129 GeV/c ²	12
D0 (Run I + II)	282 GeV/c ²	200 GeV/c ²		
ATLAS	319 GeV/c ²	362 GeV/c ²		10-11
CMS	340 GeV/c ²	290 GeV/c ²		

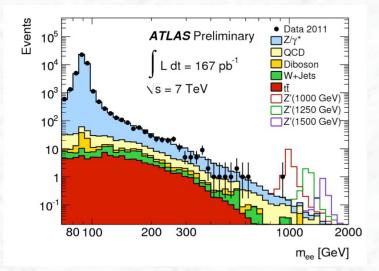
LHC reach for other BSM Physics (expected discovery sensitivity for 30 and 100 fb⁻¹)

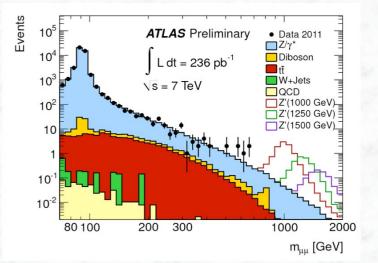
ACA CAR	30 fb ⁻¹	100 fb ⁻¹
Excited Quarks $Q^* \rightarrow q \gamma$	M (q*) ~ 3.5 TeV	M (q*) ~ 6 TeV
Leptoquarks	M (LQ) ~ 1 TeV	M (LQ) ~ 1.5 TeV
$ \begin{array}{ccc} Z & \to \ell\ell, jj \\ W & \to \ell \nu \end{array} $	M (Z ') ~ 3 TeV M (W ') ~ 4 TeV	M (Z ') ~ 5 TeV M (W ') ~ 6 TeV
Compositeness (from Di-jet)	Λ ~ 25 TeV	Λ ~ 40 TeV


10.3 Additional Gauge Bosons: W' and Z'

Search for new, high-mass di-lepton resonances

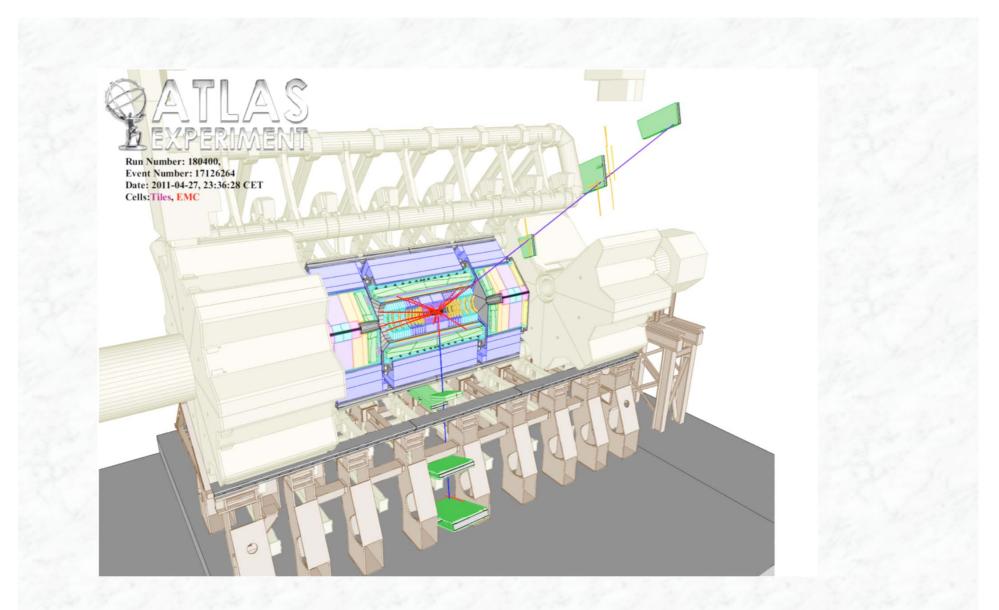
- Additional neutral Gauge Boson Z[´]
- Randall-Sundrum narrow Graviton resonances decaying to di-lepton


appear in Extra Dim. Scenarios


Main background process: Drell-Yan production of lepton pairs

Search for New Resonances in High Mass Di-leptons

Di-electron invariant mass

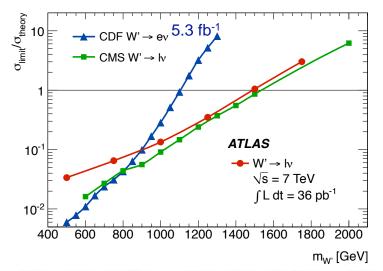


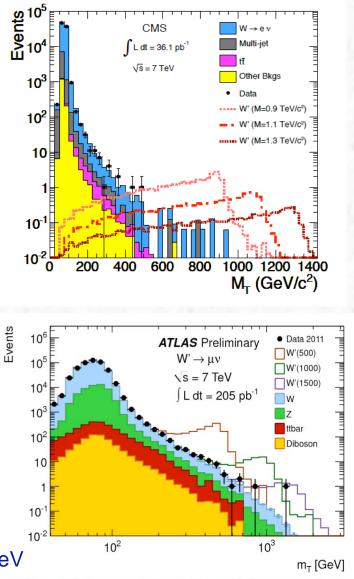
Di-muon invariant mass

Data are consistent with background from SM processes. No excess observed.

95% C.L. limits (SM couplings)	ee	μμ	ll combined
CDF / D0 5.3 fb ⁻¹ ATLAS 36 pb ⁻¹ ATLAS 167 / 236 pb ⁻¹ CMS 35 / 40 pb ⁻¹	0.96 TeV 1.28 TeV	0.83 TeV 1.22 TeV	1.07 TeV 1.05 TeV 1.41 TeV 1.14 TeV

The highest invariant mass di-muon event in the ATLAS data. The highest momentum muon has a p_T of 270 GeV and an (eta, phi) of (1.56, 1.30). The subleading muon has a p_T of 232 GeV and an (eta, phi) of (-0.09, -1.82). The invariant mass of the pair is 680 GeV.

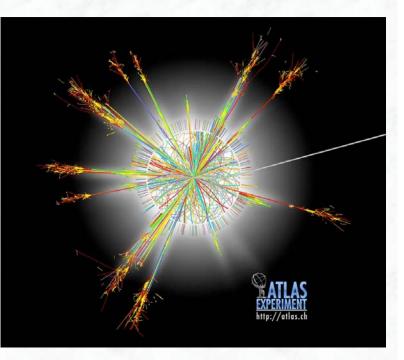

Search for W' \rightarrow Iv


- W': additional charged heavy vector boson
- Appears in theories based on the extension of the gauge group

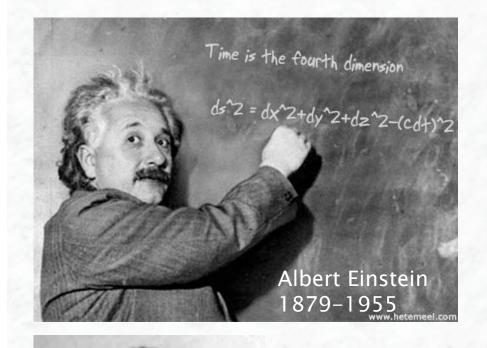
e.g. Left-right symmetric models: $SU(2)_R$ W_R

 Assume v from W' decay to be light and stable, and W' to have the same couplings as in the SM ("Sequential Standard Model, SSM")

Signature: high p_T electron + high E_T^{miss} \rightarrow peak in transverse mass distribution



Comparable limits (ATLAS, CMS, 36 pb⁻¹): ~1.49 / 1.58 TeV New ATLAS limit (W $\rightarrow \mu v$, 205 pb⁻¹): ~1.70 TeV


10.4 Extra space dimensions

- Introduction
- Search for escaping gravitons at the LHC
- Serach for Black Hole Production

Microscopic-Black Hole Events at the LHC ?

Time is the Fourth Dimension

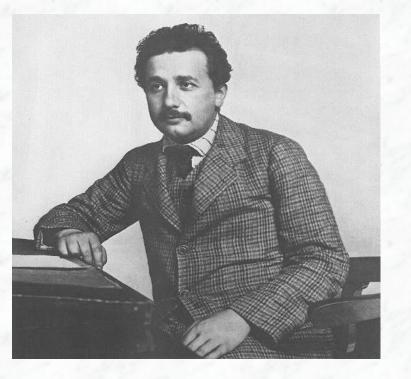
Hermann Minkowski

1000

Time:

- 1. Required by relativity to be a dimension
- 2. Required, along with three spatial dimensions, to specify the location of an event

- Spacetime is four dimensional: x, y, z, and t
- Universal constant "c", which relates measurements of space to measurements of time


A Fifth Dimension?

Theodor Kaluza 1885-1954

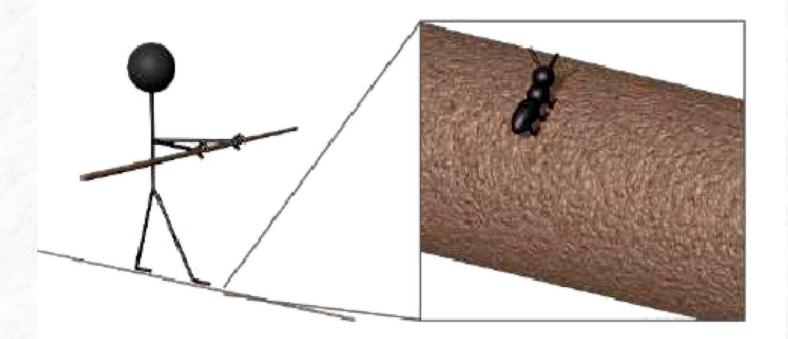
 Polish mathematician Kaluza showed in 1919 that gravity and electromagnetism could be unified in a single theory with 5 dimensions – using Einstein's theory of gravity

"The idea of achieving a unified theory by means of five-dimensional world would never have dawned on me...At first glance I like your idea tremendously"

The Fifth Dimension

- The Swedish physicist Klein proposed in 1926 that the fifth dimension was real, but too tiny to be observed
- Computed it had a size of 10⁻³⁰ cm to unify gravity with electromagnetism

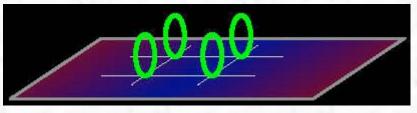
Oskar Klein 1894-1977

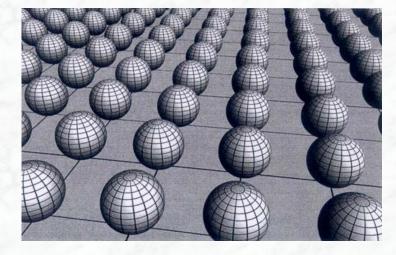

"Klein's paper is beautiful and impressive"

Compactified Extra Dimensions

Extra dimensions are too small for us to observe

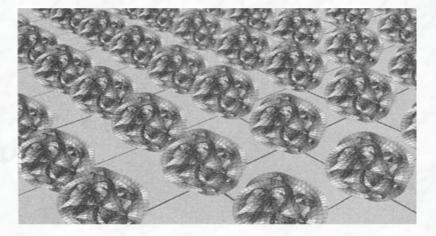
 \Rightarrow they are 'curled up' and compact


Tightrope walker sees only one dimension


Ant can also go "around the circle"

"Visualizing" Extra Dimensions

Every point in space-time has curled up extra dimensions associated with it

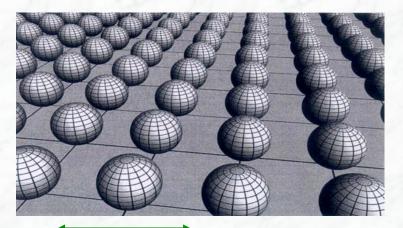

One extra dimension is a circle

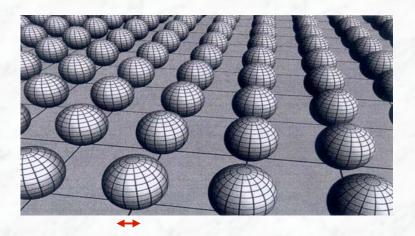
Two extra dimensions can be represented by a sphere

Six extra dimensions can be represented by a Calabi-Yau space

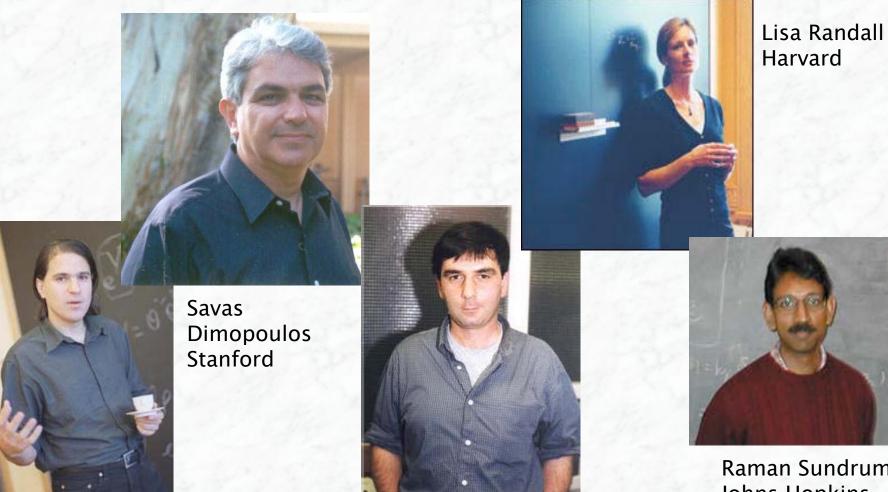
4063- PANH 2. D. (R. D. -(1004) 64, 64, 64, 64, -04, 4 0 Mª < kipik>-R*(N*, k;), VXOVED Q"H" 11.11. (1 (x; z. z.) dx III) $\odot 0$ r(t-r,n) . (logr-nlog P 7 0 GRAAMEL

"At this point we notice that this equation is beautifully simplified if we assume that space-time has 92 dimensions."


Modifications of Newton's Law of Gravity

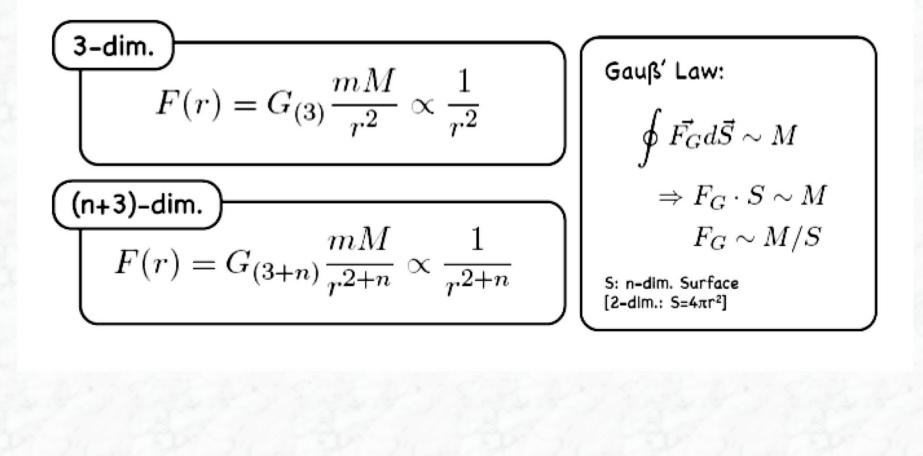

- Newtonian inverse-squared law of gravity is modified with extra dimensions
- Example: 2 extra dimensions of size R
- Distances r > R

 $F \sim \frac{1}{r^2}$

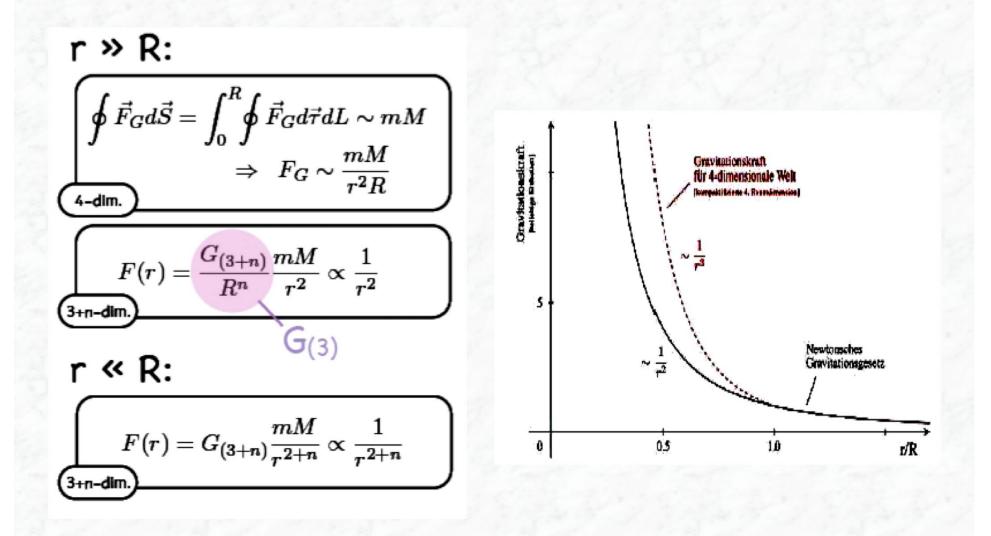

• Distances r < R

$$F \sim \frac{1}{r^4}$$

Creators of New Extra-Dimensional Ideas!

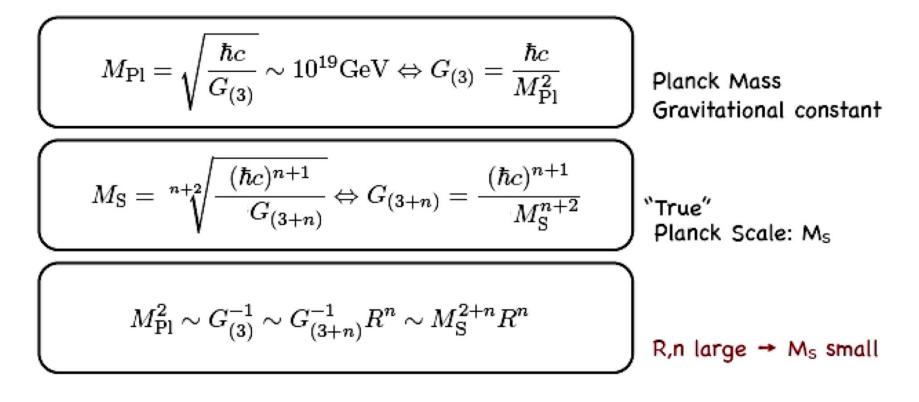

Nima Arkani-Hamed Princeton

Gia Dvali New York Univ.

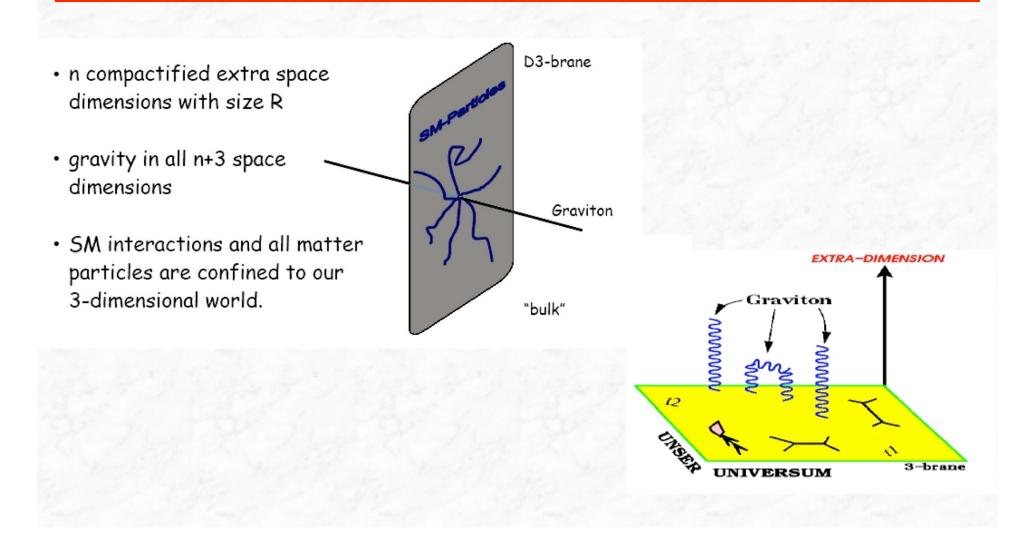

Raman Sundrum Johns Hopkins

Extra Dimensions & the Law of Gravity

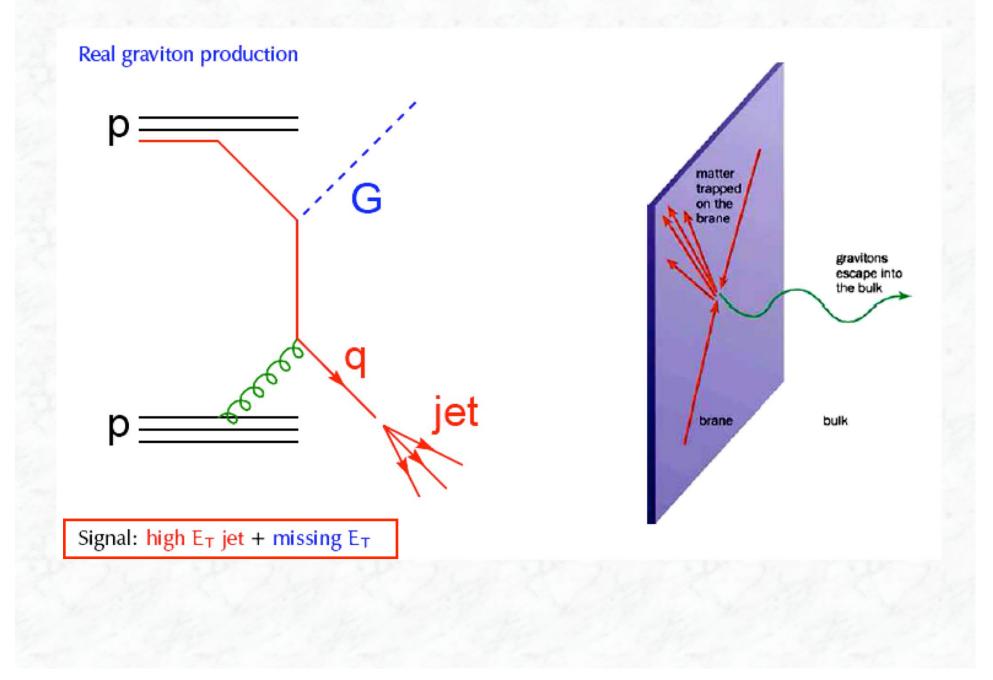
Law of Gravity:


Compactified Extra Space Dimensions

The Scale of Gravity


The real Planck Scale:

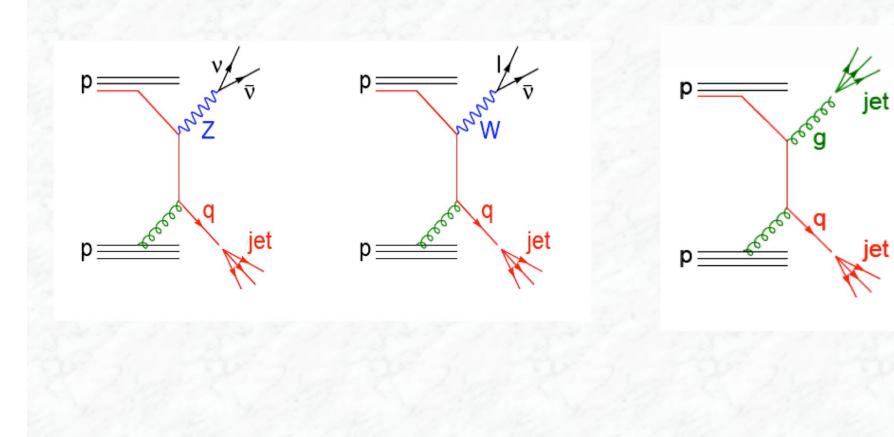
i.e. energy scale at which gravity gets `strong'



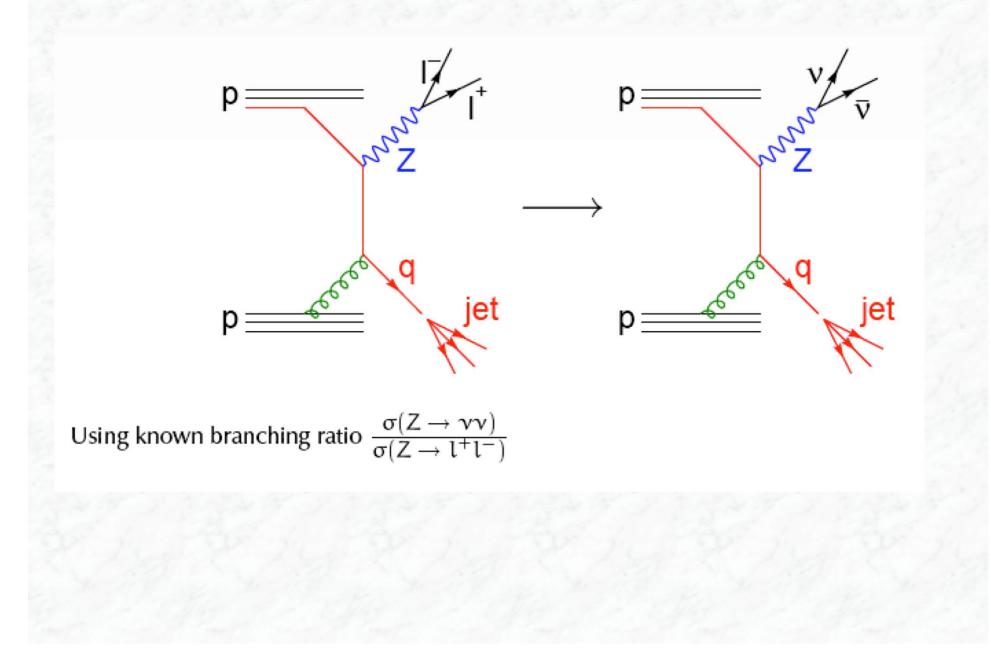
Large Extra Dimensions & ADD Model

ADD approach Antoniadis, Arkani-Hamed, Dimopoulos, Dvali: hep-ph/9803315, 9804398, 9807344 There are n compactified extra dimensions Only gravity can propagate in extra dimensions

Experimental Signature: Monojets

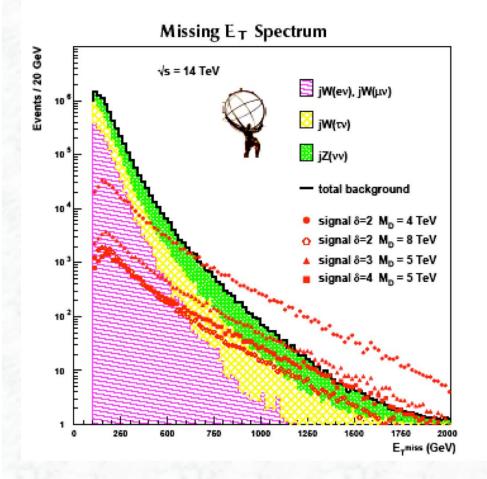

Monojets: Standard-Model Backgrounds

♦ Jet + Z → $\nu\nu$ ♦ Jet + W → νe , $\nu \mu$, $\nu \tau$ with lepton lost


(lepton with low energy, lepton in dead region)

Instrumentation + QCD

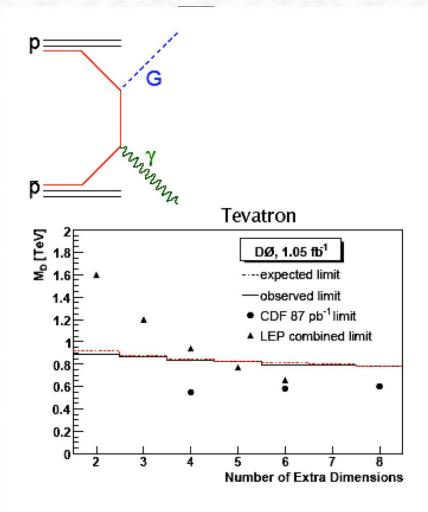
- QCD dijets with one jet lost in dead region, or due to energy fluctuations, or multijets
- Calorimeter noise
- Beam induced signals
- Cosmics



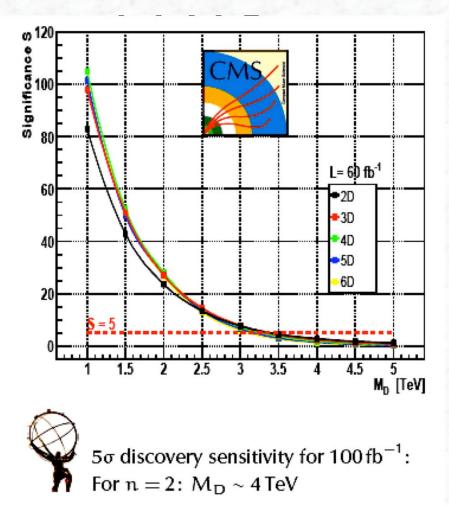
Monojets: Understanding Z+Jet Background

Monojet Searches at the LHC

Vacavant, Hinchliffe: ATLAS-PHYS-2000-016, SN-ATLAS-2001-005

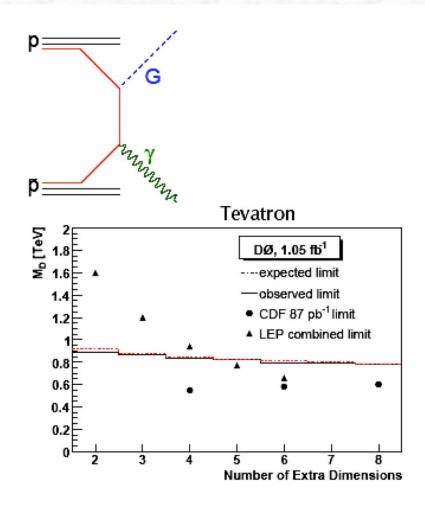

ATLAS MC based feasibility studies

 5σ discovery sensitivity for $100 \, \text{fb}^{-1}$:

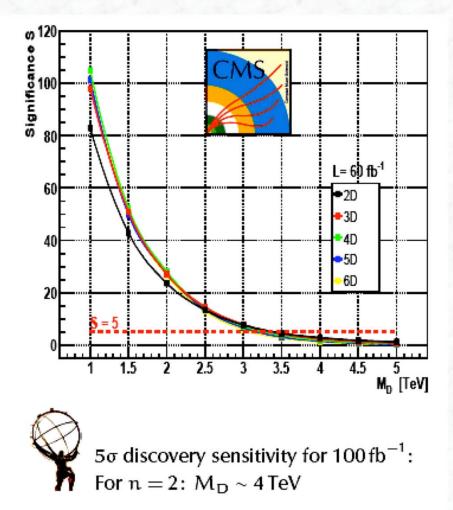

n	2	3	4
M_{D}/TeV	9	7	6

No instrumentation effects included

Monophoton Searches:

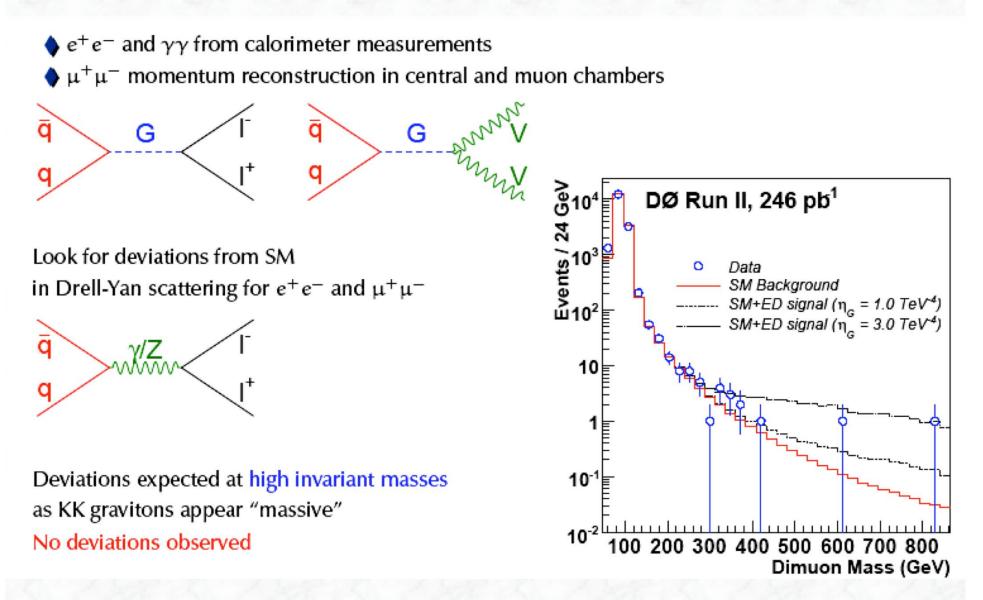


arXiv:0803.2137, hep-ex/0205057

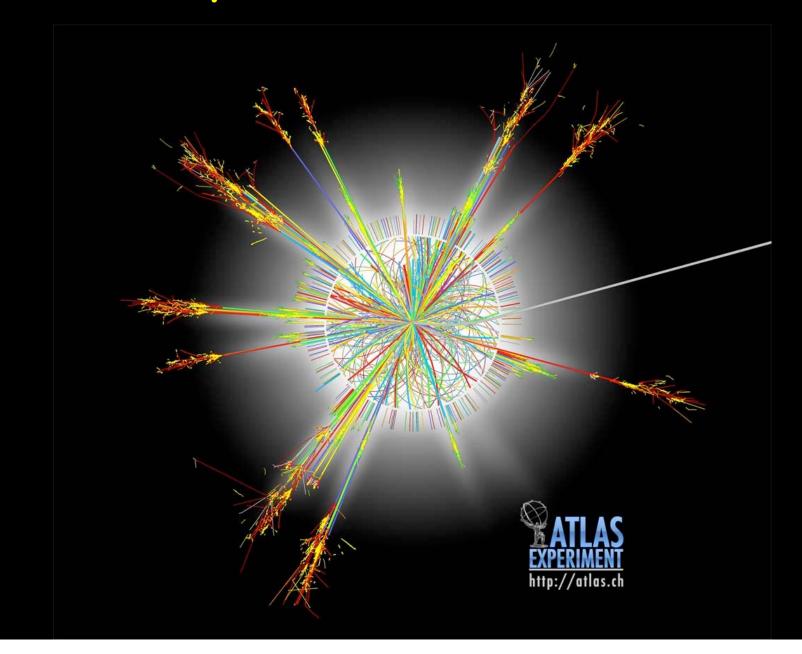


ATLAS-PHYS-2000-016, CMS-NOTE-2006-129

Monophoton Searches: Tevatron and LHC



arXiv:0803.2137, hep-ex/0205057



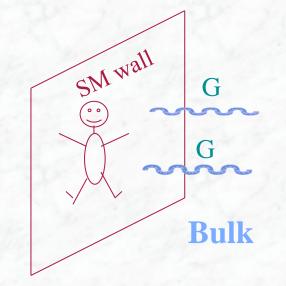
ATLAS-PHYS-2000-016, CMS-NOTE-2006-129

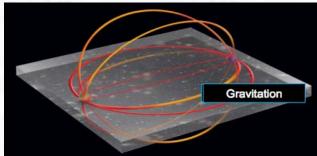
Virtual Graviton Exchange in ADD Model

Microscopic Black Holes at the LHC ?

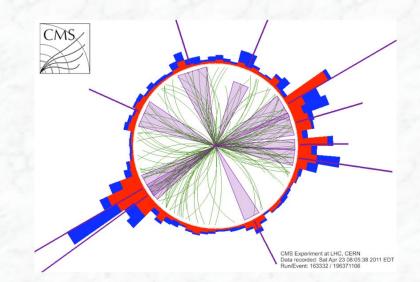
Can LHC probe Black Hole production ?

- New physics, scale of gravity M_D, can appear at the TeV-mass scale, i.e. accessible at the LHC
- Extra dimensions are compactified on a torus or sphere with radius r

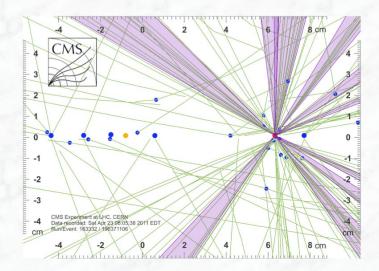

relation between Planck mass in 4 and (4+n) dimensions:


$$M_{\rm Pl}^2 = 8\pi M_D^{n+2} r^n$$

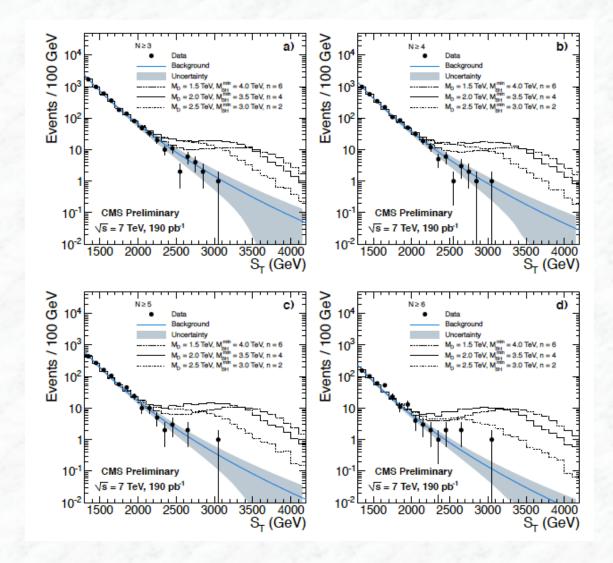
Black hole formation at energies greater than M_D


Production cross section can be in the order of 100 pb for $M_D \sim 1$ TeV (large model dependence)

 Once produced, the black hole is expected to decay via Hawking radiation, democratically to all Standard Model particles (quarks and gluons dominant,75%)
 → multijet events with large mass and total transverse energy



CMS search for events with high jet multiplicity and large transverse energy


Candidate events exist....

event with high multiplicity of jets, high mass....

all particles coming from one interaction vertex

Is there an excess above the expectation from QCD production?

Total transverse energy S_T for events with N>3, 4, 5, 6 objects

No evidence for excess above the QCD expectations \rightarrow No evidence for the formation of micro Black Holes

Literature

Available on the web:

• R. Rattazzi, "Cargese Lectures on Extra Dimensions", hep-ph/0607055 http://arxiv.org/abs/hep-ph/0607055

T. Rizzo, "Pedagogical Introduction to Extra Dimensions", hep-ph/0409309 http://arxiv.org/abs/hep-ph/0409309

- K. Cheung, "Collider Phenomenology for Models of Extra Dimensions", hep-ph/0305003 http://arxiv.org/abs/hep-ph/0305003
- G. Landsberg, "Black Holes at Future Colliders and Beyond", hep-ph/0607297 <u>http://arxiv.org/abs/hep-ph/0607297</u>

Books (popular science):

• L. Randall, "Verborgene Universen: Eine Reise in den extradimensionalen Raum", Fischer Taschenbuchverlag (2006).

End of lectures

