Problem Set for Hadron Collider Physics 2015
 Prof. Dr. Karl Jakobs, Dr. Karsten Köneke
 Problem Set 5

Your solutions have to be handed in by 10:10 am on Tuesday, June $16^{\text {th }} 2015$.
 Please drop them into the mailbox number 1 on the ground floor of the Gustav-Mie building!

1. Weak interactions

(a) Show that the projection operator $P_{\mathrm{L}}:=\frac{1}{2}\left(1-\gamma^{5}\right)$, which projects out the left-chiral state of a fermion, obeys the relation $P_{\mathrm{L}}=P_{\mathrm{L}}^{2}$.
[1 point]
(b) Show that the $(V-A)$ expression for the charged weak current can be rewritten as a pure vectorial current involving the left-chiral components of the involved fermions. That is, show the equivalence of the two expressions below (focusing in the notation on a $W e \nu$ vertex).
[2 points]

$$
\begin{equation*}
\bar{\nu} \gamma_{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) u_{e}=\bar{\nu}_{L} \gamma_{\mu} e_{L} \tag{1}
\end{equation*}
$$

(c) In a similar way, show that the expression for the weak neutral current can be rewritten as a current involving left-chiral fermion components plus a current involving rightchiral fermion components. That is, show that:

$$
\begin{equation*}
\bar{e} \gamma_{\mu} \frac{1}{2}\left(C_{V}-C_{A} \gamma_{5}\right) e=\bar{e}_{L} g_{L} \gamma_{\mu} e_{L}+\bar{e}_{R} g_{R} \gamma_{\mu} e_{R} \tag{2}
\end{equation*}
$$

2. Electroweak theory

The electroweak current can be written in the combined electroweak theory as

$$
\begin{equation*}
-i g \vec{j}_{\mu} \cdot \vec{W}^{\mu}-i \frac{g^{\prime}}{2} j_{\mu}^{Y} B^{\mu}, \tag{3}
\end{equation*}
$$

where \vec{j}_{μ} is the weak isospin current, j_{μ}^{Y} is the hypercharge current, and \vec{W}^{μ} and B^{μ} are the gauge fields.
(a) Write down the expression for the four physical fields $W^{ \pm}, A$, and Z in terms of the quantities appearing on the expression above and the weak mixing angle θ_{W} [2 points].
(b) Given the relationship between the electromagnetic current, \vec{j}_{μ}, and j_{μ}^{Y}, what is the relation between the electric charge e and g, g^{\prime} ? [2 points]
(c) From the neutral current interaction term, derive an expression for the vectorial and axial couplings C_{V}, C_{A} to fermions in terms of the hypercharge and weak isospin of the fermions. [2 points]

