Problem Set for Hadron Collider Physics 2015 Prof. Dr. Karl Jakobs, Dr. Karsten Köneke Problem Set 5

Your solutions have to be handed in by 10:10 am on Tuesday, June 16th 2015. Please drop them into the mailbox number 1 on the ground floor of the Gustav-Mie building!

1. Weak interactions

- (a) Show that the projection operator $P_{\rm L} := \frac{1}{2} (1 \gamma^5)$, which projects out the left-chiral state of a fermion, obeys the relation $P_{\rm L} = P_{\rm L}^2$. [1 point]
- (b) Show that the (V A) expression for the charged weak current can be rewritten as a pure vectorial current involving the left-chiral components of the involved fermions. That is, show the equivalence of the two expressions below (focusing in the notation on a $We\nu$ vertex). [2 points]

$$\bar{\nu}\gamma_{\mu}\frac{1}{2}\left(1-\gamma_{5}\right)u_{e}=\bar{\nu}_{L}\gamma_{\mu}e_{L}\tag{1}$$

(c) In a similar way, show that the expression for the weak neutral current can be rewritten as a current involving left-chiral fermion components plus a current involving right-chiral fermion components. That is, show that: [2 points]

$$\bar{e}\gamma_{\mu}\frac{1}{2}\left(C_{V}-C_{A}\gamma_{5}\right)e = \bar{e}_{L}g_{L}\gamma_{\mu}e_{L} + \bar{e}_{R}g_{R}\gamma_{\mu}e_{R} \tag{2}$$

2. Electroweak theory

The electroweak current can be written in the combined electroweak theory as

$$-ig\vec{j}_{\mu}\cdot\vec{W}^{\mu}-i\frac{g'}{2}j^{Y}_{\mu}B^{\mu}, \qquad (3)$$

where \vec{j}_{μ} is the weak isospin current, j^{Y}_{μ} is the hypercharge current, and \vec{W}^{μ} and B^{μ} are the gauge fields.

- (a) Write down the expression for the four physical fields W^{\pm} , A, and Z in terms of the quantities appearing on the expression above and the weak mixing angle $\theta_W[2 \text{ points}]$.
- (b) Given the relationship between the electromagnetic current, \vec{j}_{μ} , and j_{μ}^{Y} , what is the relation between the electric charge e and g, g'? [2 points]
- (c) From the neutral current interaction term, derive an expression for the vectorial and axial couplings C_V, C_A to fermions in terms of the hypercharge and weak isospin of the fermions. [2 points]