### What do the LHC data say?

### What processes are we looking for?



- ATLAS has set up dedicated search strategies for all production mechanism
- Only strong production (mainly 3<sup>rd</sup> generation) covered in this lecture

### What we are typically doing

- Heavy sparticles produced in the primary collision
- They decay into lighter objects, emitting (high) p<sub>T</sub> jets and possibly other objects (leptons, photons) and MET (LSP)
- A "typical" SUSY event will have large E<sub>T</sub><sup>miss</sup> and large H<sub>T</sub>
- Useful variables:

$$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + \dots)$$
$$M_{eff} = E_T^{miss} + H_T$$

- But also other variables with well defined kinematical end point for the SM background
- M<sub>T</sub> (lepton-MET): end point at M<sub>W</sub> if produced in W decay



### A complementary approach

Look for kinematic variables which have a well defined kinematical end-point for Standard Model processes

- An example: the transverse mass in events where a W boson is produced and decays into a lepton and a neutrino
- Beyond m<sub>w</sub>, the Standard Model
  background decreases fast
- Think about  $m_{T2}$  in events with 2 leptons:
  - It will have a kinematical end-point at m<sub>w</sub> for the SM background

$$m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T}}^{\ell_{1}}, \mathbf{p}_{\mathrm{T}}^{\ell_{2}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T}}+\mathbf{r}_{\mathrm{T}}=\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max[m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_{1}}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_{2}}, \mathbf{r}_{\mathrm{T}})] \right\}$$



#### SUSY final states, there are many ....



< 8 J 81



## Strong production

 $\sqrt{S} = 8 \text{ TeV}$ 

maverage [GeV]



q

• Two analyses drive the limit with 8 TeV data

|                                                                                                            | 0-lepton (ATLAS-CONF-2012-109)                                | 1-lepton (ATLAS-CONF-2012-104)                                               |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|--|
| leptons                                                                                                    | Veto any e or µ above 10 GeV                                  | One isolated e or $\mu$ above 25 GeV                                         |  |
| jets                                                                                                       | 2 to 6 jets with $p_T > 60$ GeV (leading jet $p_T > 130$ GeV) | 4 jets with p⊤ > 80 GeV                                                      |  |
| Other selectionsMET > 160 GeV, reject multijet with cuts<br>on MET/Meff, and angle between jets and<br>MET |                                                               | MET > 250 GeV, $M_T$ > 100 GeV, additional selection on MET/M <sub>eff</sub> |  |
| Final selection                                                                                            | M <sub>eff</sub>                                              | M <sub>eff</sub>                                                             |  |



m~g







# Strong production

- No excess above SM in any of the signal regions:
  - interpreted first as a model-independent
    95% C.L. limit on σ<sub>vis</sub> of BSM processes
  - then as an exclusion limit in specific SUSY models



### direct 3<sup>rd</sup> generation squark production

- The stops/sbottoms constrained by naturalness to be not heavier than ~ 1 TeV
- Sbottom decays:
- $b_1 \rightarrow bX_1^0$
- $\tilde{b}_1 \rightarrow t X_1^2 \pm$
- Stop decays:
- $\tilde{t_1} \rightarrow t \tilde{X_1}^0$
- $\tilde{t_1} \rightarrow b \tilde{X_1}^{\pm}$







### direct sbottom - 2 b-jets + Ermiss

- m<sub>CT</sub>(bb): similar concept as for m<sub>T2</sub>
- It has an end-point at (m<sub>prod</sub><sup>2</sup>m<sub>inv</sub><sup>2</sup>)/m<sub>prod</sub>
- Look for 2 b-jets (veto on third jet), large E<sub>T</sub><sup>miss</sup>
- Use M<sub>CT</sub> to suppress top; Main background: Z (→vv)+b-jets



### **Direct sbottom search limits**



• Plot sbottom mass on one axis, neutralino mass on the other axis:

- The sbottom mass determines the cross section
- The neutralino mass determines the kinematics

### Direct stop search limits

 $\tilde{t}_1 \to t \tilde{\chi}_1^0$ 

- Complex final state with many handles
- Analysed in final states with 0/1/2 leptons



### 1-lepton stop (CMS)



#### **Basic selection:**

- 1 lepton,
- 4 jets and
- large MET.

Additional selections based on the hadronic top reconstruction on  $M_T$  like quantities allows to suppress the ttbar background

### 1-lepton stop (CMS)



$$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$$

• With respect to  $t_1 \rightarrow t X_1^0$ , the mass of the chargino is one additional degree of freedom

| Hypothesis                                                                                                 | Targeted signature (3 players at 8 TeV)                              |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| gaugino universality: $m_{X\pm} \sim 2m_{X0}$                                                              | 2-leptons - large leptons M <sub>T2</sub><br>1-lepton (dedicated SR) |  |
| stop-chargino mass degeneracy m <sub>X±</sub> ~m <sub>t1</sub> - 10 GeV                                    | 2-leptons - large leptons MT2                                        |  |
| neutralino-chargino mass degeneracy (favoured if $X_1^0, X_1^{\pm}$ higgsino-like): $m_{X\pm} \sim m_{X0}$ | 2 b-jets + MET; 0-lepton                                             |  |
| Fixed chargino mass at 150 GeV                                                                             | 2-leptons - large leptons M <sub>T2</sub><br>1-lepton (dedicated SR) |  |



# $\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$



- 2 b + E<sup>miss</sup> analysis already discussed
- Same signal regions as for direct sbottom sensitive to t<sub>1</sub>→bX<sub>1</sub><sup>±</sup> for small Δm(X<sub>1</sub><sup>±</sup>,X<sub>1</sub><sup>0</sup>)
- Loss of acceptance due to lepton and jet veto



### Stop summary



# Electroweak $\tilde{X^0}$ , $\tilde{X^{\pm}}$ production

- Neutralinos and chargino masses of few hundreds
  GeV expected in natural SUSY models
- LHC has sensitivity to the EW coupling-suppressed cross sections
- Give rise to multi-lepton final states
  - Very low SM background expected
  - Decays through sleptons (BR to leptons 100% optimistic) or WZ-like (challenging) decays assumed





# Electroweak $\tilde{X^0}$ , $\tilde{X^{\pm}}$ production

| Production channel                                                        | Analysis<br>2-leptons |  |  |
|---------------------------------------------------------------------------|-----------------------|--|--|
| chargino pair production                                                  |                       |  |  |
| $\mathbf{\tilde{X}}_{1} \mathbf{\tilde{+}} \mathbf{X}_{2^{0}}$ production | 2-leptons, 3-leptons  |  |  |
| $\tilde{X}_{2}^{0}\tilde{X}_{3}^{0}$ production                           | 4-leptons             |  |  |

### 3-leptons background prediction validation



 Background prediction validated in dedicated regions with different background composition

| Selection                                       | VRnoZa                        | VRnoZb                      | VRZa                            | VRZb                          |
|-------------------------------------------------|-------------------------------|-----------------------------|---------------------------------|-------------------------------|
| <i>m</i> <sub>SFOS</sub> [GeV]<br><i>b</i> -jet | <81.2 or >101<br>veto         | .2 <81.2 or >10<br>request  | 01.2 81.2–101.2<br>veto         | 81.2–101.2<br>request         |
| $E_{\rm T}^{\rm miss}$ [GeV]                    | 35-50                         | >50                         | 30-50                           | >50                           |
| Dominant proce                                  | ss $WZ^*, Z^*Z^*, Z^*+$       | jets $t\bar{t}$             | WZ, Z+jets                      | WZ                            |
|                                                 |                               |                             |                                 |                               |
| Selection                                       | VRnoZa                        | VRnoZb                      | VRZa                            | VRZb                          |
| Fri-boson                                       | $1.4 \pm 1.4$                 | $0.5 \pm 0.5$               | $0.6 \pm 0.6$                   | $0.26 \pm 0.26$               |
| ZZ                                              | $(1.3 \pm 0.9) \times 10^{2}$ | $4.5 \pm 2.8$               | $108 \pm 23$                    | $6.9 \pm 2.2$                 |
| ŧŧV                                             | $2.9 \pm 1.2$                 | $21 \pm 7$                  | $7.4 \pm 2.6$                   | $26 \pm 8$                    |
| WZ                                              | $110 \pm 21$                  | $34 \pm 15$                 | $(5.5 \pm 0.9) \times 10^{-2}$  | $(1.4 \pm 0.4) \times 10^{2}$ |
| Σ SM irreducible                                | $(2.4 \pm 0.9) \times 10^2$   | $60 \pm 16$                 | $(6.6 \pm 0.9) \times 10^{-2}$  | $(1.7 \pm 0.4) \times 10^{2}$ |
| SM reducible                                    | $(1.5 \pm 0.6) \times 10^2$   | $(0.7\pm 0.4)\times 10^{2}$ | $(3.8 \pm 1.4) \times 10^{-2}$  | <sup>2</sup> 27 ± 13          |
| ΣSM                                             | $(3.9 \pm 1.1) \times 10^2$   | $(1.3 \pm 0.5) \times 10^2$ | $(10.4 \pm 1.7) \times 10^{-2}$ | $(2.0 \pm 0.4) \times 10^{2}$ |
| Data                                            | 463                           | 141                         | 1131                            | 171                           |
|                                                 |                               |                             |                                 |                               |

### **3-leptons results**



### **3-lepton interpretation**

- Signal interpretation (simplified models) assumes wino-like  $X_2^0$  and  $X_1^{\pm}$ , bino-like  $X_1^0$ :  $m(X_2^{0}) = m(X_1^{\pm})$
- Degenerate neutralino-chargino mass excluded up to 610 GeV if decay via sleptons is assumed
- masses up to 310 GeV excluded even for the decay through W/Z bosons





#### Further reading, available on the web:

- S. Martin, "A Supersymmetry Primer", hep-ph/97093 http://arxiv.org/abs/hep-ph/9709356
- D.I. Kazakov, "Beyond the Standard Model", CERN school 2004 http://doc.cern.ch/yellowrep/2006/2006-003/p169.pdf
- J. Ellis, Supersymmetry for Alp Hikers http://arxiv.org/abs/hep-ph/0203114

#### Lehrbücher:

- H.Baer, X. Tata, "Weak Scale Supersymmetry", 2006
- Drees, Godbole, Roy, "Theory and Phenomenology of Sparticles", 2004