6.3 W/Z production at hadron colliders

- Important test of NNLO Drell-Yan QCD prediction for the total cross section
- Test of perturbative QCD in high p_T region (jet multiplicities, p_T spectra,....)
- Tuning and "calibration" of Monte Carlos for background predictions in searches at the LHC

Predictions for the W and Z boson total cross sections at the Tevatron, using the MRST2004 and CTEQ pdfs, compared with measurements from the CDF and D0 collaborations. The predictions are shown at LO, NLO, and NNLO. For the NLO prediction the accompanying pdf uncertainties are shown as band.

W boson production cross sections at the LHC ($\sqrt{s} = 7 \text{ TeV}$)

Program	Non-standard parameters	W charge	Cross Section (pb)		
Cross sections for the full kinematic regime					
FEWZ	MSTW2008NNLO	W^+	6160^{+49}_{-55} (scale) ± 111 (PDF) ± 74 (α_s)		
		W -	4301^{+34}_{-34} (scale) ± 69 (PDF) ± 52 (α_s)		
		$W^{+} + W^{-}$	10461_{-94}^{+84} (scale) ± 167 (PDF) ± 126 (α_s)		
ZWPRODMS	MSTW2008NNLO	W^+	6189^{+33}_{-50} (scale) ± 105 (PDF) ± 67 (α_s)		
		W -	4316^{+25}_{-33} (scale) ± 72 (PDF) ± 44 (α_s)		
		$W^{+} + W^{-}$	10506^{+58}_{-83} (scale) ± 173 (PDF) ± 111 (α_s)		
Cross sections for the kinematic regime of Eq. 1					
FEWZ	MSTW2008NNLO	W ⁺	2907		
		W -	1927		
		$W^{+} + W^{-}$	4833		

Predictions for the W \rightarrow Iv cross section at NNLO, calculated for the full kinematic range as well as in the fiducial region (see below).

Major uncertainties: renormalization and factorization scale (~ \pm 1%) parton distribution functions (~ \pm 2)% uncertainties of α_s (~ \pm 1%)

Fiducial region: PT(I) > 20 GeV, $\eta < 2.47$, excluding 1.37 < $\eta < 1.52$ $E_T^{miss} > 25 \text{ GeV}$ $m_T > 40 \text{ GeV}$

Z boson production cross sections at the LHC ($\sqrt{s} = 7 \text{ TeV}$)

Program	Non-standard	Mass range	Cross Section	
	parameters	(GeV)	(pb)	
	Cross section for the full kinematic regime			
FEWZ	MSTW2008NNLO	> 60	989^{+5}_{-7} (scale) ± 16 (PDF) ± 10 (α_s)	
		60 - 120	978^{+5}_{-7} (scale) ± 16 (PDF) ± 10 (α_s)	
		66-116	964^{+5}_{-7} (scale) ± 15 (PDF) ± 10 (α_s)	
		70-110	952^{+5}_{-7} (scale) ± 15 (PDF) ± 10 (α_s)	
		80 - 100	904^{+5}_{-6} (scale) ± 14 (PDF) ± 9 (α_s)	
ĺ		only Z, full range	970^{+5}_{-7} (scale) ± 15 (PDF) ± 10 (α_s)	
ZWPRODMS		only Z, full range	974^{+5}_{-6} (scale) ± 16 (PDF) ± 10 (α_s)	
Cross section for the kinematic regime specified in Eq. 2				
FEWZ	MSTW2008NNLO	66 - 116	420	

Predictions for the Z / $\gamma^* \rightarrow$ II cross section at NNLO, calculated for the full kinematic range as well as in the fiducial region (see below).

Major uncertainties: renormalization and factorization scale (~ \pm 1%) parton distribution functions (~ \pm 1.5)% uncertainties of α_s (~ \pm 1%)

Fiducial region: PT(I) > 20 GeV, $~\eta$ < 2.47, excluding 1.37 < η < 1.52 ~66 < m_{\parallel} < 116 GeV

6.4 Test of QCD in W/Z production at hadron colliders

As explained, leptons, photons and missing transverse energy are key signatures at hadron colliders

→ Search for leptonic decays: $W \rightarrow \ell \nu$ (large $P_T(\ell)$, large P_T^{miss}) $Z \rightarrow \ell \ell$

More difficult: $W \rightarrow \tau \nu \rightarrow had \nu \nu$ $Z \rightarrow \tau \tau \rightarrow e(\mu) \nu \nu had \nu$

Ingredients for a cross-section measurement:

 $\sigma = \frac{N_{sel} - N_{back}}{L \cdot \varepsilon \ \eta}$

where: N_{sel} = number of selected events N_{back} = number of background events in selected events

L = integrated luminosity (measured from machine, reference process) ϵ = detection efficiency

 η = acceptance of fiducial cuts (P_T(I), E_T^{miss}, M_T, m_{II},....)

How do W and Z events look like ?

<u>A bit of history</u>: one of the first W and Z events seen (UA2 experiment) W/Z discovery by the UA1 and UA2 experiments at CERN (1983/84)

Carlo Rubbia (left, UA1) and Luigi Di Lella (right, UA2)

Transverse momentum of the electrons

Today's W / Z $\rightarrow e_v$ / ee signals CDF Experiment, Fermilab

Trigger:

• Electron candidate > 20 GeV/c

Electrons:

- Isolated el.magn. cluster in the calorimeter
- P_T> 25 GeV/c
- Shower shape consistent with expectation for electrons
- Matched with tracks

 $Z \rightarrow ee$

• 70 GeV/ c^2 < m_{ee} < 110 GeV/ c^2

 $W \rightarrow ev$

• Missing transverse momentum > 25 GeV/c

$Z \rightarrow \ell\ell$ cross sections

Good agreement with NNLO QCD calculations, QCD corrections are large: factor ~ 1.25 C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343.

Precision is limited by systematic effects (uncertainties on luminosity, parton densities,...)

$W \rightarrow \ell_V$ Cross Section

$$M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^\nu \cdot \left(1 - \cos \Delta \phi^{l,\nu}\right)}$$

Note: the longitudinal component of the neutrino cannot be measured \rightarrow only transverse mass can be reconstructed

Good agreement with NNLO QCD calculations C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343.

Precision is limited by systematic effects (uncertainties on luminosity, parton densities,...)

Comparison between measured W/Z cross sections and theoretical prediction (QCD)

C. R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343

First measurements of W/Z production at the LHC -early ATLAS data: 0.31 pb⁻¹ (Summer 2010)

 $ATLAS \rightarrow Data 2010 (\sqrt{S} = 7 \text{ TeV})$ $ATLAS \rightarrow Data 2010 (\sqrt{S} = 7 \text{ TeV})$ $ATLAS \rightarrow Data 2010 (\sqrt{S} = 7 \text{ TeV})$ $ATLAS \rightarrow Data 2010 (\sqrt{S} = 7 \text{ TeV})$ $C \rightarrow C$ $C \rightarrow C$ $T \rightarrow C$

Distributions of the missing transverse energy, E_T^{miss} , of muon candidates for data and Monte-Carlo simulation, broken down into the signal and various background components.

Distributions of the transverse mass, m_T , of the electron- E_t^{miss} system without an E_t^{miss} requirement. The data are compared to Monte-Carlo simulation, broken down into the signal and various background components.

First measurements of W/Z production at the LHC -CMS data from 2010: 36 pb⁻¹ -

Distributions of the missing transverse energy, E_T^{miss} , of electron candidates for data and Monte-Carlo simulation, broken down into the signal and various background components.

Distributions of the invariant di-electron mass, m_{ee} , for events passing the Z selection. The data are compared to Monte-Carlo simulation, the background is very small.

W and Z production cross sections at LHC

The measured values of $\sigma_W x BR(W \rightarrow Iv)$ and $\sigma_Z x BR(Z \rightarrow II)$ for W and Z production in the CMS experiment, compared to the theoretical predictions based on NNLO QCD calculations. Results are shown for the electron and muon final states as well as for their combination. The error bars represent successively the statistical, the statistical plus systematic and the total uncertainties (statistical, systematic and luminosity). All uncertainties are added in quadrature.

W production cross sections at hadron colliders

The measured values of $\sigma_W x BR(W \rightarrow | v)$ for W+, W- and for their sum compared to the theoretical predictions based on NNLO QCD calculations. Results are shown for the combined electron-muon results. The predictions are shown for both proton-proton (W+,W- and their sum) and proton-antiproton colliders (W) as a function of root(s). In addition, previous measurements at proton-antiproton and proton-proton colliders are shown. The data points at the various energies are staggered to improve readability. The CDF and D0 measurements are shown for both Tevatron collider energies, $\sqrt{s} = 1.8$ TeV and $\sqrt{s} = 1.96$ TeV. All data points are displayed with their total uncertainty. The theoretical uncertainties are not shown.

Z production cross sections at hadron colliders

The measured values of $\sigma_z \times BR(Z \rightarrow II)$ where the electron and muon channels have been combined, compared to the theoretical predictions based on NNLO QCD calculations. The predictions are shown for both proton-proton and proton-antiproton colliders as a function of \sqrt{s} . In addition, previous measurements at proton-antiproton colliders are shown. The data points at the various energies are staggered to improve readability. The CDF and D0 measurements are shown for both Tevatron collider energies, \sqrt{s} = 1.8 TeV and \sqrt{s} = 1.96 TeV. All data points are displayed with their total uncertainty. The theoretical uncertainties are not shown.

W cross sections in ATLAS, charge separated

Full ATLAS data set from 2010

 $L = 36 \text{ pb}^{-1}$

Distribution of transverse energy (top) and transverse mass m_T (bottom) of the electron in the selected W to electron candidate events after all cuts for positive (left) and negative (right) charge. The simulated distributions are normalised to the data.

W⁺ and W⁻ production cross sections at LHC

The measured values of sigma_W x BR(W to Inu) for W+ and W- compared to the theoretical predictions based on NNLO QCD calculations. Results are shown for the electron and muon final states as well as for their combination. The error bars represent successively the statistical, the statistical plus systematic and the total uncertainties (statistical, systematic and luminosity). All uncertainties are added in quadrature.

W cross sections at the LHC, charge separated

Full ATLAS data set from 2010

 $L = 36 \text{ pb}^{-1}$

Measured and predicted W- vs. W+ cross sections times leptonic branching ratios. The systematic uncertainties on the lumninosity, on the acceptance extrapolation and on the missing transverse energy scale and resolution are treated as fully correlated. The projections of the ellipse to the axes correspond to one standard deviation uncertainty of the cross sections. The uncertainties of the predictions are the PDF uncertainties only. There is an additional uncertainty of the theoretical cross sections due to the uncertainty of the strong coupling constant, at the level of 2% for a 1% error on the coupling constant itself, which is not included in the theory error bars.

W cross sections at the LHC, charge separated

Full ATLAS data set from 2010

 $L = 36 \text{ pb}^{-1}$

Measured and predicted W vs. Z cross sections times leptonic branching ratios. The systematic uncertainties on the lumninosity, on the acceptance extrapolation and on the missing transverse energy scale and resolution are treated as fully correlated. The projections of the ellipse to the axes correspond to one standard deviation uncertainty of the cross sections. The uncertainties of the predictions are the PDF uncertainties only. There is an additional uncertainty of the theoretical cross sections due to the uncertainty of the strong coupling constant, at the level of 2% for a 1% error on the coupling constant itself, which is not included in the theory error bars.

W charge asymmetry as a function of pseudorapidity

$$A_{\mu} = \frac{d\sigma_{\mathrm{W}\mu^{+}}/d\eta_{\mu} - d\sigma_{\mathrm{W}\mu^{-}}/d\eta_{\mu}}{d\sigma_{\mathrm{W}\mu^{+}}/d\eta_{\mu} + d\sigma_{\mathrm{W}\mu^{-}}/d\eta_{\mu}}$$

The muon charge asymmetry from W-boson decays in bins of absolute pseudorapidity. The kinematic requirements applied are muon pT > 20 GeV, neutrino pT > 25 GeV and mT > 40 GeV. The data points (shown with error bars including the statistical and systematic uncertainties) are compared to NLO Monte Carlo predictions with different PDF sets. The PDF uncertainty bands include experimental uncertainties as well as model and parametrization uncertainties.

Summary of W/Z cross section results -comparison between theory and CMS measurements-

Good agreement between data and NNLO QCD predictions for all measurements

Test of QCD in W/Z + jet production

 LO predictions fail to describe the data;
Jet multiplicities and p_T spectra in agreement with NLO predictions within errors; NLO central value ~10% low

Jet multiplicities in Z+jet production

p_T spectrum of leading jet

Measurements of W+jets in ATLAS

The uncorrected inclusive jet multiplicity distribution for electron channel. The signal and leptonic backgrounds are normalised to the NNLO cross sections. The jet background from QCD processes was determined from data. W+jets fiducial cross section results as a function of corrected jet multiplicity for the e channel. The combined statistical and systematic uncertainties are shown by the black-hashed regions. Also shown are predictions from ALPGEN, SHERPA, PYTHIA, MCFM and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data. The theoretical uncertainties are shown only for MCFM (NLO prediction for Njet < 2 and a LO prediction for Njet = 3) and BLACKHAT-SHERPA (NLO prediction for Njet < 3 and a LO prediction for Njet = 4).

p_T spectra of the associated jets

W+jets fiducial cross section (e channel) as a function of the p_T of the first jet in the event. The p_T of the first jet is shown separately for events with >=1 jet to >=4 jet. The >=2 jet, >=3 jet and >= 4 jet distributions have been scaled down by factors of 10 and 100, 1000 respectively. For the data, the combined statistical and systematic uncertainties are shown by the black-hashed regions. Also shown are predictions from ALPGEN, SHERPA, MCFM and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data for >=1 jet to >=2 jet events. The theoretical uncertainties are shown only for MCFM (NLO prediction for Njet < 2 and a LO prediction for Njet < 3 and a LO prediction for Njet = 4).

p_T spectra of the associated jets

W+jets fiducial cross section (e channel) as a function of the p_T of the second, third and fourth jet in the event. (further description as above)

Both jet rates and p_T spectra are well described by perturbative QCD calculations

6.5 W mass measurement

Major contributions: LEP-II, direct mass reconstruction

Hadron collider: Tevatron and LHC (in the future)

Precision measurements of m_W and m_{top}

Motivation:

W mass and top quark mass are fundamental parameters of the Standard Model; The standard theory provides well defined relations between m_W , m_{top} and m_H

w

Electromagnetic constant

measured in atomic transitions, e⁺e⁻ machines, etc.

 $G_{F}, \alpha_{EM}, \sin \theta_{W}$

are known with high precision

Precise measurements of the W mass and the top-quark mass constrain the Higgsboson mass (and/or the theory, radiative corrections)

Relation between m_W, m_t, and m_H

W bosons at LEP – II

W mass measurement

(I) Messung des WQs an der WW-Produktionsschwelle

(2) LEP-II: Direkte Rekonstruktion der invarianten Masse des W-Bosons:

Results from W mass measurements at LEP-II

nary

- Results from all four LEP experiments are consistent
- Statistical error is dominant
- Total precision from LEP-II

 $\Delta m_W = \pm 33 \text{ MeV}$

Results of electroweak precision tests at LEP (cont.)

- Radiative corrections (loop, quantum corrections) can be used to constrain yet unobserved particles (however, sensitivity to m_H only through log terms)
- Main reason for continued precision improvements in m_t, m_W

What can hadron collider contribute ?

How can W mass be measured at a hadron collider ?

Technique used for W mass measurement at hadron colliders:

Observables: $P_T(e)$, $P_T(had)$

$$\Rightarrow P_{T}(v) = -(P_{T}(e) + P_{T}(had)) \qquad \text{long. component cannot be}$$

$$\Rightarrow M_{W}^{T} = \sqrt{2 \cdot P_{T}^{l} \cdot P_{T}^{v} \cdot (1 - \cos \Delta \phi^{l,v})} \qquad \text{measured}$$

In general the transverse mass M_T is used for the determination of the W mass (smallest systematic uncertainty).

Shape of the transverse mass distribution is sensitive to m_W , the measured distribution is fitted with Monte Carlo predictions, where m_W is a parameter

Main uncertainties:

Ability of the Monte Carlo to reproduce real life:

- Detector performance (energy resolution, energy scale,)
- Physics: production model $p_T(W), \Gamma_{W_1},$
- Backgrounds

In principle any distribution that is sensitive to m_w can be used for the measurement;

Systematic uncertainties are different for the various observables.

p_T(e) not sensitive to
detector effects, requires
p_T(W) knowledge

Transverse mass less sensitive to p_T(W), requires good modeling of missing E_T

W mass measurements

The beginning

State of the art, today

 $m_W = 80.371 \pm 0.013$ (stat.) GeV

 $m_W = 80.35 \pm 0.33 \pm 0.17 \,\text{GeV}$

Systematic uncertainties:

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties (MeV)

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total systematic	18	16	15
Total	26	23	

Momentum Scale Calibration

- "Back bone" of CDF analysis is track p_T measurement in drift chamber (COT)
- Perform alignment using cosmic ray data: ~50µm→~5µm residual
- Calibrate momentum scale using samples of dimuon resonances $(J/\psi, Y, Z)$

15000

10000

- Span a large range of p_T
- Flatness is a test of dE/dx modeling
- Final scale error of 9×10⁻⁵: ∆m_W = 7 MeV

L at = 2.2 fb⁻¹

 $\Delta p/p = (-1.185 \pm 0.02_{stat}) \times 10^{-3}$

2/dof = 48 / 38

Summary of W-mass measurements

W-Boson Mass [GeV]

Precision obtained at the Tevatron is superior to the LEP-II precision

2.10-4

 m_W (from LEP2 + Tevatron) = 80.385 \pm 0.015 GeV

Indirect limits from electroweak precision measurements

Impressive precision in W mass from the Tevatron $m_{\rm H} = 94^{+29}_{-24}$ GeV/c²(February 2012) $m_{\rm H} < 152$ GeV/c²(95 % C.L.)

The main story of 2011: eliminate 470 GeV of Higgs boson mass range

Systematic uncertainties:

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties (MeV)

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total systematic	18	16	15
Total	26	23	

Can the LHC improve on this?

In principle yes, but probably not soon .and. not with 30 pileup events

- Very challenging (e-scale, hadronic recoil, $p_T(W)$,...)
- However there is potential for reduction of uncertainties
 - statistics
 - statistically limited systematic uncertainties (marked in green above)
 - pdfs, energy scale,, recoil(?)

What precision can be reached in Run II and at the LHC ?

Numbers for a
single decay
channel

 $W \rightarrow e_V$

Int. Luminosity	CDF 0.2 fb ⁻¹	DØ 1 fb ⁻¹	LHC 10 fb ⁻¹
Stat. error	48 MeV	23 MeV	2 MeV
Energy scale, lepton res.	30 MeV	34 MeV	4 MeV
Monte Carlo model (P _T ^W , structure functions, photon-radiation)	16 MeV	12 MeV	7 MeV
Background	8 MeV	2 MeV	2 MeV
Tot. Syst. error	39 MeV	37 MeV	8 MeV
Total error	62 MeV	44 MeV	~10 MeV

- Tevatron numbers are based on real data analyses
- LHC numbers should be considered as "ambitious goal"
 - Many systematic uncertainties can be controlled in situ, using the large $Z \rightarrow \ell \ell$ sample (p_T(W), recoil model, resolution)
 - Lepton energy scale of \pm 0.02% has to be achieved to reach the quoted numbers

Combining both experiments (ATLAS + CMS, 10 fb⁻¹), both lepton species and assuming a scale uncertainty of \pm 0.02% a total error in the order of

 $\Rightarrow \Delta m_{W} \sim \pm 10 \text{ MeV}$ might be reached.

Signature of Z and W decays

What precision can be reached in Run II and at the LHC?

Numbers for a
single decay
channel

 $W \rightarrow ev$

Int. Luminosity	CDF 0.2 fb ⁻¹	DØ 1 fb ⁻¹	LHC 10 fb ⁻¹
Stat. error	48 MeV	23 MeV	2 MeV
Energy scale, lepton res.	30 MeV	34 MeV	4 MeV
Monte Carlo model (P _T ^W , structure functions, photon-radiation)	16 MeV	12 MeV	7 MeV
Background	8 MeV	2 MeV	2 MeV
Tot. Syst. error	39 MeV	37 MeV	8 MeV
Total error	62 MeV	44 MeV	~10 MeV

- Tevatron numbers are based on real data analyses
- LHC numbers should be considered as "ambitious goal"
 - Many systematic uncertainties can be controlled in situ, using the large $Z \rightarrow \ell \ell$ sample (PT(W), recoil model, resolution)
 - Lepton energy scale of \pm 0.02% has to be achieved to reach the quoted numbers

Combining both experiments (ATLAS + CMS, 10 fb⁻¹), both lepton species and assuming a scale uncertainty of \pm 0.02% a total error in the order of

 $\Rightarrow \Delta m_{W} \sim \pm 10 \text{ MeV}$ might be reached.

2012

Ultimate test of the Standard Model:

Compare direct prediction of the Higgs boson mass with direct observation