6.4 Silicon Pixel detectors

Guardring Guardring
Zwischen-
streifen
v v
/7 Y 3
g
Basic concept: - segment a diode in two dimensions

- strips become pixels

- increased two-dimensional resolution - space points



Si-Pixel Detectors: CCD

» Instead of strips measuring one dimension, have a matrix of points
measuring two dimensions
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Si-Pixel Detectors: CCD

» First pixel detectors in HEP were CCDs

derived from digital cameras
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Pixel Detector Overview

« Different pixel detector types

« Hybrid Active Pixel Sensors (HAPS) HAPS design principle

— Detector and readout ASIC are
sandwiched together e

(Nreadout = pixel ) Ss®

— Limitation from readout: P— 4 Sl
Pixel size > 120 x 120 ym with 130nm 1 S buder
technology, 50 x 50 pm with 65nm » [”‘ Sepe ,' S

— Used widely in collider experiments NIRRT \\
. ATLAS: 100M pixels (50x400 pym2) . i
« CMS: 23M pixels (150x150 pm?) el L o -

« Monolithic Active Pixel Sensors (MAPS)

— Preamplifier integrated into detector,
ASIC nearby

— Pixel size > 15 x 15 uym

— Current research topic in many groups,
(MIMOSA, IReS Strasbourg)



Pixel Detector Overview
Hybrid Pixels

lon. Dose

Mrad per
lifetime*
LHC (10°** ems7) 25 1000 79
25 10000 ‘ > 500
C Heavy lons (6x10?7 cm? s%) 20.000 10 >1013 0.7
RHIC (8x10%” cms) 110 3,8 few 1012 0.2
SuperKEKB (103° cm2s1) 2 400 ~3 x 1012 10
LC (103 cm2s1) 350 250 1012 0.4
lower rates
lower radiation aE:IESE’TS:RRHlC assumed lifetimes:
Monolithic Pixels ~ =] smaller pixels | e
| terial and future ILC: 10 years
AL . ALICE ITS others: 5 years
better resolution
N. Wermes, BND-School-2015 -




Hybrid Pixel - Example

« ATLAS FE-I3
0.25 ym CMOS technology
— Pixel size 50x400 pum?

— 18 columns x 160 rows =
2880 cells

« End of column logic
— Store hit information until readout
— Hit selection on readout

« ATLAS Pixel Detector
Total area of 1.8 m?
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Hybrid Pixel - Assembly

Sensors
— Oxygenated Si
— Wafer size: ~10 cm across, ~250 pm thick

Electronics
— Chip size limited by yield
— Wafer size ~20 cm
Hybridization
— PbSn or Indium bumps
— ‘flip-chip’ to mate the parts
— ~3000 bumps per chip, ~50000 per module




Signal generation in a magnetic field

Lorentz angle a,, analogous to
chapter 4.3.3

Measurement approach

— Number of pixel hits is minimal when
particle incident angle equal to
Lorentz angle

Tracking detectors are often built at a
tilt angle to compensate Lorentz angle

— e.g. 20° for ATLAS Pixel Barrel

N
ATLAS (Run-1) \Q'Z\((,I’Zq/”\\ N\
')

3 barrel layers: ‘
B-layer (22 staves) /‘(\/\\,/,/
Layer 1 (38 staves)

Layer 2 (52 staves) -

el Cluster size
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Pixel alignment

Pixels = very good resolution of individual hits (ATLAS and CMS ~20um)

precision for track measurement requires very precise (~um) alignment of Pixel
layers

Residual defined as difference of extrapolated hit position and measured hit
position, e.g. for cosmic muons

— Integrated over all hits on a track
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Pixel Detector Summary

« Compared to silicon strip detectors
— Advantages

» 2-dimensional information like double sided-micro strip, but more
simultaneous hits allowed

* Low capacity -> low noise
— Disadvantages

» Large number of readout-channels -> expensive, large data volume,
contacts can be complicated (for hybrids “bump bonding”,
“flip chip”, ...)

« Hit resolution Ax/\N12 Ay/N12

 Pixel Detector tasks

— Precision 3D tracking points
« Huge advantages in high density tracking environments

— Vertexing (see section 6.6)



6.5 Radiation damage of silicon detectors

- Radiation damage in the silicon bulk

- Radiation tolerant silicon detectors
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Radiation Levels (Detalils)
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Non lonizing Energy Loss — NIEL
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NIM A 426 (1999) 1-15 particle energy [MeV]
NIEL scaling allows to estimate long-term radiation effects Radiation damage can be normalized
(caused by operation of a detector over many years) by an in units of

accelerated exposure to the corresponding equivalent dose
of one particle type

“1 MeV neutron equivalent”
- independent of particle type and

(typically available at radiation facilities, pion beams, energy
proton beams, neutrons at reactors)

[NIEL scale factors]




Radiation damage

Non-lonizing Energy Loss (NIEL) is a volume (bulk) effects

— Net effect: development of acceptors 1071,
: *
— Increased leakage currents and bias [
voltage S )2 S
(ap) i .
-- Increase in current Al is proportional to g i
: : ]
the equivalent particle fluence @, 2 10~}
AI 41
— =" ) > 10 ;
4 / S

— Annealing: Al decreases again with time

— The annealing time constant decreases with
temperature
—> faster recovery at low temperatures

10

: | J RS 7]
n-type FZ - 7 to 25 KQcm
n-type FZ - 7 KCcm
n-type FZ - 4 KCcm
n-type FZ - 3 KCcm
p-type EPI - 2 and 4 KQcm

n-type FZ - 780 Qcm
n-type FZ - 410 Qcm
n-type FZ - 130 Qcm
n-type FZ - 110 Qcm
n-type CZ - 140 Qcm
p-type EPI - 380 Qcm |

1011 |

— Also Al itself depends strongly on the temperature

(doubling every 8°)

o

(I)eq [Cm'z] NIM A 426 (1999) 1-15

In addition there are surface effects, however, they are

less dramatic

107 . 1015




Radiation damage

« Development of acceptor centres leads to type inversion: n-Si 2> p-Si
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* p-n junction moves from the p-strip side to the n-backplane

- Depletion (as function of bias voltage) develops from the ,wrong“ side

- Standard p-in-n Si-detectors cannot any longer be completely depleted



After type inversion: depletion of p-in-p

Type inversion due to radiation
damage

Silicon bulk is effectively p-
doped

The p-in-n detector has
developed into a “p-in-p”
detector, for which only the
back plane is still n-doped

The depletion zone now grows
from the n*-back side to the
p-strips

Strips are only isolated from
each other by total depletion

—> very high voltages required




Partial depletion after type inversion

» After type inversion and increasing radiation
damage, higher and higher

bias voltages are required to achieve insulator
full depletion

p+

* Areas around strips can at some point not any

longer be depleted, n+

— Strips in a non-depleted layer

— Strips are not electrically isolated
any longer

— Charged particles (mip) produce larger clusters
(some of which can be below threshold i

(S:N)-threshold)
L

: : : :‘ o i |d
(in particular a problem for binary n4. =09 {1 cce=0.5 ; I

readout schemes with small pitches)

—> loss of efficiency o,

A%




Signals in under-depleted n- and p-type Si detectors

ptonn
p strips
[ [ [ [ [
Undepleted region

Hole drift
Active region

Electron drift'

n'layer

Traversing particle

p-on-n silicon, under-depleted:

» Charge spread — degraded resolution

» Charge loss — reduced charge collection
efficiency (CCE)

+ .
n strips

Il E

Active region

Hole driﬂl Electron drift

Undepleted region

Traversing particle

n-on-p silicon, under-depleted:

* Less degradation with under-depletion
* Limited loss in CCE

* Collection of electrons (fast)



Trapping of charges (attachment) due to
radiation-induced defects in the bulk
constitutes an additional degradation

with
Trapping can be quantified via
effective trapping times <, for e and h* 1 o
oglh R . — x N, ... <radiationdose
Trapping times decrease with increasing T efects
radiation trap e h

Trapping of charges
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Trapping of charges

After irradiation T, is identical for e~ and h*

After annealing trapping rate is higher for h*

Mobility of electrons is found to be ~3x higher than
of holes

— Mo =1350 cm?V-1sT
— M =480 cm?V-1s

— Collection time (100 V, 300 ym) for e =7 ns, for h =19 ns

T, (1015neq) = 2ns w=v, T, =200umn

T, (1016neq) =0.2ns w=v, T, =20um




Annealing: time dependence

N has three components with different time dependence

Stable Damage: :
8t i
Donor removal, stable acceptors TE Na = g, [Ny =gy P
S 6 i
N, = N o(1-exp(-c®)) +,® S e, |
s 4ty h'\.‘_'* 1 Y
P L A— s . Nc
<
. 2L e ':ch
Short Term Annealing Y Ny
Ny = @ g, exp[-t/1,(T)] e T e iooo 10000
annealing time at 60°C [min]

NIM A 466 (2001) 308 - 326

Reverse Annealing

NY = & g, exp[1-(1+t/1,(T)"]



Annealing: temperature dependence

,current-related damage constant”
a shows a strong temperature
dependence

Faster annealing at higher
temperature

Cause is the temperature dependent
mobility of defects
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Operation of Si detectors at the LHC

Simulation of the operation of Si-
Pixel detectors at the LHC

— Detectors will be cooled,
temperature during operation at
-7°C

— For maintenance, detectors
have to be warmed up to 20°C

— 3 Scenarios, assuming different
time duration of maintenance

The cumulative annealing depends
strongly on the duration of the
various phases
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Evolution of Current in ATLAS Si Strip Detector
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Cumulated Radiation Effects

RD50 test results for irradiated silicon
strip detectors

Signal comparison of p-in-n and n-in-p
Signal plotted for increasing radiation
dose (three bias voltage)

P-in-n dies below 10> N,

High bias voltages give more signal for
same fluence (depletion)

ATLAS test results for irradiated P-type
silicon strip detectors

Signal plotted for increasing radiation
dose (bias voltage fixed)

Different sensors and particle types

Signal drops globally CERN-
LHCC-2015-020

Ske- signal still at 10"° N,
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Summary Radiation Damage

Radiation damage at LHC and HL-LHC unavoidable
Doping changes

— Net effect: acceptor-production proportional to radiation dose

— Voltage for full depletion increases with N

— Type inversion n -> p, depletion on the ,wrong“ side

» for HL-LHC silicon with p-doping

Leakage current increases strongly (HL-LHC: factor~103).
Problems:

— Higher noise (with VI)

— Heat produced increases with |
cooling)

and U, (has to mitigated by

bias

Trapping
— Charge carriers are trapped -> lower signal. Holes are affected
more strongly than electrons.



