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6.1 Introduction, the use of silicon detectors for tracking

Silicon detectors can be viewed as solid-state ionisation chambers

The application as highly segmented tracking detectors emerged in the 1980s,
however, expensive and difficult at first
(before: applications in energy measurement, germanium and silicon detectors)

Increased commercial use of Si-photolithography and availability of VLSI
electronics lead to a boom for Si-detectors in the 1990s — and it still goes on,
although we need R&D on Si radiation hardness...

Nearly all high energy physics experiments use Silicon Detectors as innermost
high-precision tracking devices

High energy physics experiments are now exporting Si-technology back to the
commercial world (Medical Imaging)
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Evolution in Si-Detector Area
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All e*e- and pp collider experiments
have / had high precision semiconductor
detectors close to the interaction region

CMS: full silicon tracking detector




Tracking in pp Collisions at the LHC

Run 169226, Event 379791 X AT LAS 1200 tracks every 25 ns
Time 2010-11-16 02:53:54 CET &\ \/

EXPER|MENT or 10" per second

—> high track density, but in
addition high radiation dose
for detectors

10" (1 MeV) n,, /cm?/ 10y

or 600 kGy through the
ionization of mips in 250 um
silicon detectors

position of tracking detectors
(silicon pixel, silicon strips and
straw tubes)

LHC: 10° times the track rate from LEP
HL-LHC (High Luminosity LHC, after 2026): another factor of 10 compared to LHC




6.2 Basic properties of silicon

« Silicon is a semi-conductor element in the 4" group of the periodic system
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*  “Doping”: Small admixtures of type lll or type V elements increase conductivity
— Donors like Phosphorous give extra electron - n-type Si
— Acceptors (e.g. Boron) supply extra hole = p-type Si
— Contact between p- and n-Si forms p-n-junction

— Doping dominates conductivity as N; << Np

— for n-type Si: op = e*Np'H,
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n-type silicon

Si: 4 valence electrons
Add elements from Vth
group: 5 valence electrons

Donors give away one
electron

n-type: electron
concentration n larger than
hole concentration p

— n= ND
(Np = donor concentration)

p-type silicon
 Si: 4 valence electrons

* Add elements from Ill-rd
group: 3 valence electrons

» Acceptors miss one electron

* p-type: holes are majority
carriers
e p = NA
(N, = acceptor concentration)



Mobility of electrons and holes as a function of the electric field
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Semiconductor materials suited for particle detectors

Semiconductor band gap  intrinsic  average w.; mobility carrier

(eV)  carrier conc. Z (eV) cm?/Vs life time
(cm ™) 2 h

Si 8 1.45 - 10" 14 3.61 1450 505 100pus

Ge 0.66 2.4 - 10" 32 2.96 3900 1800

GaAs 1.42 1.8 - 10° 32 4.35 8800 320 1-10 ns

CdTe 1.44 107 50| 443 1050 1000 0.1-2 ps

CdZn'le ~1.6 19.1 1.6 ~1000 50-80 ~ us

CdS 2.42 48 + 16 6.3 340 50

Hglo 2.13 62 1.2 100 1 ~ LS

InAs 0.36 49 + 33 33000 460

InP 1.35 49 4 15 4600 150

ZnsS 3.68 30 + 16 8.23 165 5

Phs (.41 82 4 16 G000 A000

Diamond 5.18 <10? 6 13.1 1800 1400 ~1 ns

Materials favoured with: low Z (minimize material, in terms of radiation length)
fast, i.e. high mobility or charge carriers
high charge carrier lifetime
affordable prize / availability

Medical applications (y ray absorption) = high Z-materials favoured



p-n-Junction
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Diffusion of e- from n-side and
h* from p-side

Recombination on other side,
free charges disappear around
junction (“depletion®)

Neutral p- or n-Si becomes
charged - E-Field

External field can increase or
decrease depletion zone

Depletion is what we want for
detectors!



Charge carrier density:
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6.3 Silicon Strip detectors




A Basic Silicon Detector

p-type surface implant

Take a p-n-diode

n-type Si-bulk
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A Basic Silicon Detector
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A Basic Silicon Detector
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A Basic Silicon Detector

Take a p-n-diode
Segment it
Apply a voltage

Wait for a MIP to
deposit charge

Charges separate
and drift in E-field
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A Basic Silicon Detector

Take a p-n-diode
Segment it
Apply a voltage

Wait for a MIP to
deposit charge

Charges separate
and drift in E-field
This gives a signal
in the p-strips

p-type surface implant /

n-type Si-bulk

n*-type back side implant




Depletion

 MIP charge in 300 pm Si
is 4fC (22.000 e h*-pairs)

* Free charge in 1 cm? Si-
Detector 10* times larger
(T=300K), so signal is
invisible. Options:

— Cryogenic operation
— E-field to get rid of free
charge

* Apply external Voltage V,
to deplete Si from
charges (reverse bias,

V, <0)
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Depletion zone grows
from p-n-junction
towards the back side
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MIP charge in 300 ym Si
is 4fC (22.000 e"h*-pairs)

Free charge in 1 cm? Si-
Detector 104 times larger
(T=300K), so signal is
invisible. Options:
— Cryogenic operation
— E-field to get rid of free
charge

Apply external Voltage V,
to deplete Si from

charges (reverse bias)

Depletion zone grows
from p-n-junction
towards the back side

Depletion




Signal

Depleted piece of Si, a MIP
generates e-h*-pairs...

e h*-pairs separate in E- /\ /\
field, and drift to electrodes

Moving charges -> electric
current pulse

Small current signal is
amplified, shaped and
processed in ASICs

(“chips™) on read-out
electronics

ASIC = application specific integrated circuit



Some subtleties

Even under reverse bias, 4 /\ /\ /\ 4 4

; il aE o
there is a permanent 5 i T T T

thermal current going into
the amplifiers

Amplifying this current
consumes power,
generates heat and noise

Solution: decouple strips
from amplifiers for DC
signals only ->
AC-coupling =

Integration of capacitors
into Si-detector possible
( and common today)




More Subtleties

e Diodes need to be on

same potential but
electrically separated 4 /\ /\ /\ 4 4
i oF

(to avoid shorting them) # L T

« Solution: decouple
strips with
bias resistors

- ~1MQ




Schematic Si-Detector

This detector will deliver
2D information — we need
one more coordinate:

Take another detector and
place it on top with
orthogonal strips

Or segment the n-side
(backside) as well
-> double-sided detector

Both will work — but one
has to think about the
angle of the two Si-planes




Angle between two Si-Detectors

v v

© Charge from MIP

V & Signal strips

sduys Bulinsesw-A

O @ O “Ghost“ (combinatorial hit)
N hits per readout cycle
generate N? ambiguities in hit
position

O D

Ambiguities are reduced by

stereo angle < 90°

ATLAS Reality: O(10) hits per detector
module per 25 ns.

X-measuring strips

Stereo angle of few degrees.




Performance: Resolution

Spatial resolution o: Resolution for analogue readout
— Dominated by strip pitch d Nl J’ e e
— Single strip hits: o =d/12 e R
250§ »»»»»» : T
. 1 _ 200 el ne ey UIT NemedlT | e
— Double strip hits improve resolution A /
(weighted average) 00 f R
f e ;
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- Resolution worsens rapidly with increasing pitch g0 b
60 |
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- better resolution 20 f
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— An analogue readout has better space resolution

. idual
than a binary one T e



Performance: Rate

+ Rate:
— Signal collection t. . ~10ns
— Signal shaping in front end electronics: t ¢ = tgject

— A lot of Si-detectors operate successfully at LHC speed (25ns)



Signal and Noise

Noise “Signal“ from strips has a
Gaussian shape

MIPs deposit ~100 keV energy,
according to Landau distribution,
broadened by noise

Need to separate signal and
noise

- threshold value
—> efficiency

Figure of merit: Signal-to-Noise
ratio or S/N

S/N also affects resolution!

Frequency

»
»

noise distribution
/ Landau with noise

............ l

most prob. signal ~ Signal

noise



Some details on detector designs

Detector has edges, which
are cut Silicon with many
defects -> generation of
current

Solution: add structures to

avoid depleting edges, and
grade down potentia

steps: Guard rings =

Guard rings are p-implants
that run around the active
detector area

Bias resistors



Example of a Si-detector with a single guard ring




Wire Bonding
 Si detector needs connection to readout electronics
« High connection density with O(15) wires per mm

« Ultra-sonic bonding of ~20um wires with semiautomatic system




Single Wire Bond Foot




Full Si-Detector System

So far we only have a piece of Silicon with some electronics attached,
which will give us a 3D space point...

Need to put many (thousands) of Si-Detectors together in a smart way

— Require several space points > several layers

— Need to see all charged tracks - hermetically closed

— For collider experiments (e.g. ATLAS, CMS) this means
a multilayer cylindrical structure

Some examples will follow



CMS Silicon Tracker

Micro strip: Pixel:

« 214 m? of silicon strip  Inner three layers: silicon pixels, ~1m?
sensors * 66 million pixels

* 11.4 m strips * Precision: o(r$¢) ~ o(z) ~ 15 ym

e Diameter: 2.4 m



