3. Interaction of Neutral Particles with Matter

3.1 The interaction of photons with matter

- Photoelectric effect
- Compton effect
- Pair production
- Total photon absorption coefficients
- 3.2 Detection of neutrons
- 3.3 Detection of neutrinos

3.1 Interactions of photons with matter

- Photons are electrically neutral particles;
 In order to be detected, they must transfer their energy to charged particles
- Interaction with detector material via three discrete processes:
 - Photoelectric effect
 - Compton scattering
 - Pair creation
- Photons "disappear" via these reactions (photoelectric effect and pair creation) or are "scattered" and loose energy
 - → The Intensity of a photon beam is exponentially attenuated in matter (see later):

 $I(x) = I_0 \cdot e^{-\mu \cdot x}$

where: x represents the path length in the material, I(x) is the intensity of the photon beam, with I₀ = I (x=0), and μ := attenuation coefficient.

Photoelectric effect:

Absorption of the photon by electrons
 → ionisation, for high energies, electrons are released from the inner shells (K, L, ..) of the atoms

- The energy of the electrons is fixed: $E_e = E\gamma E_B(e)$
- Theoretically, the photoelectric effect is difficult to treat rigorously, due to the complexity
 of the Dirac wave-functions for the atomic electrons
- It shows a strong modulation if E_γ ≈ E_B (binding energy); For regions away from absorption edges one finds in leading order for the K-shell absorption cross section for an atom:

$$\sigma_{\text{Photo}}^{\text{K}} = \sqrt{\frac{32}{\epsilon^7}} \alpha^4 \cdot Z^5 \cdot \sigma_{\text{Th}}^{\text{e}}$$
 [cm² / Atom]

where σ_{Th}^{e} represents the Thomson cross section for elastic scattering of photons on electrons, which is given by:

$$\sigma_{Th}^{e} = \frac{8}{3} \cdot \pi \cdot r_{e}^{2}$$
 = 6.65 10⁻²⁵ cm² = 0.665 b (barn)

Compared to the ionisation cross sections discussed in Section 2, these cross sections

11.1

• For high photon energies ($\epsilon >> 1$) the cross section can be approximated by:

$$\sigma_{Photo}^{K} = 4\pi r_{e}^{2} \alpha^{4} \cdot Z^{5} \cdot \frac{1}{\epsilon}$$
 where $\epsilon = \frac{E_{\gamma}}{m_{e}c^{2}}$ (reduced photon energy)

The cross section shows a very strong Z dependence:

$$\sigma^{K}_{Photo} \propto Z^{5}$$

→ large absorption via photoelectric effect in high-Z materials

(in the range 0.1 MeV < E_{γ} < 5 MeV, the exponent is found to vary between 4 and 5)

- For photons with energies above the K-shell binding energy, the energy is mainly transferred to K-shell electrons
- Photo electric effect is accompanied by the emission of X-rays or Auger electrons (de-excitation of atom)

Photoelectric cross section for lead (from Ref. [2])

Compton scattering:

 Describes the elastic scattering of a photon on a quasi-free electron

(i.e. binding energy can be neglected compared to the photon energy)

 Applying energy and momentum conservation, the following relations can be obtained:

$$E_{\gamma} = E_{\gamma} \frac{1}{1 + \epsilon(1 - \cos \theta_{\gamma})} \quad \text{where} \quad \epsilon = \frac{E_{\gamma}}{m_e c^2}$$

• This can also be expressed as a change of the photon wave length:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

where $\frac{h}{m_e c}$ = 2.426 10⁻¹² m is called the Compton wave length

•Maximal energy transfer to the electron for $\theta = \pi$

$$\Rightarrow \qquad E_{\gamma'}^{\min} = E_{\gamma} \frac{1}{1 + 2\varepsilon}$$

This corresponds to a maximal electron energy of:

$$E_{e}^{\max} = E_{\gamma} - E_{\gamma'}^{\min} = E_{\gamma} \frac{2\varepsilon}{1 + 2\varepsilon}$$

Appears as "Compton Edge" in the electron energy spectrum

Energy distribution of the Compton recoil electrons. The sharp drop at the maximum recoil energy is known as *Compton edge* (from Ref. [2]) The differential cross section can be calculated in QED and is given by the Klein-Nishina formula:

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \frac{1}{\left[1 + \varepsilon(1 - \cos\theta_\gamma)\right]^2} \left(1 + \cos^2\theta_\gamma + \frac{\varepsilon^2(1 - \cos\theta_\gamma)^2}{1 + \varepsilon(1 - \cos\theta_\gamma)}\right) \qquad \text{[cm}^2 / \text{electron]}$$
$$\varepsilon = \frac{E_\gamma}{m_e c^2}$$

 $\gamma + e \rightarrow \gamma' + e'$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta,\varepsilon) \longrightarrow \left(\begin{array}{c} 0.225 \\ 0.175 \\ 0.125 \\ 0.075 \\ 0.05 \\$

 Integration over dΩ gives the total cross section per electron for Compton scattering

$$\sigma_{\rm c}^{\rm e} = 2\pi r_{\rm e}^2 \left| \left(\frac{1+\epsilon}{\epsilon^2} \right) \left\{ \frac{2(1+\epsilon)}{1+2\epsilon} - \frac{1}{\epsilon} \ln(1+2\epsilon) \right\} + \frac{1}{2\epsilon} \ln(1+2\epsilon) - \frac{1+3\epsilon}{(1+2\epsilon)^2} \right|$$

[cm² / electron]

mm

• For high energies $\varepsilon >>1$ the Klein-Nishina formula can be approximated by:

$$\sigma_{\rm c}^{\rm e} \sim \frac{\ln \varepsilon}{\varepsilon}$$

 The scattering cross section per atom (Z electrons) is given by:

$$\sigma_c^{Atom} = Z \sigma_c^e$$

Absorber material dependence: ~ Z

Total Compton scattering cross section (from Ref. [2])

- In Compton scattering only part of the energy is transferred to the electron, i.e. photon is scattered and red-shifted, however, it does not disappear
- Therefore one defines a scattering and an absorption cross section for the atom as:

$$\sigma^{A} = \sigma^{e}_{c} - \sigma^{S}$$

 $\sigma^{S} = \frac{E_{\gamma'}}{E_{\gamma}} \sigma^{e}_{c}$

• For these cross sections also different attenuation coefficients (μ_{CS} and μ_{CA}) are determined (see later)

Total Compton scattering cross section (from Ref. [2])

 $\gamma + e \rightarrow \gamma' + e'$

[cm² / electron]

Thomson and Rayleigh scattering:

Thomson scattering: elastic scattering of photons on free electrons in the low energy limit

for $\epsilon \rightarrow 0$ the Klein-Nishina formula reduces to the Thomson cross section

 $\sigma_{\rm Th}^{\rm e} = \frac{8}{3} \cdot \pi \cdot r_{\rm e}^2$

Rayleigh scattering: scattering of photons by atoms as a whole, all electrons participate in a coherent manner (\rightarrow also called coherent scattering)

In both processes no energy is transferred to the medium; Atoms are neither excited nor ionized and only the direction of the photons is changed

For high Ey: Thomson and Rayleigh scattering are very small and can be neglected.

Pair production: $\gamma + (A) \rightarrow e^+ e^- + (A)$

- Only possible in the close neighbourhood of a collision partner (atomic nucleus)
- Threshold energy: $E_{\gamma} > 2 m_e c^2 = 1.022 \text{ MeV}$
- Cross section (high energy approximation):

energy independent, asymptotic value, ~Z² \mathcal{M}

е

- After traversing a material thickness of 9/7 X₀, the photon intensity –due to pair creation- is decreased by 1/e .or.
- For high photon energies, pair production occurs after traversing a material thickness corresponding to one radiation length with a probability of

$$p = 1 - e^{-7/9} = 0.54$$

- The energy distribution on the two electrons (e⁺, e⁻) is:
 - symmetric for low and medium energies
 - asymmetric for high energies
- Define the ratio x of the kinetic energy of the positron to the total kinetic energy of the pair:

$$x = \frac{E_{+} - m_{e}c^{2}}{E_{\gamma} - 2m_{e}c^{2}} = \frac{E_{+}^{kin}}{E_{Pair}^{kin}}$$

• The differential cross section is then given by:

$$\frac{d\sigma_{\text{Pair}}}{dE_{+}} = \frac{\alpha \cdot r_{e}^{2}}{E_{\gamma} - 2m_{e}c^{2}} \cdot Z^{2} \cdot f(\varepsilon, Z)$$

The energy sharing function $f(\epsilon, Z)$ (from Ref. [3])

The total photon absorption cross section for lead; The areas dominated by the photoelectric effect, by Compton scattering and by pair creation are visible (from Ref. [2]) Areas in which photoelectric effect, Compton scattering and pair creation are dominant as a function of the photon energy and the proton number Z of the absorber material (from Ref. [3])

Photon interaction cross sections

Overview on energy loss / interaction processes

Charged particles		Photons, γ	
Ionisation and excitation Bremsstrahlung		Photoelectric effect(dominant in ~ keV energy range)Compton scattering(dominant in MeV energy range)Pair creation (threshold energy = 2 m_e = 1,022 MeV)	
Cherenkov radiation Transition radiation			

The total absorption coefficient

 The absorption probability for a photon in matter is given by the sum of the cross sections discussed above:

 $\sigma = \sigma_{Photo} + Z \cdot \sigma_c + \sigma_{Pair}$

The probability for photon absorption per unit length is given by the product of the cross section and the density of atoms N:

$$\mu := \mathbf{N} \cdot \boldsymbol{\sigma} = \left(\frac{\mathbf{N}_{\mathbf{A}} \cdot \boldsymbol{\rho}}{\mathbf{A}}\right) \cdot \boldsymbol{\sigma}$$

where: N_A : Avogadro's number ρ : density of the material A : molecular weight

 From these relations the exponential attenuation of the photon beam with x follows:

 $I(x) = I_0 \cdot e^{-\mu \cdot x}$

where: x = path length μ = absorption coefficient

(Often the so called mass attenuation coefficient μ ' is given: $\mu' = \mu / \rho$ [$\mu\Box$] = cm² / g

Mass attenuation coefficients as a function of the photon energy for water (left) and air (right); (from Ref. [3])

3.2 Interactions of neutrons with matter

- Neutrons are electrically neutral; like photons they must transfer their energy to charged particles in order to be detected
- Neutrons are also sensitive to the strong interaction, however, short range ~10⁻¹⁴ m, characterized by the hadronic interaction length (see chapter 2.7)
- In general: neutrons show strong penetration power, however, interaction and penetration power are strongly dependent on their energy;
- Classification of neutrons according to their kinetic energy (E_n):
 - 100 MeV < E_n:
 - 100 keV < E_n < 100 MeV:
 - 0.1 eV $< E_n < 100 \text{ keV};$
 - E_n ~0.025 eV:
 - $E_n \sim meV \mu eV$:

high energy neutrons fast neutrons epithermal neutrons (nuclear resonance reactions) thermal or slow neutrons cold or ultra-cold neutrons

Major interaction processes of neutrons with matter:

	Process		Energy range*
(i)	High energy hadron shower production	n + A → hadrons (inelastic)	> 100 MeV
(ii)	Elastic Scattering	$n+A \rightarrow n+A$ $A(n,n)A$	~10 – 100 MeV
(iii)	Inelastic Scattering	A(n,n')A*, A(n,2n')B,	1 MeV $< E_n < 10$ MeV energy of nuclear excitation
(iv)	Radiative neutron capture, (n,γ) reaction	n + (Z,A) → (Z,A+1) + γ (example neutron capture in Cd)	< ~few MeV
(v)	Other nuclear reactions	(n,p), (n,d), (n,α), (n,αp)	eV – keV range
(vi)	Nuclear fission	(n,f)	< 1 eV (most likely at thermal energies, 0.025 eV)

(iii) Neutron is absorbed by nucleus, which is left in an excited state; accompanying radiation

- (iv) Example: neutron capture in Cd, cross sections are energy dependent, scale as 1/v
 - (v = velocity of the neutrons), resonances for absorption may occur, depending on material

(v) Cross section also scales as 1/v

*) energy range where this type of interaction is the principle mechanism of energy loss

Die Wirkungsquerschnitte für die induzierte Spaltung und für die (n, γ)-Reaktionen hängen stark von der kinetischen Energie / Geschwindigkeit v der Neutronen ab.

Im thermischen Bereich (E = 0,025 eV) gilt:

σ (n, γ) und σ (n,f) sind prop. zu 1/v (v= Geschwindigkeit)
 (dominiert durch Wechselwirkungszeit, d.h. Zeit, während der sich das Neutron in der Umgebung des Kerns aufhält)

Abb. 12.14. Wirkungsquerschnitte der neutroneninduzierten Spaltung von 235 U und 238 U. Im Bereich unterhalb von 0,01 eV erkennt man bei 235 U dieselbe 1/v-Abhängigkeit wie beim Wirkungsquerschnitt der (n, γ) -Reaktion (aus dem gleichen Grund wie dort!). Die "radiative" Absorption (n, γ) konkurriert mit der Spaltung, sie hat bei 0,025 eV einen Wirkungsquerschnitt von 97 barn. Die zahlreichen Resonanzen zwischen 1 eV und 100 eV gehören zu angeregten Zuständen des 236 U-Kerns.

The total interaction cross section

 The total interaction cross section for neutrons in matter is given by the cross sections discussed above:

 $\sigma = \sigma_{\text{elastic}} + \sigma_{\text{inelastic}} + \sigma_{\text{capture}} + \dots$

The probability for a neutron interaction per unit length is given by the product of the cross section and the density of atoms N:

$$\mu \coloneqq \mathbf{N} \cdot \boldsymbol{\sigma} = \left(\frac{\mathbf{N}_{\mathbf{A}} \cdot \boldsymbol{\rho}}{\mathbf{A}}\right) \cdot \boldsymbol{\sigma}$$

where: N_A : Avogadro's number ρ : density of the material A : molecular weight

 In analogy to photons, a beam of neutrons with a fixed energy passing through matter is exponentially attenuated

$$\mathbf{I}_{n}(\mathbf{x}) = \mathbf{I}_{n,0} \cdot \mathbf{e}^{-\mu_{n} \cdot \mathbf{x}}$$

(note the difference between interaction, e.g. scattering, and absorption):

Total reaction cross sections for neutrons in water, paraffin (CH_2) and protons; (from Ref. [3])

Moderation of neutrons:

- Fast neutrons (E_{kin} > 100 keV) are dangerous for detectors, e.g. damage of the lattice structure of semiconductor material
 → wish to capture or moderate neutrons
- Moderation process: elastic scattering $n(E_0) + A \rightarrow n(E_1) + A$ where $E_1 < E_0$
- The energy transfer depends strongly on the mass of the recoil partner (A); extreme value (back scattering):

$$\Rightarrow \left(\frac{A-1}{A+1}\right)^2 \cdot E_0 < E_1 < E_0$$

• Example: (A = atomic mass number) A = 56 (iron): $0.93 E_0 < E_1 < E_0$ A = 1 (hydrogen): $0 < E_1 < E_0$

Energy distribution (probability densities) of neutrons after several elastic scatterings (from Ref. [2])

Energy loss is efficient for collisions of neutrons with protons (H atoms) \rightarrow usage of paraffin (CH₂) or other hydrogen-containing materials;

Example: moderation of 1 MeV neutrons to thermal energies (0.025 eV) requires on average 111 collisions with carbon (C¹²) and 17 collisions with H atoms

Technical realisation of neutron counters

Principal mechanism: neutron absorption, energy transfer on electrically charged particles

Important reactions:

 $n + {}^{6}Li \rightarrow \alpha + {}^{3}H$ $n + {}^{10}B \rightarrow \alpha + {}^{7}Li$ $n + {}^{3}He \rightarrow p + {}^{3}H$ $n + p \rightarrow n + p$

 Cross sections show a strong energy dependence MeV range: elastic (n,p) dominant

Moderation increases absorption power, thereby efficiency of neutron counters

Cross sections for neutron induced reactions as a function of the kinetic energy of the neutrons (from Ref. [3])

 In order to distinguish neutron signals from signals of other charge particles, neutron counters are surrounded by anti-coincidence counters

- Thermal neutrons can be absorbed in ionisation chambers or proportional counters, filled with Bor-tri-fluoride gas (BF₃)
- Higher energy neutrons have to be moderated to reduce their kinetic energy and to enhance the absorption cross section moderators: paraffine, water, ...
- Alternative: use fission reactions (n,f) with ²³⁵U

Principal method of neutron detection using ionisation counters (from Ref. [3])

- Other detection technologies:
 - Semiconductor counters with ⁶LiF coating $\rightarrow \alpha$ particle detection in detector
 - LiJ scintillation counters $\rightarrow \alpha$ particle detection
 - Organic scintillators, \rightarrow detection of recoil protons (1 100 MeV)

Neutron fluences in the ATLAS experiment

(1 MeV n_{eq}/cm²/yr)

