On the detection of neutrinos (Chapter 3.4):

Das Homestake Experiment (1970–1998): Der erste Nachweis solarer Neutrinos - ein radiochemisches Experiment-

(R. Davis, University of Pennsylvania)

 $v_e + Cl^{37} \rightarrow e^- + Ar^{37}$ Energieschwelle $E(v_e) > 0.814 \text{ MeV}$

<u>Detektor</u>: 390 m³ C_2Cl_4 (Perchloroethylene) installiert in einemTank in der Homestake Goldmine (South Dakota, USA) unter 4100 m Wasser-äquivalent (m w.e.)

Erwartete Produktionsrate von *Ar* ³⁷ Atomen ≈ **1.5 pro Tag**

Experimentelle Methode:

- Extraktion von Ar ³⁷ im Abstand von wenigen Monaten, N₂ Spülung, Nachweis des radioaktiven Zerfalls (Elektroneinfangreaktion) der Ar ³⁷ Atome: e⁻ + Ar ³⁷ → v_e + Cl ³⁷ * (Halbwertszeit t_{1/2} = 34 Tage)
- Angeregte Cl³⁷ Atom im Endzustand emittiert Auger-Elektronen und/oder γ-Quanten Nachweis in einem Proportionalzählrohr
- Kalibration / Vermessung der Nachweiseffizienz: durch Injektion einer bekannten Menge Ar³⁷ in den Tank

Ergebnisse von mehr als 20 Jahren Datennahme

SNU (Solar Neutrino Units): Einheit zur Messung der Ereignisrate in radiochemischen Experimenten: 1 SNU = 1 Ereignis s⁻¹ pro 10³⁶ Target-Atome <u>Mittelwert aller Messungen:</u> $R(CI ^{37}) = 2.56 \pm 0.16 \pm 0.16$ SNU (stat) (syst) SSM Vorhersage: 7.6^{+1.3} SNU -1.1 SNU Solares Neutrino Defizit (SSM = Standard Solar Model, J. Bahcall et al.)

Der ³⁷CI-Neutrino-Detektor in der Homestake-Mine (ca. 1967)

ca. 1966

Raymond Davis John Bahcall

Echtzeitexperiment unter Benutzung eines Wasser-Cherenkov Detektors zum Nachweis solarer Neutrinos

Elastische Neutrino–Elektron-Streuung: $v + e^- \rightarrow v + e^-$

Nachweis von Cherenkov-Licht in Wasser, das durch das angestoßene Elektron emittiert wird (Nachweisschwelle: ~5 MeV, entspricht 2 cm Weglänge in Wasser)

Wirkungsquerschnitte:

 $\sigma(v_e)$

 $\approx 6 \sigma(v_{\mu}) \approx 6 \sigma(v_{\tau})$

W and Z Austausch

Nur Z Austausch

Zwei Experimente: Kamiokande (1987 – 94), Volumen: 680 m³ Super-Kamiokande (1996 – 2001) Volumen: 22.500 m³

Installiert in der Kamioka-Mine (Japan) bei einer Tiefe entsprechend 2670 m w.e.

Superkamiokande-Detektor (Japan)

RANDO

40m

41.4m

 Zymidel, min

 Dur

 50.000 Tonne

 Äußeres Volu

 Inneres Volu

 (Für v-Nachw

 11.200 Photo

Zylinder, Höhe= 41.4 mDurchmesser= 40 m50.000 Tonnen ultrareines WasserÄußeres Volumen (veto)~2.7 m dickInneres Volumen:~ 32.000 Tonnen(Für v-Nachweis:22.500 Tonnen)11.200 PhotomultiplierDurchmesser = 50 cm

mm

12 MeV Neutrino von der Sonne im SK-Detektor

Bestätigung des solaren Ursprungs der nachgewiesenen Neutrinos:

Winkelkorrelation zwischen der Neutrino-Richtung und der Richtung des gestreuten Elektrons

The GALLEX-Experiment in Gran Sasso

Experimental method:

•Every few weeks extract *Ge*⁷¹ in the form of *GeCl*₄ (a highly volatile substance), convert chemically to gas *GeH*₄, inject gas into a proportional counter, detect radioactive decay of *Ge*⁷¹:

 $e^- + Ge^{71} \rightarrow v_e + Ga^{71}$

(half-life $t_{1/2} = 11.43 \text{ d}$)

 Calibrate full procedure with a well defined (and large)
 β source (⁵¹Cr)

The SNO Experiment

Unambiguous demonstration of solar neutrino oscillations:

<u>SNO</u>: a real-time experiment detecting Cherenkov light emitted in 1000 tons of high purity heavy water D_2O contained in a 12 m diam. acrylic sphere, surrounded by 7800 tons of high purity water H_2O

Light collection: 9456 photomultiplier tubes, diam. 20 cm, on a spherical surface with a radius of 9.5 m

Depth: 2070 m (6010 m w.e.) in a nickel mine

Electron energy detection threshold: 5 MeV

Fiducial volume: reconstructed event vertex within 550 cm from the centre

Solar neutrino detection at SNO:

1.Neutrino-electron elastic scattering (ES): $v + e^{-} \rightarrow v + e^{-}$

Directional, $\sigma(v_e) \approx 6 \sigma(v_\mu) \approx 6 \sigma(v_\tau)$ (as in Super-K)

2.Charged Current Reaction (CC): $v_e + d \rightarrow e^- + p + p$

Weakly directional: recoil electron angular distribution $\propto 1 - (1/3) \cos(\theta_{sun})$ Good measurement of the v_e energy spectrum (because the electron takes most of the v_e energy)

3.Neutral Current Reaction (NC):

 $v + d \rightarrow v + p + n$

Equal cross-sections for all three neutrino types Measure the total solar flux from $B^8 \rightarrow Be^8 + e^+ + v$ in the presence of oscillations by comparing the rates of CC and NC events

Reactor experiments

• Nuclear reactors are very intense, pure and isotropic sources of anti-electron neutrinos from the neutron-rich fission products $\sim 2 \ 10^{20} \ v_e \ s^{-1} \ GW_{th}^{-1}$

Neutrinos from accelerators

- K2K in Japan
- T2K in Japan
- MINOS / USA (Fermilab)
- Gran Sasso / Italy (CERN)

Conventional neutrino beam:

- Disappearance experiments: K2K, MINOS
 - NOT enough energy to produce lepton in CC reaction
- Appearance experiments: MiniBooNE, OPERA
 - Enough energy to produce lepton in CC reaction
- Detector techniques:
 - Near/far detectors in disappearance exp.
 - Emulsions, liquids
 - Magnetized detectors

Fermilab – MINOS Experiment

Fermilab Main Injector (MI):120 GeV proton synchrotronHigh intensity: $4x10^{13}$ protons per cycle,
repetition rate:Tw $4x10^{20}$ protons on target,
decay tunnel:Tw

Two detectors: Near: 1.04 km from target Far: 735 km from target

CNGS (CERN Neutrinos to Gran Sasso)

Main goal: Detection of v_{τ} appearance after 732 km

OPERA Experiment in Gran Sasso

Candidate event for v_{τ} appearance in OPERA

