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Introduction

The goal of particle physics is to describe the fundamental constituents of nature and the
forces that govern their behaviour. Theoretical and experimental efforts in the second half
of the last century have led to the development of the Standard Model, which is one of
the most successful theories in the history of science. Its predictions have been tested with
extremely high precision, and they are in vast agreement with the experimental data.1

The Standard Model is a gauge invariant quantum field theory that describes all known
elementary particles and three of the four forces working between them – electromagnetism,
the weak and the strong force. Electromagnetism and the weak force are unified into the
electroweak force. The fourth force – gravity – could not be successfully included in the
same theoretical framework.

Forces are carried by particles with integral spin called bosons. These are the photon, the
Z-boson and the W-bosons as carriers of the electroweak force and the gluons as carriers of
the strong force. These forces act upon the fermionic matter particles with spin 1

2
, which

exist in three families and two main groups, quarks and leptons, of which only the quarks
feel the strong force. All these particles have been observed and most of their properties
have been measured. There is however one additional particle which is predicted by the
Standard Model but has not been observed in any experiment yet, the Higgs boson. The
theory predicts all the properties of the Higgs boson apart from its mass. A lower limit
has been set by direct searches at LEP and an upper limit of about 1 TeV can be derived
from unitarity arguments.2

In spite of its success in making accurate predictions, the Standard Model cannot be a
complete theory of nature. Most importantly the standard model does not describe the
gravitational force, which governs the large scale behaviour of the universe. It is assumed
by many physicists that some outstanding problems in cosmology can only be solved once
a theory is formulated that unifies all four forces of nature. A first step towards such a
Theory of Everything (ToE) would be a Grand Unified Theory (GUT) that unifies the
electroweak sector with the strong force at very high energies above 1016 GeV, in analogy
to the unification of the electromagnetic force with the weak force above the weak scale.

Another challenge to the Standard Model is the so called hierarchy problem. An extreme
fine tuning is necessary in the Higgs sector in order to keep the standard model valid up
to energies at the Planck scale of 1.2 · 1019 GeV. Otherwise the Higgs mass diverges when
calculating higher order loop corrections to its propagator.

1The only assured observation contradicting the Standard Model is that of non vanishing neutrino masses,
but they do not constitute a fundamental problem to the Standard Model.

2In units ~ ≡ c ≡ 1.
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It is also known from astronomical and cosmological observations that not all matter in
the universe consists of the particles described by the standard model. In fact only about
4% of the energy density observed in the universe is provided by the known particles.
About 23% consists of dark matter and 73% of dark energy. The nature of the dark matter
and dark energy is not known yet.

These and other problems lead to the development of a multitude of extensions to the
standard model which try to address those problems, though none of them can solve all
problems yet. The concept of Supersymmetry lies at the heart of many of those theories
consistent with all known data. Supersymmetry postulates the existence of a supersymmet-
ric partner with opposite spin statistics for each of the Standard Model particles, and also
additional types of Higgs bosons are required in most supersymmetric models. Supersym-
metric models can solve the hierarchy problem and allow the strong and the electroweak
force to become of equal strength at the GUT scale. Furthermore in many supersymmetric
models the lightest supersymmetric particle is a natural candidate for the dark matter.

The Large Hadron Collider (LHC) which has been built in the last several years at
CERN3 near Geneva will start its operation this summer. With its unprecedented centre
of mass energy of 14 TeV and a instantaneous luminosity of 1034 cm−2 s−1 it will open up
new frontiers in high energy physics. The LHC will accelerate protons, which will collide
at four interaction points where four large detectors are situated. The two multipurpose
experiments ATLAS4 and CMS5 were designed to investigate a large range of possible new
physics scenarios and especially to confirm the existence of the Higgs boson, should it be
realised in nature.

The data that will come out of the experiments at the LHC in the next years will help
to narrow down the large list of proposed theoretical models beyond the standard model
and will hopefully produce new ideas for the further development of those theories that
remain.

However, before this can happen many experimental challenges must be overcome to
find the few events that can give insight into new phenomena out of the many millions
of collision taking place every second at each of the interaction points of the LHC. The
reconstruction and identification of physical objects like electrons, muons and photons from
the raw detector data is one of the fundamental tasks in the analysis of detector data from
collider experiments. Further analyses work with those reconstructed objects to measure
properties of the underlying theory or search for new particles.

One type of those reconstructed objects are τ leptons. The τ lepton as the heaviest
lepton plays an important role in the search for the standard model Higgs boson in the
mass range below about 135 GeV, where processes with τ leptons in the final state are
among the most promising channels for discovering the Higgs boson. In addition, many of

3Conseil Européen pour la Recherche Nucléaire
4A Toroidal LHC AparatuS
5Compact Muon Solenoid
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the extensions of the standard model, especially those involving supersymmetry, show an
abundance of τ leptons for certain regions of the parameter space. An efficient reconstruc-
tion and identification of τ leptons therefore plays an important role in the investigation
of these phenomena.
τ leptons decay 75% of the time into a number of hadrons. This makes their identifi-

cation a challenge at a hadron collider, where jets produced by strong interactions have a
very large cross section. Those jets have very similar signatures to hadronically decaying
τ leptons, especially at low energies. Certain well measured properties of the hadronic
decays of the τ lepton make a separation against QCD jets nevertheless possible.

This thesis is concerned with the ATLAS experiment, one of the two multipurpose detec-
tors at the Large Hadron Collider. The reconstruction and identification of hadronically
decaying τ leptons in the ATLAS experiment is studied and new developments for the
existing algorithms are examined for their potential to improve the discrimination between
hadronically decaying τ leptons and QCD jets.

In the ATLAS reconstruction software two competing algorithms for the reconstruction
and identification of τ leptons were available, following slightly different strategies. One
of those algorithm, tauRec, is based on energy clusters reconstructed in the calorimeter,
while the other algorithm, tau1P3P, is based on the reconstructed tracks of charged par-
ticles. These two algorithms will be described in Chapter 4 in more detail. In Chapter
5 improvements are developed for one of those algorithms, the calorimeter based tauRec.
The tauRec algorithm had a very low efficiency to reconstruct hadronically decaying τ
leptons for whom the sum of their visible6 decay products has a transverse momentum
below 30 GeV. In many physics channels with τ leptons in the final state a significant
fraction of the τ leptons populate this region of the phase space. It was therefore desirable
to improve the reconstruction efficiency for soft τ leptons. The presented improvements
lead to a better reconstruction efficiency in this low energy region and at the same time to
a better separation between τ leptons and jets produced by QCD processes.

In Chapter 6 a first step towards a combination of the two τ reconstruction algorithms
is presented, which has been developed within the scope of this thesis. Combining the two
algorithms offered the chance to benefit from the complementary strengths of the two τ
reconstruction algorithms to improve the identification performance compared to what is
offered by each of them individually. Some studies are shown on the prospects for such
improvement of the τ identification performance for the ATLAS experiment.

In Chapter 1 an overview of the theoretical framework will be given, followed by a
description of the LHC and the ATLAS detector in Chapter 2 and an introduction to the
theory and application of classification methods in Chapter 3.

Throughout this thesis natural units will be used, where ~ ≡ c ≡ 1. Therefore masses
and momenta are given in units of eV.

6The visible decay products are the particles that can be detected, which excludes neutrinos.
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1 Theoretical Background

In this chapter a short overview of the Standard Model of particle physics will be given in
Section 1.1-1.3. Section 1.4 will describe some phenomenological details, with a focus on
the physics especially relevant for hadron colliders.

1.1 The Standard Model

The Standard Model was developed in the 1960’s and 70’s to describe the large amount of
data provided by particle accelerators with ever increasing energies, in a unified way. So
far it has successfully described all experimental data.

The standard model is an effective quantum field theory of point like particles, which is
based on the concept of local gauge symmetry. In this type of theory the force mediating
bosons with spin 1 arise from the generators of the corresponding gauge symmetry group.
In the case of the standard model this is the group SU(3)C ⊗ SU(2)L ⊗ U(1)Y, leading
to three fundamental forces, the strong, the weak and the electromagnetic force. The
standard model unifies two theories in a consistent framework; the electroweak model,
describing the electromagnetic and the weak forces in a unified way, and the theory of the
strong interactions, Quantum ChromoDynamics (QCD).

Figure 1.1: The particle content of the Standard Model [1]. Shown on the left side are the
fermionic matter particles, with the quarks on the top and leptons on the bottom. The three
columns represent the three families of matter. On the right side the force mediating bosons are
shown. The particle on the bottom is the postulated Higgs boson, which has not been observed
yet.
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1 Theoretical Background

The particle content of the standard model can be seen in Figure 1.1. The particles
representing matter with spin 1/2, called fermions, are divided into quarks and leptons.
The quarks undergo strong interactions, in contrast to the leptons. The fermions are
divided further into three families, with the second and third families being copies of the
first one, differing only in the mass of the particles. The stable matter is made up only
from the particles of the first family.

Both the electroweak model and QCD are based on a Lagrangian formalism, where the
dynamics are derived by minimising the action S =

∫
d4xL of the Lagrange density L.

The first theory of this kind, which was able to give accurate predictions, was quantum
electrodynamics (QED). QED is based on the simplest gauge symmetry, a local phase
invariance. Because of its great success, it became the prototype for the development of
the following theories.

1.2 The Electroweak Model

The electroweak model was developed mainly by Glashow, Salam and Weinberg in the late
60’s [9, 28, 37]. It unified the electromagnetic force with the weak force at energies above
the electroweak scale under the gauge group SU(2)L ⊗ U(1)Y. SU(2)L and U(1)Y are the
gauge groups of the weak isospin and the weak hypercharge. The bosons arising from this
electroweak symmetry group have to be massless in order not to destroy the symmetry.
This contradicted the observations of the weak W- and Z-bosons having masses of ap-
proximately 80.4 GeV and 91.2 GeV respectively. In addition the model also requires the
fermions to be massless. Both the fermion and the boson masses can be introduced by
breaking spontaneously the SU(2)L ⊗ U(1)Y symmetry.

The electroweak symmetry group has one generator for U(1)Y group and three generator
for the SU(2)L group. Therefore the theory contains four gauge boson fields Bµ and
W i
µ, i = 1, 2, 3, correspoding to these generators. Experimental evidence shows that the

four boson fields mix into mass eigenstates γ, Z and W± via the transformation

Aµ = cos θWBµ + sin θWW
3
µ (1.1)

Zµ = sin θWBµ − cos θWW
3
µ (1.2)

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) (1.3)

with the weak mixing angle θW as a free parameter, to be determined by experiment.
The fermion fields can be decomposed into a right and left handed component via the

projection operators P± = 1
2
(1 ± γ5). To explain the parity violating nature of the weak

force, only the left handed components of the fermions couple to the weak bosons. The
right handed components are singlets of the SU(2) group, which means they do not possess
weak isospin. The fermions and their quantum numbers are listed in table Table 1.1.
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1 Theoretical Background

Leptonen I3 Q Y
νL 1/2 0 -1
l−L -1/2 -1 -1
νR 0 0 0
l−R 0 -1 -2

Quarks I3 Q Y
uL 1/2 2/3 1/3
dL -1/2 -1/3 1/3
uR 0 2/3 4/3
dR 0 -1/3 -2/3

Table 1.1: The particles for one family of the standard model with their quantum numbers. These
are the third component of the weak isospin I3, the weak hypercharge Y and the electric charge
Q. The electric charge is connected to the other two quantum numbers by Q = Y/2 + I3 after
the eletroweak gauge group is spontanously broken. The right handed neutrinos are sterile, and
do not interact, but experimental evidence of a neutrino mass implies their existence.

When boson masses are added directly by introducing explicit mass terms like

m2
WW

†
µW

µ +
1

2
m2
ZZµZ

µ, (1.4)

the gauge symmetry of the theory is destroyed, and divergences arise at higher orders of
perturbation theory. This problem is solved by spontaneous symmetry breaking via the
Higgs mechanism [6,13].

In the Higgs mechanism an isospin doublet is introduced consisting of two complex scalar
fields

Φ =

(
φ0

φ+

)
(1.5)

Furthermore, the new fields are subject to a potential

V (Φ) =
1

2
µ2Φ†Φ +

1

4
λ(Φ†Φ)2, (1.6)

so that the Higgs terms of the Lagrangian are

Lhiggs = (DµΦ)†(DµΦ)− V (Φ), (1.7)

with Dµ being the covariant derivative

Dµ = ∂µ + i
g

2
τiW

i
µ + i

g′

2
Y Bµ, (1.8)

so that the Lagrangian is invariant under SU(2)L ⊗ U(1)Y. Here the τi and Y are the
generators of the SU(2) and U(1) group. g and g′ are the coupling constants, describing
the coupling of the fermion fields to the boson fields.

The λ
4
(Φ†Φ)2 term is a self coupling term, and 1

2
µ2Φ†Φ can be interpreted as a mass term

if µ2 > 0. If, on the other hand, µ2 is negative, the potential has a nontrivial degenerate
minimum where

|Φ0| =
√
−µ2

λ
≡ ν√

2
(1.9)
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1 Theoretical Background

Figure 1.2: Illustration of the Higgs potential V (Φ) = 1
2µ

2Φ†Φ + 1
4λ(Φ†Φ)2 with µ2 < 0 and

λ > 0, leading to a degenerate minimum at |Φ0| = ν√
2
.

with ν as the vacuum expectation value (VEV) of the Higgs field. By choosing without
loss of generality a specific ground state

< Φ0 >=
1√
2

(
0
ν

)
, (1.10)

the symmetry of the original Lagrangian is no longer manifest in this ground state.
Expanding Φ around the ground state and substituting it into (1.7) results in a La-

grangian describing one massive scalar field H(x) with mass mH =
√
−2µ2, corresponding

to the Higgs boson, and three massless scalar Goldstone bosons. The Goldstone bosons
are unphysical, but can be absorbed into the longitudinal polarisations of the W+,W− and
Z bosons by choosing the so called ‘unitarity gauge’ where

Φ′(x) =
1√
2

(
0

ν +H(x)

)
. (1.11)

By doing this the desired mass terms for the vector bosons arise without destroying the
underlying gauge symmetry.
The Higgs Lagrangian takes the final form

Lhiggs =
1

2
∂µH∂µH +

1

4
g2(ν + H)2WµWµ +

1

8
gZ

2(ν + H)2ZµZµ + V (ν + H), (1.12)

with

V (ν +H) = µ2H2 − λνH3 − λ

4
H4 + const. (1.13)
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1 Theoretical Background

It now contains mass terms for the W and Z bosons, but no mass term for the photon,
exactly as dictated by experimental evidence. The weak vector bosons obtain the masses

mW =
1

2
gν (1.14)

mZ =
1

2
gZν =

1

2

g

cos θW
ν. (1.15)

The Higgs mechanism also calls for Yukawa and quartic couplings between the Higgs and
the weak vector bosons, as well as self interactions of the Higgs boson.

An appealing feature of the Higgs mechanism is that the same scalar doublet which gives
masses to the bosons is also able to generate masses for the fermions via Yukawa couplings
to the Higgs field. To introduce mass for a charged lepton ` of the left handed isospin

doublet

(
ν̀
`

)
L

the following term is added to the total Lagrangian:

LY ukawa = −G`

[
(ν`, `)L Φ `R + `R Φ†

(
ν̀
`

)
L

]
. (1.16)

By using again (1.11) for Φ, one obtains

LY ukawa = −
G`√

2
ν(`L`R + `R`L)−

G`√
2
ν(`L`R + `R`L)H, (1.17)

which gives a lepton mass of m` =
G`√

2
ν and at the same time produces a coupling of the

lepton to the Higgs boson with a coupling strength proportional to m`. The coupling G` of
each lepton to the Higgs field is a free parameter, which can be determined by an experi-
mental measurement of the lepton mass. Quark masses can be introduced in an analogous
way, but the weak eigenstates will differ from the mass eigenstates, since both members of
an isospin doublet are massive.

The Higgs boson is the only particle of the standard model that has not been directly
observed yet. The Higgs vacuum expectation value can be extracted from the muon lifetime
as ν ≈ 246 GeV, and so the couplings of the Higgs boson to the other particles of the
standard model can be calculated. But the mass of the Higgs boson cannot be predicted
without knowing the free parameter λ.

1.3 Quantum Chromo Dynamics

Quantum Chromo Dynamics, the theory describing the strong interaction between quarks
and gluons, was developed in the early 1970’s by Greenberg, Nambu, Wilczek, Gross and
Politzer amongst others.

QCD is built upon a SU(3) colour symmetry group. Colour is the name given to the
charges of the SU(3) symmetry group, of which there are three kinds. The quarks carry

9



1 Theoretical Background

one of these colour charge and in addition also an electrical charge of 2/3 (up type quarks)
or −1/3 (down type quarks). The strong force between the quarks is mediated by eight
massless gauge bosons, the gluons, which are required to also carry colour charge in order
to preserve the gauge symmetry. Therefore the gluons couple to each other, giving rise
to the phenomenon of confinement. Confinement describes the experimental observation,
that quarks only appear in colour neutral bound states called hadrons. The reason for
the confinement is the long range behaviour of the strong force. For large distances, or
low energies, the strong coupling constant becomes very large, and above a distance of
about 1 fm the potential energy is large enough to create a quark-antiquark pair out of the
vacuum.

The confinement is closely related to the opposite phenomenon of asymptotic freedom.
At very short distances the strong coupling constant becomes very small, so that the quarks
behave as quasi free particles. This means that QCD processes can be calculated using
perturbation theory in the high energy regime.

Because of the confinement, isolated quarks cannot exist. If a quark inside a hadron
gets scattered so the hadron breaks apart, one observes not the quark itself, but a ‘jet’ of
numerous hadrons made up from the quark-antiquark pairs which are produced from the
vacuum when the quark is moving away from the other quarks of the original hadron. This
transition from particles with colour charge to colour neutral hadrons is called fragmenta-
tion or hadronisation. Because of the strong coupling involved, the detailed fragmentation
process cannot be calculated perturbatively. Therefore one has to rely on phenomenological
models to simulate the evolution of QCD jets.

1.4 Physics at pp Colliders

Compared to e+ e− colliders, the calculation of cross sections for proton-proton collisions
is somewhat complicated by the fact that the colliding particles have a substructure, and
the energy of the hadrons is shared between their constituents. Inside a hadron gluons
are continuously exchanged between the valence quarks.1 Also, quark-antiquark pairs (sea
quarks) are constantly produced and annihilated within the hadron. All these processes
cannot be calculated using perturbation theory, since their energy scale is very low and
the strong coupling constant therefore becomes too large.

To calculate the hadronic cross section for a process

A+B → c+X, (1.18)

where c might be for example the Higgs boson and X is the remnant of the protons,
associated with the partonic process2

a+ b→ c, (1.19)

1The valence quarks are the quarks that define the identity of a hadron.
2‘Parton’ is the generic name for quarks and gluons as the constituents of a hadron.
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1 Theoretical Background

one needs to know the probability to encounter the parton a with energy fraction xa inside
hadron A and likewise for parton b. This probability density fAa (x,Q2), which depends on
the energy scale Q2, is called the parton distribution function (PDF). The hadronic cross
section is given by convoluting the partonic cross section with the PDFs for a and b

dσ(A+B → cX) =
∑
a,b

∫ 1

0

dxa

∫ 1

0

dxb f
A
a (xa, Q

2)fBb (xb, Q
2)dσ(a+ b→ c), (1.20)

where the sum extends over all combinations of partons a and b that can produce the final
state c.

This separation of the process into a so called hard scattering process, contained in the
partonic cross section, and a soft non perturbative part with low Q2, contained in the
PDF, is called factorisation. This is only possible, because the PDFs are independent of
the process, and can therefore be measured experimentally. The calculated cross sections
depend on the chosen factorisation scaleQ2, but in higher order calculations the dependence
becomes weaker and completely vanishes for calculations to all orders.

The PDFs measured at a certain energy scale can be extrapolated to a different scale
using the Altarelli-Parisi equations.As an example, the PDF for a quark flavour q, fq(x,Q

2),
evolves according to

d

d(logQ2)
fq(x,Q

2) =
αs
2π

∫ 1

x

fq(y,Q
2)Pqq

(
x

y

)
dy

y
. (1.21)

Here αs is the strong coupling constant, and Pqq

(
x
y

)
is called the splitting function. The

splitting function parametrises the probability, that a quark with momentum fraction x
originates from a quark with momentum fraction y by emission of a gluon. A similar
contribution from gluon splitting has to be taken into account in practise.

The splitting functions can be calculated using perturbation theory.

1.5 The τ Lepton

The τ lepton is the charged lepton of the third family with a mass of 1.777 GeV [7], and
was the first member of its family to be discovered. The τ lepton decays via a W boson
with a mean lifetime of 290 fs, either into a charged lepton and two neutrinos in about 35%
of the cases, or into a quark-antiquark pair plus one neutrino about 65% of the time. The
tree level diagrams for both decay modes are shown in Figure 1.3. The former decays are
called leptonic and the latter are called hadronic.

The decay modes of the τ are usually further classified by the number of charged particles
amongst the decay products. For reasons of charge conservation this number must be odd.
The leptonic decay modes produce one charged particle in the final state, whereas the
hadronic decay modes have mostly one or three, rarely five or more, charged particles
amongst their decay products.

11



1 Theoretical Background

(a) Leptonic τ decay (b) Hadronic τ decay

Figure 1.3: Feynman graphs of the leptonic and hadronic τ decays. In the left diagram ` can be
an electron or a muon. In the right diagram the down quark can also be replaced by a strange
quark.

Since the τ decay products always contain neutrinos, which interact very weakly and
cannot be detected in experimental setups, the kinematics of τ final states can only be
partially reconstructed. This specifically applies to the leptonic decay modes of the τ ,
where two neutrinos are among the decay products. The energy of the decay products
without the neutrinos is called the visible energy of the τ lepton.

Because of the chiral structure of the charged weak current, the kinematics of the τ
decay products depend on the helicity of the decaying τ lepton. Since the decay of the τ
is independent of its production, this can be exploited to measure the τ polarisation. By
convention, the polarisation of the τ leptons in a process is defined by

Pτ− = −Pτ+ =
σR − σL
σR + σL

, (1.22)

where σR and σL denote the cross section of observing a right handed or left handed τ
lepton respectively. For example, τ lepons produced by W decays have a polarisation of
Pτ− = −1 since the W boson only couples to left handed particles, whereas τ leptons
originating from the decay of a Higgs boson will have a vanishing polarisation, since the
Higgs boson couples to left and right handed particles equally.

The two decay modes of the τ lepton that are best suited for measuring the polarisation
are

τ±→ π±ντ (1.23)

and
τ±→ ρ±ντ → π±π0ντ , (1.24)

which together make up about 50% of all hadronic decays.
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1 Theoretical Background

In the rest frame of the τ lepton, the differential decay widths into a π or a ρ vector
meson are given by

1

Γπ

dΓπ
d cos θ

=
1

2
(1 + Pτ cos θ), (1.25)

1

Γρ

dΓρ,L
d cos θ

=
1
2
m2
τ

m2
τ + 2m2

ρ

(1 + Pτ cos θ), (1.26)

1

Γρ

dΓρ,T
d cos θ

=
m2
τ

m2
τ + 2m2

ρ

(1− Pτ cos θ), (1.27)

where L and T denote the longitudinal and transversal polarisation states of the ρ. The
angle θ measures the direction of the meson with respect to the τ flight axis. With the
collinear approximation mτ � pτ , where all the decay products are produced parallel to
the τ flight axis, one can relate θ to the fraction x of the τ energy carried by the meson in
the laboratory frame. One has

cos θ =
2x− 1−m2

π,ρ/m
2
τ

1−m2
π,ρ/m

2
τ

. (1.28)

Therefore the energy fraction carried by the visible τ decay products will be smaller for
τ leptons with a negative polarisation. If the τ± → ρ±ντ decay mode can be isolated, the
ratio Eπ/Eτ ,vis of the pion energy to the total visible energy can be used to measure the
polarisation. Left handed τ leptons will favour an even sharing of the energy between the
charged and the neutral hadron, whereas for right handed τ leptons the charged pion will
carry almost all or very little of the total energy. For more details see [8, 24].

1.5.1 Physics searches in τ Lepton Final States

τ leptons play an important role for the discovery of new phenomena at future particle
accelerators, such as the LHC, which will be described in Section 2.1. One of the discoveries
hopefully to be made at the LHC, is the direct observation of the Higgs boson. As already
mentioned, the mass of the Higgs boson is not predicted by the standard model. But direct
searches at the LEP collider lead to a lower limit of MH > 114.4 GeV at 95% confidence
level [34] and precision measurements of electroweak observables at LEP and Tevatron,
which are sensitive to the Higgs mass through loop corrections, set the upper limit for the
Higgs mass of MH < 190 GeV at a confidence level of 95% [34].

As shown in Section 1.2 the coupling strength of fermions to the standard model Higgs
boson is proportional to the mass of the fermion. Therefore the branching ratios of the
Higgs boson into heavy fermions is much larger than for the lighter families. For a light
Higgs boson with a mass of about 120 GeV, well below the threshold for decay into two
vector bosons, the most prominent decay mode will be H → bb with a branching ratio of
about 70% followed by H → τ−τ+ with a branching ratio of about 8%. The production
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1 Theoretical Background

cross sections and branching ratios of the Higgs boson for different channels is shown in
Figure 1.4 as a function of the Higgs mass.

The bb decay channel will be experimentally very challenging in the two dominant Higgs
production channels through gluon-gluon fusion and vector boson fusion(VBF). The VBF
H→ τ−τ+ channel, where one of the τ leptons decays leptonically, offers a high sensitivity
to observe a standard model like Higgs boson with a mass near the lower limit set by the
LEP experiements. Additionally the τ decay channel offers the possibility to probe the
parity of the Higgs boson [39].
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Figure 1.4: The production cross sections (left) and branching ratios (right) for a standard model
Higgs boson as a function of its mass (from [2]).

Another area where τ leptons might prove valuable is supersymmetry (SUSY). Super-
symmetry is a proposed extension of the standard model, which introduces a new un-
derlying symmetry between bosons and fermions, which is spontaneously broken at the
TeV scale. In supersymmetric models every particle of the standard model has a heavy
superpartner with a spin differing by half a unit. Also an additional Higgs doublet must
be introduce to keep the theory consistent, so that instead of one Higgs boson there exist
three neutral and two charged Higgs bosons. Supersymmetry solves some of the problems
of the standard model, like the hierarchy problem, and under some conditions also offers a
natural candidate for nonbaryonic dark matter.

The simplest supersymmetric extension of the standard model, the minimal supersym-
metric standard model (MSSM), has over a hundred free parameters, but by introducing
some theoretically motivated constraints, the parameter space can be reduced to few dis-
tinct parameters in addition to the standard model. There exist several different constraint
scenarios of the MSSM, differing for example in the way supersymmetry is broken. One of
the most extensively studied of these constrained supersymmetric models is called minimal
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1 Theoretical Background

supergravity (mSUGRA), where the SUSY breaking is mediated by gravitational interac-
tions.

In the mSUGRA model one of the parameters, the ratio of the vacuum expectation values
of the two Higgs doublets, tan β, plays a role in the the couplings of the supersymmetric
particles as well as the Higgs bosons to the standard model fermions of the third family.
For large values of tan β, the couplings to τ leptons are strongly enhanced. This is also the
case for other MSSM scenarios. Because of this, an excess of τ leptons can give a strong
signal for the realisation of the MSSM in nature. In addition, the possibility to probe the
spin structure of the resonances decaying to τ leptons will be of importance to narrow
down the underlying model, if a deviation from the standard model has been observed.
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2 The ATLAS Experiment

This chapter gives an overview of the LHC accelerator, the ATLAS experiment and its
various sub-detector systems.

The ATLAS1 experiment is placed at one of the interaction points of the Large Hadron
Collider (LHC) at CERN2 near Geneva. Both the accelerator and the detector are nearing
their completion and the data taking will start in summer 2008.

In 1992 the first concept for ATLAS was presented in a Letter of Intent [31] and its
construction was approved 1995. The ATLAS collaboration has since grown to about 2100
members from 37 countries.

2.1 The Large Hadron Collider

The LHC is a proton-proton collider with a center of mass energy of 14 TeV and an design
instantaneous luminosity of 1034 cm−2 s−1. Both the energy and the luminosity are an order
of magnitude above the performance of current accelerators, and will open new possibilities
for investigating physics at the TeV scale.

The tunnel housing the LHC – previously used for the electron positron collider LEP –
has a circumference of 27 km and lies about 100 m beneath the surface. Inside the vacuum
of the beam pipe the protons circulate in each direction in nearly 3000 bunches consisting
of about 1011 protons each with an energy of 7 TeV. At four different points around the
ring, where detectors are positioned, the beams are focused and brought to collision. The
bunches will meet every 25 ns and produce up to several hundred particles. This poses
an enormous challenge for the detectors, which have to identify these particles and store
the data at a very high rate. Such a high rate is needed to observe rare processes like the
production of a Higgs boson.

Before the proton bunches are injected into the LHC, their energy is raised to 450 GeV by
a series of smaller accelerators. They start in the linear accelerator LINAC2 with 50 MeV
followed by the PS Booster with 1.4 GeV, the PS3 with 26 GeV and finally the SPS4 with
450 GeV. From the SPS the bunches are injected into the LHC in both directions and
accelerated to their final energy of 7 TeV.

1A Toroidal LHC AparatuS
2Conseil Européen pour la Recherche Nucléaire
3Proton Synchrotron
4Super Proton Synchrotron
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2 The ATLAS Experiment

center-of-mass energy 14 TeV
injection energy 450 GeV
instantaneous luminosity 1034 1

cm2sec

bunch spacing 24.95 ns
number of protons per bunch 1.1 · 1011

beam-beam angle at the interaction point 300 µrad

half-life-period of the luminosity 10 h
stored energy per beam 350 MJ
number of dipole magnets 1232
dipole field strength at 7 TeV per beam 8.33 T
magnet current 11796 A
number of quadrupole magnets 56
number of cavities 8
electric field gradient in the cavities 5 MV

m

Table 2.1: important characteristics of the LHC

To keep the protons on a circular trajectory, 1232 superconducting dipole magnets with
a maximum field strength of 8.33 T bend their path around the ring. To reach these
high field strengths, the magnets have to be kept at a temperature of 1.9 K. The proton
beams will circulate for several hours at their nominal energy, during which the collisions
take place at the interaction points. For the initial acceleration and to compensate for
the energy loss trough synchrotron radiation, eight superconducting radio frequency (RF)
cavities with a field gradient of 5 MV/m are used.

Some key properties of the LHC are given in Table 2.1.

2.1.1 Luminosity

Besides the center of mass energy of the colliding particles, the other important performance
measure for a collider is the instantaneous luminosity L. The rate R = dN

dt
of a certain

physical process is determined by L together with the cross section σ of that process by

R = σ · L (2.1)

For simple geometries the luminosity can be calculated from machine parameters as

L = f
N1N2

Aeff
(2.2)

with N1, N2 being the number of particles in the two bunches, f the frequency of the
collision and Aeff the effective collision area.

To calculate the expected number of events for a process X with cross section σX , the
event rate R has to be integrated over time

NX =

∫
σX · L(t) dt = σX ·

∫
L(t) dt = σX ·L, (2.3)
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2 The ATLAS Experiment

with L being the integrated luminosity. The integrated luminosity has to be measured as
precisely as possible, because its uncertainty introduces systematic errors on cross section
measurements or exclusion limits.

2.1.2 Pile Up Events

Due to the high proton densities that are necessary to reach high luminosities, more than
one proton pair will interact on average per bunch crossing. For the design instantaneous
luminosity of the LHC (1034 cm−2 s−1) it is expected that there will be about 24 proton-
proton interactions on average per bunch crossing.

Most of these additional interactions will not be hard scattering processes, but will
typically consist of inelastic scattering with low momentum transfer. This follows from the
much higher cross section of low Q2 processes. These events are commonly referred to as
minimum bias events (MB). This kind of pile up is more specifically the so called in-time
pile up.

Opposed to that is the pile up which originates from the limited time resolution of cer-
tain detector elements, the out-of-time pile up. The latter can lead to signals that are an
overlay of several bunch crossings before and after the recorded event.

Both types of pile up have to be taken into account for an accurate simulation of the de-
tector response and for a tuning of the reconstruction algorithms. In the studies presented
in this thesis this was not possible, since suitable simulated data with pile up included
were not available.

2.2 The ATLAS Experiment

The ATLAS detector is located at the southern interaction point of the LHC named Point 1.
It is an all purpose detector in a layered design with nearly complete 4π coverage around
the interaction point as shown in Figure 2.1.

Two important goals of the experiment are to examine the details of electroweak sym-
metry breaking, by either confirming the existence of the Higgs boson or excluding it, and
to search for physical phenomena beyond the standard model occuring at the TeV scale.

Some of the most important requirements influencing the design were:

− Fast and radiation hard components to cope with the high particle flux.

− High granularity to keep the occupancy at an acceptable level.

− Acceptance over the full azimuthal angle φ and up to high pseudorapidities.5

− Good muon identification and momentum resolution and very good determination of
the sign of the charge for high pT muons.

5The pseudorapidity η is defined as η = −ln(tan θ
2 ), with θ being the polar angle with respect to the

beam axis.
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Figure 2.1: Cut-away view of the ATLAS detector [33]

− Efficient vertex reconstruction for the identification of τ -leptons and jets from b-
quarks and separation of pile up events.

− Good separation of π0/γ and π±/e±.

The ATLAS detector has an overall length of 44 m, a height of 25 m and weighs ap-
proximately 7000 t. The detector system closest to the beam line is the inner detector or
‘Tracker’ and is described in Section 2.2.1. The inner detector is surrounded the electro-
magnetic calorimeter followed by the hadronic calorimeter (see Section 2.2.2). Most of the
detector volume is occupied by the muon spectrometer, which forms the outermost layer
and will be described in more detail in Section 2.2.3. Each of these components provides
crucial information about the scattering processes that take place inside the detector.

The coordinate system used for the ATLAS detector has the origin defined by the nom-
inal interaction point. The z-axis is defined by the beam direction and the x-y plane is
transverse to the beam direction. The positive x-axis is defined as pointing from the inter-
action point toward the center of the LHC ring and the positive y-axis is pointing upwards.
Futhermore a polar coordinate system is defined. The azimuthal angle φ is defined as the
angle to the positive x-axis in the x-y plane with |φ| ≤ π, and the polar angle θ is defined
as the angle to the beam axis in the range [0, π]. The R coordinate is the distance from
the beamline in the transverse plane.
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In the following, a short description of the detector components will be given. Much
more details about the general detector design as well as all the sub components can be
found in [32,33].

2.2.1 The Inner Detector

Figure 2.2: Cut-away view of the ATLAS Inner Detector, from [33]

The inner detector (ID) is the part of the detector closest to the interaction point
(Figure 2.2). Its function is to record the path of ionising particles emanating from the
interaction point with high efficiency and spatial resolution. This has to be accomplished
within 25 ns before the next bunch crossing occurs and in a high radiation environment.
The reconstructed paths of the particles are called Tracks.

The inner detector is placed inside a superconducting solenoid magnet, which provides
a magnetic field of approximately 2 T parallel to the beam line over the volume of the ID.
This allows the measurement of the ratio of charge to momentum of charged particles by
measuring the curvature of their tracks in the plane orthogonal to the beam line.

Another important reason to reconstruct the trajectory of charged particles, is the re-
construction of vertices. Vertices are space-points where two or more particles are created,
either inside or outside the beam pipe. The vertex with the highest sum of transverse
momenta of the tracks originating from it is reconstructed as the primary vertex. Other
vertices usually come from pile up events, and the vertexing helps to identify these. But
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vertices can also originate from long-lived particles, decaying inside the detector volume.
These vertices are called secondary vertices. The distance of the secondary vertex to the
primary vertex6 can help to identify those long-lived particles. The most important exam-
ples of such particles are τ -leptons and B-hadrons.

To accomplish its function, the inner detector uses three different components corre-
sponding to different distances to the interaction point. They are each arranged in several
layers. In the central barrel region (|η| ≤ 1.5), they are placed on concentric cylinders
around the beam axis, while in the forward and backward end-cap region they are ar-
ranged on disks perpendicular to the beam axis. The total coverage is up to |η| ≤ 2.5 ,
matching the range of the calorimeters where they have a high granularity.

The innermost layers are equipped with radiation hard silicon pixel detectors with a
pixel size of 50x400 µm, which results in an intrinsic resolution of about 10 µm in the
R− φ plane and 115 µm in z direction for the barrel and in R direction for the end-cap.
There are three layers of pixel modules in the barrel, and also three layers in both of the
end-caps, so that each particle typically has three 3-dimensional measurements (also called
space-points) assigned from the pixel layers. The innermost pixel layer in the barrel has a
distance of only about 5 cm from the beam axis, which together with the high granularity
is very important for an accurate reconstruction of impact parameters7 and vertices.

The second type of component is called SemiConductor Tracker (SCT). The SCT is
made of silicon microstrip detectors with at strip pitch of 80 µm in the R− φ direction.
Two sensors are glued back-to-back with a small stereo angle of 40 mrad to provide a
measurement along the strip axis as well. The intrinsic resolution per module is about
17 µm in the R− φ plane and 580 µm for the z coordinate in the barrel and for the R
coordinate in the endcap. The SCT modules are arranged in four layers in the barrel
region and nine disks in the end-caps, providing at least four additional potential space-
points per track.

The outermost layer of the inner detector covering a pseudorapity up to |η| ≤ 2.0 is the
Transition Radiation Tracker (TRT). It uses straw drift tubes with a diameter of 4 mm
filled with xenon gas, each with an intrinsic resolution of about 130 µm. The straw tubes
are oriented parallel to the beam axis in the barrel region and radially in the end-caps,
and thus the TRT delivers only a measurement of the azimuthal angle φ. The number
of straw tubes crossed by each track is very high – usually 36. Combined with the large
lever arm this contributes greatly to the precise reconstruction of the track momentum.
An additional feature of the TRT is the ability to identify particles by the detection of
transition radiation. Highly relativistic charged particles will radiate low energy photons
when crossing the interface of media with different dielectric constants. The number of
emitted photons increases with the γ factor of the particle. These photons will be absorbed
in the xenon gas inside the straw tubes via the photoeffect, and will thus lead to a stronger
signal than the traversal of a minimum ionizing particle. To make use of this effect, the
space between the straw tubes is filled with radiating material, and the readout electronics

6This distance is refered to as the flight lenght.
7The impact parameter of a track is the minimal distance between the track and the primary vertex.
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Track Parameter pT of Track
1 GeV 100 GeV

η = 0 η = 2.1 η = 0 η = 2.1

σ(pT)/pT 1.3% 5% 3.8% 11%
σ(d0) 135 µm 320 µm 11 µm 15 µm
σ(z0) · sin(θ) 250 µm 420 µm 110 µm 110 µm

Table 2.2: Expected resolutions for the reconstruction of important track parameters. The reso-
lution of the transverse momentum has been obtained from a muon sample, the resolution of the
other parameters are obtained from a pion sample. The numbers are taken from [33].

is capable of distinguishing photon signals from pure ionisation signals from heavy parti-
cles. There are two signal thresholds implemented for this purpose. Straw tubes showing
a signal above one or both threshods are counted as low or high threshold hits respectively.
Electrons will typically procuce a higher ratio of high to low threshold hits. The separation
of electrons and charged pions works best at energies between 2 and 20 GeV, achiving pion
rejection factors (inverse efficiencies) of more than 50 for electron efficiencies of about 90%.

The expected performance of the reconstruction of particle tracks, can be summarised by
a few key aspects. Important performance measures are the resolutions of the momentum
and the the transverse and logitudinal impact parameters for the reconstructed tracks. The
expected resolutions for different kinematic regions are shown in table Table 2.2. Closely
related to the momentum resolution is the probabilty to assign the wrong sign of the charge
to a track. For particles with a pT less than 200 GeV this probability is below 0.1% and is
dominated by multiple scattering and hadronic interactions. The efficiency to reconstruct
the track of a particle depends on the energy and the pseudorapidity. The efficency for
charged pions is shown in Figure 2.3. It is at the order of 90% for particles with a pT of
several GeV.

2.2.2 The Calorimeter

After traversing the inner detector the particles reach the calorimeter system (Figure 2.4),
which measures the energy of particles and is also the only component that detects neutral
particles. The requirements on the calorimeter are demanding. It should accurately and
uniformly quantify the energy of different types of particles over an energy range spanning
three orders of magnitude from 1 GeV up to 1 TeV. Also it should have a high granularity
to determine the direction of neutral particles with high precision and resolve single parti-
cles within highly boosted and therefore collimated jets. At the same time the calorimeter
needs to have fast response and low dead time to distinguish between bunch crossings.

Like the inner detector, the calorimeter is divided into the central barrel and the two
end-cap parts. It also consists of three bigger subsystems with different functions. The
Electromagnetic Calorimeter (EMCAL), which is responsible for detecting mainly electrons
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Figure 2.3: Track reconstruction efficiencies as a function of η for charged pions with different
transverse momenta. This plot is taken from [33].

and photons, the Hadronic Calorimeter (HCAL), which surrounds the electromagnetic
calorimeter and is responsible for detecting charged and neutral hadrons, and the Forward
Calorimeter (FCAL), measuring particles with small angles to the beam axis (|η| > 3.1),
which is particularly important for the reconstruction of the missing transverse energy.

The EMCAL is a sampling calorimeter with liquid argon as active material and a lead
absorber. The EMCAL is designed in an accordion shape with three layers and cells
projective to the nominal intercation point. The accordion shape avoids gaps in φ-direction
between modules and adds to the mechanical stability. A detailed part of the EM barrel can
be seen in Figure 2.5. One additional layer, placed before the actual calorimeter directly
behind the solenoid magnet, is the Presampler. It is used to correct for the energy lost
through early showering in the dead material in front of the calorimeter. In contrast to
the other layers it consists of a thin layer of instrumented liquid argon and only covers
pseudorapidities up to |η| < 1.8 .

The first layer the calorimeter is the so called η-strip layer. It is very finely segmented
in η-direction and is able to resolve the two photons from π0 decays to distinguish them
from prompt photons.

The next layer, Layer 2 in Figure 2.5, is called the ‘middle layer’, which is the thickest
part of the EM calorimeter (16 radiation lengths at η = 0) and absorbs the largest part of
the electromagnetic showers. It is followed by the third layer (back layer), which absorbs
the longitudinal tails of the showers. The total depth of the EMCAL amounts to 24
radiation lengths at η = 0.

For pseudorapidities above 2.5 the EMCAL has only two layers and coarser readout
cells. Thus, the range for precision measurements is limited to |η| < 2.5, as in the case
of the silicon tracking detectors. Also in the transition region between the barrel and the
end-cap (1.3 < |η| < 1.7, also called gap region) where the services (cables, cooling, etc.)
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Figure 2.4: Cut-away view of the ATLAS Calorimeter System, from [33]

are routed out of the detector, the performance of the calorimeter is somewhat degraded.

The second big part of the calorimeter is the HCAL, again separated into the barrel
part and the end-cap parts. The barrel is further divided into the central barrel and two
extended barrels. The hadronic end-caps are similar in design to the EMCAL, being liquid
argon sampling calorimeters, but use copper as the absorber material and have a planar
geometry. In the barrel region the HCAL is designed as a steel structure with inserted
scintillating plastic tiles (TileCal), which are read out by photomultipliers.

The FCAL is also a liquid argon calorimeter with copper absorbers in the first layer and
tungsten in the second and third layer. It consists of rods embedded in a matrix of the
absorber material with a liquid argon filled gap between them.

Detailed information about the resolution and the granularity of the different calorimeter
subsystems are given in Table 2.3
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Figure 2.5: Schematic drawing of a part of the EM barrel calorimeter, taken from [33]

2.2.3 The Muon System

If properly reconstructed, muons can give a very clean signal for many physics channels.
A major design goal for the ATLAS detector was therefore an excellent efficiency and
resolution for the muon reconstruction independent of the inner detector.

The muon spectrometer is the biggest part of the detector, and determines the overall
envelope size of ATLAS. A dedicated magnet system for the muon spectrometer – eight
air core toroids in the barrel and two end-cap toroids – make an independent momentum
measurement possible. The bending plane of the magnets is the R− z plane.

Several different technologies are used inside the muon system, but they can be divided
in two functional groups: the triggering chambers consisting of Thin Gap Chambers (TGC)
and Resistive Plate Chambers (RPC) and the precision chambers consisting of Monitored
Drift Tubes (MDT) and Cathode Strip Chambers (CSC). The trigger chambers have a
fast response time but low spatial resolution of several mm, the precision chambers have a
resolution in the bending plane of 35− 40 µm. Together with the large lever arm this makes
a momentum resolution of less then 10% for muons with an energy of 1 TeV possible. By
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Subsystem/Layer Energy Resolution σ(E)/E Granularity ∆η ×∆φ

ECAL

Presampler 10%√
E
⊕ 0.2% in barrel

12%√
E
⊕ 0.35% in end-cap

0.025 × 0.1
η-strip layer 0.003 × 0.1
Middle 0.025 × 0.025
Back 0.05 × 0.025

HCAL

Barrel 56%√
E
⊕ 5.5% 0.1-0.2 × 0.1

End-Cap 71%√
E
⊕ 5.8% 0.1-0.2 × 0.1-0.2

FCAL 70%√
E
⊕ 3.0% 0.15 × 0.15

Table 2.3: Energy resolution and granularity of the different calorimeter subsystems. ⊕ denotes
that the two values are to be added in quadrature.

combining the track from the muon spectrometer with the tracks from the inner detector
the resolution can be further improved.

2.2.4 The Trigger System

Due to budgetary and technological constraints, the maximum rate of events that can
be recorded and stored is about 200 Hz, while the bunch crossings occur with a rate of
40 MHz. The number of recorded events thus must be reduced by a factor of 2 · 105, while
ensuring that the events of interest are not discarded. The system responsible for this is
called Trigger.

The Trigger system brakes down the decision to store or reject an event into three distinct
levels named Level 1 (L1), Level 2 (L2) and Event Filter (EF). The L2 and EF together
constitute the High Level Trigger (HLT). Each level further refines the trigger decision and
tightens the criteria for selecting an event.

L1 makes the first decision to retain the data associated with a bunch crossing and
passes the data on to the L2 trigger. Already at the L1 trigger a rejection factor of 400-
500 is necessary, since the maximum data readout rate is limited to 75 kHz (upgradeable
to 100 kHz), and the latency of the L1 trigger is designed to be smaller than 2.5 µs, to
keep the pipeline buffers on the front end electronics reasonably short. To reach these
design goals, the L1 trigger is based on customised ASIC and FPGA hardware and is
placed close to the detector to minimise signal latency in the cables. It also uses very
fast but simple algorithms. They work with strongly reduced calorimeter granularity of
∆η × ∆φ = 0.1 × 0.1 and information from the inner detector is not used at all, since
the reconstruction of tracks is a complex and therefore time consuming task. The L1
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trigger mainly selects events which contain high pT objects like electrons, photons, muons,
hadronically decaying τ ’s or jets, with optional isolation criteria. It also can trigger on the
missing ET or the sum of the transverse energy.

The HLT is software based and runs on commercially available hardware. This hard-
ware can be located on the surface, since latency issues are less pressing. The L2 trigger
further refines the decision of the L1 trigger by using the full detector granularity and
also tracking information and energy calibration. The algorithms used however are still
simplified compared to the offline reconstruction. The L2 trigger is seeded by so called
Regions of Interest (RoI), which are the coordinates and already reconstructed properties
of interesting objects as defined by the L1 trigger. Each RoI can be examined on a different
computation node in parallel, so the throughput is scalable. After the L2 trigger the rate
is reduced to about 3.5 kHz.

In the last stage the EF reduces the event rate to the final goal of roughly 200 Hz by
use of the same algorithms as the offline reconstruction. An identification as loose as
possible within the 200 Hz budget is applied in this last step. If an event gets selected all
the detector data of about 1.3 MB/s is written to dedicated output nodes and from there
transferred to the CERN computing center for long time storage and further analysis. The
total average storage bandwidth during a full luminosity run amounts to nearly 300 MB/s
with a peak bandwidth of 600 MB/s.
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3 Classification Methods

One of the biggest challenges for modern high energy experiments is to obtain a sizable
number of events from a particular physical process, called signal, while minimising the
number of events from unwanted processes, called background. Most of the time, when
searching for new phenomena or measuring the values of certain model parameters, one
needs a clean sample of a selected small number of specific processes.

Unwanted processes with the same signature as the signal are called irreducible back-
ground and nothing can be done to suppress them. They can for example be taken into
account by modelling their contribution as precisely as possible. The background events
with a final state different from the signal events are called reducible. They can in prin-
ciple be distinguished from the signal, but might still contribute to the background if the
signature is very similar to the signal.

The process of assigning each event to either the signal or the background is called
classification. Classification problems are not unique to high energy physics, so there
exists a large body of work on this topic. The general problem of classification can be
defined as follows:

given a vector x = (x1, . . . , xN) of characterising variables (pattern), determine the
a posteriori probability P (Ci|x) for the pattern to belong to class i.

The N-dimensional space spanned by the patterns is called feature space. For N = 1 the
problem is called univariate, otherwise it is a multivariate problem. In separable problems
there is no overlap in the feature space between the classes, so a (N-1)-dimensional hy-
persurface exists, which partitions the feature space into volumes containing only patterns
of one class. In general, problems are not separable, but still one can construct a hyper-
surface by defining an appropriate error measure for misclassified patterns and minimising
this error.

3.1 Multivariate Techniques

Very often the analytical form of P (Ci|x) is unknown. A lot of methods have been devised
to approximate this probability from data, which belong to a known class. A central
theorem of probability theory is Bayes’ theorem:

P (Ci|x) = P (Ci)
P (x|Ci)
P (x)

(3.1)
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Here P (Ci) is the a priori probability of an event belonging to class i, P (x|Ci) is the

probability of the pattern x if the event belongs to class i and P (x) =
∑
i

P (x|Ci) is the

a priori probability of pattern x. In high energy physics applications, P (Ci) is known
from the cross sections of the event classes, typically after applying some analysis specific
event selection criteria. The class specific probabilities P (x|Ci) are often independent of
this event selection. Therefore arbitrary prior probabilities can be assigned to all classes,
and the resulting probability has to be matched to the true probability from analysis to
analysis.

By modelling P (x|Ci) for all classes from a known training sample, one can calculate the
a posteriori probability for data not contained in the training sample. Strictly speaking,
this is only possible in the limit of a infinite number of training patterns. All the different
multivariate classifiers therefore try to approximate P (x|Ci) with a finite number of training
patterns. A common property of all such estimators is the so called bias-variance-tradeoff,
which is a trade-off between a model with too little degrees of freedom, which cannot
approximate the training data very well (bias), and a model with too much flexibility,
which is very sensitive to statistical fluctuations within the training sample (variance) and
will not describe independent data very well. The latter is also called overtraining. One
common method to deal with this problem, is to split the data into a training and a test
sample. The test data can be used to judge the performance of a method on ‘new’ data.

In the following the number of classes is restricted to two, corresponding to a signal
and background class. In this case P (Cbackground|x) = 1− P (Csignal|x) holds, and a binary
classification is sufficient.

3.2 Likelihood Method

A commonly used approach to classification is the Likelihood Method. It is based on the
densities of data points in the feature space of the signal and background samples. The
density LS/B(x) = P (x|CS/B) is called likelihood, alternatively the term probability density
function (PDF) is frequently used.

A PDF can be extracted from the training sample by various density estimation methods.
With unlimited statistics it would contain the maximum information available and hence
a classifier build on the full PDF will be optimal. But in general it will be impossible to
get a good approximation for the full N-dimensional form. This follows from the fact, that
the volume of the feature space grows exponentially with the dimension, and statistical
fluctuations will be overwhelming with practically attainable sample sizes. This problem
is dubbed the curse of dimensionality in the statistical literature.

To avoid this obstacle, one can make a factorisation ansatz for the likelihood by assuming
the different variables to be statistically independent:

LS/B(x) =
N∏
i=1

Li,S/B(xi) (3.2)
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where Li,S/B(xi) is the likelihood for the signal or background when projecting onto the ith
dimension. Therefore this method is called projective Likelihood Method. This method dis-
cards all correlations between the variables, and as a consequence a degraded performance
is expected if such correlations exist. Even though this is the case in many applications,
the disadvantage incurred by ignoring the correlations is often compensated by a better
estimation of the likelihoods. This is on one hand a consequence of the larger density of
data points when projecting out one dimension, and on the other hand the existing meth-
ods for density estimation in one dimension are more robust and easier to optimise. The
factorisation can also be easily extended to project onto subspaces with dimensionality
greater than one, to include the correlations between certain subsets of variables.

If one has approximated the PDFs, classification is done by mapping each vector in the
feature space to a real value dL via the logarithm of the likelihood ratio:

dL = log
LS(x)

LB(x)
= log

N∏
i=1

Li,S(xi)

Li,B(xi)
=

N∑
i=1

log
Li,S(xi)

Li,B(xi)
(3.3)

The ratio of the likelihoods is called odds. It gives the probability of one hypothesis over
another, where a value of 1 means equal probability and values smaller or larger than
unity signify a lower or higher probability for the tested hypothesis respectively. Taking
the logarithm of the odds provides for better numerical behaviour when calculating dL on
limited precision hardware. By requiring a minimum value for dL, above which an event
is classified as a signal event, a discrimination from the background can be achieved.

As already mentioned, there exists a big variety of different techniques for approximating
the PDFs from training data. If the underlying analytic function of the PDF is known, one
can do a parametric estimation to find the appropriate parameters. Since this is rarely the
case, non-parametric methods for density estimation are widely used, the simplest of which
is creating a histogram and normalising it. Other methods, such as fitting of splines, can
be used on top of a histogram to give a smooth PDF. But methods relying on histograms
are sensitive to the bin size, as well as to the position of the bins, so the resulting estimate
is not always very reliable.

Another family of methods is based on kernel density estimation (KDE). The simplest
form of KDE for a density p(x) given the 1-dimensional training samples d1, . . . , dN is of
the form [20,21]:

p(x) =
1

Nh

N∑
i=1

K

(
x− di
h

)
, (3.4)

where K( · ) is the kernel function and h is called bandwidth. The bandwidth controls how
close the estimate will be to the training data. Smaller bandwidths lead to less bias and
more variance, and vice versa. A kernel function is a non-negative integrable function
which satisfies: ∫ +∞

−∞
K(u)du = 1, (3.5)

30



3 Classification Methods

K(u) = K(−u) ∀ u∈R, (3.6)

K(0) ≥ K(u) ∀ u∈R, (3.7)

and
K(u1) ≥ K(u2) for |u1| > |u2|. (3.8)

Often used kernels are for example the Gaussian kernel

K(u) =
1√
2π
e−

1
2
u2

, (3.9)

or the Epanechnikov kernel

K(u) =

{
3
4
(1− u2), for |u| ≤ 1,

0, for |u| > 1.
(3.10)

It has been shown, that the performance of the density estimation is not very dependent
on the actual form of the kernel [36], rather the optimal bandwidth depends on the choice
of the kernel function. The optimal bandwidth also depends on the form of the unknown
density like

h = C

(∫
(p′′(x))2dx

)−1/5

N−1/5. (3.11)

where C depends only on K(u). If one assumes a normal distribution for p(x) and a
Gaussian kernel is used, a rule-of-thumb for the optimal bandwidth is

hopt ≈ 1.06σxN
−1/5, (3.12)

where σx is taken to be the RMS of the data.

Even the optimal fixed bandwidth does not always produce very good results. If the
true density contains sharp peaks and long tails, it is often impossible to find a single
bandwidth, which handles both regions equally well. Therefore it is beneficial to vary the
bandwidth over the training data, based on the local features of the data. One approach
is to start from a fixed bandwidth hna and define the adaptive bandwidth as

ha(x) =
hna√
p̃(x)

, (3.13)

so the bandwidth gets smaller in regions with high density, where the approximation is
more reliable, and bigger in the tails. For the pilot density p̃(x), one can use the result of
a first pass with the fixed bandwidth hna.

Another approach is to determine the adaptive bandwidth with a nearest-neighbour
method. Here the bandwidth at each point of the training sample is determined by the
average distance to a fixed number of nearest neighbours in the sample. This has the
advantage that near steep rises of the density – so in areas with high curvature – the
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bandwidth is also reduced, and these ‘edges’ get smeared out less. The parameter that
controls the bias-variance-tradeoff in this case is the number of neighbours to include in
the bandwidth selection.

The method presented so far has some problems with distributions common to high
energy physics applications. One problem is the boundary problem, which arises if the
real density is not continuous. An example might be an energy fraction, which has valid
values only between zero and one. In this case the distribution gets smeared out near
the boundary and unphysical values get a nonzero probability. Also, if only the physical
region is used, the density function is not normalised anymore, and simply renormalising it
can introduce bias away from the boundaries. Another related problem is the systematic
underestimation of peak heights. Since naturally a large fraction of events will have a value
in the vicinity of the peak, a good modelling of the peaks is especially important.

The simple method, by means of the kernel functions, defines a weighted neighbourhood
of the point to be evaluated and fits a constant to the training points in this neighbour-
hood [15]. An obvious extension of this scheme is to fit more complicated functions to this
neighbourhood, to locally approximate also the derivatives of the density [4]. The easiest
choice is to locally fit low order polynomials, which is motivated by a Taylor expansion
of the density at each point. This method reduces some of the problems of the simple
methods, like the boundary problem and strong bias in regions with high curvature.

Despite its simplicity and its disregard of the correlations between the identifying vari-
ables, the Likelihood method often gives surprisingly good results [17]. Apart from that,
it has the advantage of being very easy to interpret and robust against badly estimated
variables.

3.3 Artificial Neural Networks

A somewhat different approach to classification are artificial neural networks (ANN). They
were developed in an attempt to mimic the way biological nervous systems work. The first
mathematical models for neural networks where proposed in the 1940’s, but with the tech-
nology of the time, they were not much of practical use. Renewed interest in the 1980’s
led to a rapid development of ANNs into a powerful method for ‘machine learning’ prob-
lems. Nowadays the applications of neural networks are manifold, not only in academic,
but also in commercial contexts. The way ANNs make the problem of modelling the high
dimensional full probability density more tractable is by modelling only the hypersurface
mentioned before, which maximally separates the different classes under some error mea-
sure.

ANNs are based on connections between independent entities. More precisely a neural
network is a directed and weighted graph. The knots of the graph are the neurons and the
edges are called connections. Connections transfer data from one neuron to another. Each
neuron can have multiple incoming connections and also multiple outgoing connections to
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Figure 3.1: graphical representation of a neuron. The inputs ξ and the connection weights wi are
used to calculate the effective input x =

∑
iwiξi to the activation function g( · ). The threshold

Θ is used to select a ‘working point’ of the activation function. The figure is taken from [38].

other neurons. The outgoing connections all carry the same data. Neurons compute their
output as a function of the inputs in two steps. The first step is to combine the inputs
into one value, usually by taking the sum of the inputs weighted by the corresponding
connection weights. The second step is to apply an activation function to the result of the
first step. So each neuron does the following computation when the inputs x = (x1, . . . , xi)
with the connection weights w1, . . . , wi are applied to it

o(x) = g(
∑
i

wixi −Θ). (3.14)

Here g(x) is the activation function and Θ is called the threshold. A graphical repre-
sentation of a neuron is shown in Figure 3.1. The threshold is an adjustable parameter of
each neuron, and is often taken into account by adding an additional connection, which is
connected to a node with a constant output of one. The negative weight of this connection
takes the role of the threshold.
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Figure 3.2: The sigmoid function g(x) = 1
2 (1 + tanh(kx)) for different values of the inverse

temperature k.

The activation function is often the sigmoid function as shown in Figure 3.2, which can
be understood as a softened step function. A neural network consisting of only one such
neuron and multiple input connections is called perceptron.

A perceptron can describe a (n-1)-dimensional hyperplane in the feature space, and is
only viable for linear problems. Many problems in high energy physics do not fall in that
category. A simple and most often used extension of the perceptron is the multi layer
perceptron (MLP) as shown in Figure 3.3. Here neurons are arranged in several ordered
layers and each node is connected to all nodes in the next layer. The first layer is called
the input layer and its nodes simply represent the input data. The last layer is called
output layer and for classification problems it often has as many nodes, as there a different
classes. All the layers between the input and output layer are called hidden layers. Since
in an MLP data always flows in the forward direction from on layer to the next, it is an
example of a feed-forward network.

Mathematically an MLP with one hidden layer with nh nodes and one output node is
represented by the expression

o(x) = g

[
nh∑
j=1

wo,j · g

(
n∑
i=1

wh,ij ·xi −Θh,j

)
−Θo

]
, (3.15)
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Figure 3.3: a multi layer perceptron with four input variables, one output node and two hidden
layers. The signals are propagated from the input layer to the output layer as indicated by the
arrows.

where wh,ij are the weights of the connections going from input node i to node j in the
hidden layer, wo,j are the weights of the connection going from hidden node j to the output
node and Θh,j and Θo are the threshold of the hidden and output nodes. One can see that
this expression is not linear in x anymore if g( · ) is in turn not linear. Given enough nodes
in the hidden layer, an MLP with one hidden layer can approximate any convex boundary
in the feature space. With two hidden layers any boundary can be described [14].

To prepare an MLP for a specific problem, one has to choose a topology and find the
correct values of the weights and thresholds to describe the data. The threshold value is
not explicitly mentioned anymore. It can instead be handled like a weight, by creating a
special node, which has a fixed output of one and is connected to all nodes. The weights
of these connections then take the role of the threshold values.

Training the network with training data works similar to fitting a function to data. An
error function, quantifying the ability of the parameters to describe the data, has to be
minimised numerically. A unique output vector is assigned to every class. The error is
calculated by comparing the actual output of the network for each training pattern to the
target value of the class it belongs to. In a classification setting with two classes, signal
and background, and only one output node the target output value of the network is set
to 1 for signal and to 0 for background patterns. The actual output of the neural network

35



3 Classification Methods

will have some distribution between the two target values. The error function commonly
used is the summed square error

E(w) =
1

2

∑
i

[ti − oi(w)]2 , (3.16)

where w is the vector of all the weights, the sum goes over all training events, ti is the
target value for training event i and oi(w) is the output value of the network for event i.

Training of the network is done iteratively in several steps, since it is not possible to find
the optimal weights analytically in all but the simplest cases. The steps are

− propagate all the training vectors through the network

− compare the outputs to the target values and calculate the error

− update the weights to minimise the error

One such cycle is called an epoch. It should be repeated until the network converges and
the error does not decrease anymore.

The question remains how to minimise the error. The simplest algorithm for doing
this is called backpropagation. Backpropagation is an algorithm to the find minimum of
the error function by changing the weights in small steps in the opposite direction of the
gradient of the error with respect to the weights. It is important for this algorithm, that
the transfer function is differentiable, which is the case for the aforementioned sigmoid
function g(x) = 1

2
(1 + tanh(kx)). The weights in epoch t+ 1 are computed as

wt+1 = wt − η∇wE (3.17)

with the learning rate η. The learning rate has to be chosen carefully, since values that are
too small can lead to very slow convergence and make it more likely to converge into local
minima, and learning rates that are too large can lead to oscillations around the minimum
or even to divergence. Moreover there is no fixed rule for determining the optimal learning
rate, since it is very dependent on the specific problem to be trained. Another problem
in the training can arise from regions of the error surface with very small slope, where
the backpropagation will make almost no progress. This will happen if a lot of neurons
have a very high or very low input value, where the derivative of the sigmoid function
goes to zero. Therefore, at the beginning of the training the weights need to be initialised
with random values in a small interval around zero, so that several attempts with different
starting weights are often enough to avoid difficult regions during the training. Slightly
different network topologies might also help to alleviate convergence problems.

Several extension of the basic backpropagation algorithm have been proposed, in order
to improve the speed of convergence and to reduce the need for trial and error in finding
good parameters for the learning algorithm. One extension, that is used very often, is to
introduce a momentum term in (3.17)

wt+1 = wt − η∇wE + α∆wt, (3.18)
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where the momentum factor α should be chosen between 0 and 1. The momentum term
dampens oscillations around the minimum and also helps to bridge plateaus and shallow
local minima. Another simple extension is the stochastic learning, where the weights are
not updated after the full training sample has been propagated through the network, but
after a small number of training vectors. In essence this uses a different error surface for
each update and adds some noise to the learning procedure, which also helps to escape
problematic areas of the error surface. The assumption is that the average effect is still to
converge towards the global minimum of the full error, which often holds in practise for
large enough training samples.

Another group of methods tries to adapt the speed of the weight change during the
training with heuristic methods. One such method is called resilient propagation (RPROP)
[25], which is also the method used for the present work. RPROP uses only the sign of the
partial derivative for each weight and also adapts the step size for each weight individually.
For the first epoch, the size of the update step ∆0 has to be chosen by the user, but its
value is not critical, so a conservative value of 0.1− 0.5 can be used. After each epoch the
following value is added to each weight wi:

∆w
(t)
i =


−∆

(t)
i , if ∂E

∂wi

(t)
> 0,

+∆
(t)
i , if ∂E

∂wi

(t)
< 0,

0 otherwise.

(3.19)

The value of ∆
(t)
i is determined by the value for the previous epoch by

∆
(t)
i =


η+ ·∆(t−1)

i , if ∂E
∂wi

(t−1) · ∂E
∂wi

(t)
> 0,

η− ·∆(t−1)
i , if ∂E

∂wi

(t−1) · ∂E
∂wi

(t)
< 0,

∆
(t−1)
i otherwise,

(3.20)

where
0 < η− < 1 < η+.

η+ and η− are parameters that can be set by the user, but the recommended values of
η+ = 1.2 and η− = 0.5 are suitable for many problems.

Expressed in words the algorithm proceeds as follows: after each epoch, if the sign of
the partial derivative of the error with respect to the weight stayed the same compared to
the previous epoch, increase the step size to speed up the convergence when away from
a minimum. If the sign of the derivative changed, decrease the step size for this weight,
since this means a minimum was crossed.

The RPROP algorithm has several characteristics that make it a good choice for training
neural networks:

− it is very fast both in terms of update steps needed as well as in terms of computation
time
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− it adapts to problems where the input variables have different scales, through the use
of individual learning rates per weight

− it has few parameters, which are easy to tune

There exists no easy rule, to determine the number of hidden nodes needed for an MLP
to faithfully describe the underlying model of the training data. Therefore choosing a
topology is often a tedious trial-and-error process. A network with too little hidden nodes
cannot describe the training data very well, so several configurations might exists that have
a similar (big) error. In other words there tend to be a lot of local minima. Such networks
are often hard to train consistently. If on the other hand, the network is too large it often
‘memorises’ only the training data, and it will have a poor performance on new data, hence
the network is overtrained. The susceptibility to overtraining depends very much on the
amount of training data. A big number of training samples can constrain the weights of
the network better, even if it is more complex then necessary.

One simple way to control for overtraining, is to split the available sample data into a
training set and a statistically independent validation set. Typically one uses about one
third of the data for validation. Only the training set is presented to the network during
the training. One can then compare the performance of the network for the training and
the validation data, and if it is very different the network is probably overtrained. Based on
this, an ad-hoc method to get to a network that gives a good performance on the training
data as well as on new data, called early stopping, is very often used. For this method one
should start with a network with slightly to many weights, so that overtraining will occur
if trained to the minimal error. During the training the error for the validation sample is
periodically calculated, and if the error starts to rise the training is stopped. Although
it is not obvious that this method leads to better generalisation, experience shows that it
often does.
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4 Reconstruction and Identification of τ
Leptons

The reconstruction and identification of all lepton flavours is important for the physics
program at the LHC, since they allow to distinguish certain rare processes from the large
QCD background. τ leptons are especially difficult in this respect, due to the variety
of possible decay modes, some of them containing hadrons in the final state. Therefore
the goal of this work was to improve the existing algorithms for the reconstruction and
identification of τ leptons.

The leptonic decay modes of the τ lepton cannot be efficiently distinguished from elec-
trons and muons produced in the hard interaction. They are usually treated with the
dedicated electron and muon reconstruction algorithms. For the purpose of τ identifica-
tion, only the hadronic decay modes are thus considered. In the following sections some
properties of the hadronic τ decay products will be discussed, and the existing techniques
to reconstruct and identify them are introduced.

4.1 Properties of Hadronic τ Decay Products

The τ lepton can decay into an odd number of charged hadrons, a neutrino, and eventually
one or more neutral hadrons with a total branching ratio of about 65%. The different
hadronic decay modes can be grouped by their charged multiplicity into so called n-prong
decays, where n is the number of charged hadrons. One mainly considers 1-prong and
3-prong decays for inclusive τ identification, as the other decay modes have a combined
branching ratio of well under 1 percent. The charged hadrons are mainly π±, in a few
percent of the cases also K±. The neutral hadrons consist mainly of π0, which will decay
into two photons inside the detector, and sometimes also neutral kaons (in ≈ 1−2% of the
cases). The absolute and relative branching ratios for the most important decays are shown
in Table 4.1. At the LHC τ leptons are typically produced with a boost of at least several
GeV, and thus their decay products will form a collimated jet of particles, approximately
collinear with the original τ lepton. The combined visible decay products of the τ lepton
are referred to as a τ jet. For the relevant energies & 5 GeV all the visible decay products
are contained in a cone1 of radius 0.4 around the direction of the τ jet.

Due to the proper lifetime of the τ lepton of 290.6± 1.0 fs [7]) the charged particles
from the decay will be produced at a mean distance of βγcτ = 87.11 µm, resulting in

1a cone is defined by all the points with
√

∆η2 + ∆φ2 smaller than a fixed value
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τ decay mode BRabs[%] BRlep/had[%]

leptonic 35.2 100
e− νe ντ 17.8 50.6
µ− νµ ντ 17.4 49.4

hadronic 64.8 100.0
1-prong 49.5 76.4
π− ντ 10.9 16.8
π− π0 ντ 25.5 39.4
π− 2 π0 ντ 9.3 14.4
π− 3 π0 ντ 1.0 1.5
π− K0 ντ 0.9 1.4
K− ≥ 0 π0 ντ 1.6 2.5
others 0.4 0.5

3-prong 15.2 23.5
π− π+ π− ντ 9.3 14.4
π− π+ π− π0 ντ 4.6 7.1
≥ 1 K± ≥ 1 π0 ντ 0.9 1.4
others 0.4 0.5

5-prong 0.1 0.2

Table 4.1: Relevant decay modes of the τ lepton with their branching ratios. The given numbers
are experimental values taken from [7]. Errors are not shown for clarity, but are at the percent
level for the most prominent decay modes. The last column gives the branching ratio relative to
all leptonic (rows 2-4) or all hadronic decay modes (rows 5-19).
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reconstructed tracks that usually have an impact parameter measurably different from
zero. In the case of 3-prong decays the reconstruction of a secondary vertex is often
possible.

Together, all these features of hadronic τ decays lead to the following signatures of τ
jets:

− one, three or five charged tracks with a total charge of one

− a hadronic energy deposition in the calorimeter with a narrow shower shape

− the possible existence of neutral electromagnetic clusters from photons coming from
π0 decays

− the possible existence of electron tracks and clusters from photon conversion and to
a lesser extent dalitz pairs.

− tracks consistent with coming from a secondary vertex for multi prong decays

The detailed properties of this signature can be used to separate τ jets from jets which
are initiated by strongly interacting particles. The latter ones will be called QCD jets
and constitute the dominant background for the identification of hadronically decaying τ
leptons.

4.2 Reconstruction of Hadronically Decaying τ Leptons

The reconstruction of τ leptons in the ATLAS software framework ATHENA is a so called
combined reconstruction algorithm, because it is built upon several reconstructed objects
from lower level algorithms. These are mainly tracks reconstructed from the inner detector
information and cells and energy clusters reconstructed from the calorimeter data. The
low level objects are combined to decide whether their properties are compatible with
originating from a hadronic τ decay.

When the work on this thesis started, there were two loosely integrated τ reconstruction
and identification algorithms available in the ATHENA software. They are called ‘tauRec’
and ‘tau1P3P’. Each follows a somewhat different strategy, but, as would be expected,
there is also an overlap in certain aspects. Both algorithms are integrated into the same
package and share the basic infrastructure and the data representation of the common
properties of the reconstructed τ object, like kinematics and the association of lower level
objects. The common C++ class representing τ jets is called TauJet. Objects of this
classtype can have further algorithm specific information attached to them.

To assess the performance of the τ identification algorithms, the important figures of
merit are the signal efficiency and the background rejection.
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The signal efficiency quantifies how many real τ jets are identified as such. It is defined
by

ετ =
number of identified τ jets

total number of true τ jets
. (4.1)

The true τ jets are the τ jets formed by the visible decay products of hadronically decaying
τ leptons, which have pT > 10 GeV and |η| ≤ 2.5. A τ jets is counted as identified, if a
reconstructed τ object, which passes some identification criteria, is found within a 0.2
radius around the τ jet direction.

The background rejection is a measure of how many QCD jets are wrongly identified as
τ jets. The definition of the rejection used in this study, if not stated otherwise, is

RQCD = 1/εQCD =
number of true jets

number of jets identified as τ jets
. (4.2)

The true jets are the ‘Cone4TruthJets’, which are reconstructed by a jet algorithm run-
ning over the stable2 truth particles. Only true jets with pT > 10 GeV and η ≤ 2.5 are
considered. A true jet is considered as identified, if it is within a 0.2 radius of a τ object
that passes some identification criteria. In the rest of this thesis rejections will be given as
function of the true visible transverse momentum. For τ jets this is the transverse momen-
tum of the τ jet, and for QCD jets this is the transverse momentum of the Cone4TruthJet
matched to the τ candidate.

Signal efficiency and background rejection have to be considered together, since a higher
signal efficiency leads to a higher fraction of misidentified background. If a method shows
a higher rejection at a given signal efficiency compared to another method, than the former
can better discriminate between τ jets and QCD jets for this specific signal efficiency. Most
classifiers allow to choose an efficiency working point by choosing a minimum value of the
classifier output above which a τ object is considered to be a true τ . By plotting the
background rejection against the signal efficiency for different methods, one can directly
compare their performance.

In the following both tauRec and tau1P3P will be described the way they were at the
time the presented work on them started. Of course both of them evolved in the intervening
time in different respects, and not all of the active ongoing work can be fully presented
here.

4.3 The tauRec Package

The first of the two τ reconstruction algorithms is strongly based on calorimetric informa-
tion, in analogy to the reconstruction of QCD jets. Candidates for hadronically decayed
τ leptons are seeded by calorimeter clusters3. Around each seed the calorimeter cells are
used with the full granularity of the calorimeter to calculate several quantities describ-
ing the shape of the shower. The same cells are also used to reconstruct the energy and

2In this context a particle is considered stable if it does not decay before reaching the calorimeter
3a cluster is a spatially localised energy deposition
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direction of the τ jet after applying a calibration procedure. In addition nearby tracks
are associated to the τ candidate and are used to calculate further quantities used for
identification.

The discriminating variables are combined into a likelihood ratio, where the PDFs have
been trained separately for different ET ranges.

4.3.1 Seeding

The clusters used as input to tauRec are created by a sliding window algorithm, which
creates the so called ‘combined clusters’. The sliding window algorithm works on calorime-
ter towers, which are summed up cells of all calorimeter layers over a grid of ∆η ×∆φ =
0.1 × 2π/64. A 5 × 5 window is put at each point of this grid, and a cluster is created if
the summed up transverse energy exceeds the threshold of 15 GeV. If two clusters overlap,
only the cluster with the higher transverse energy is reconstructed. Finally the position of
the cluster is determined by the central 3× 3 towers of the cluster.

Only combined clusters with |η| < 2.5 are used as seed for τ candidates, which coincides
with the coverage of the precision calorimeters. The efficiency to reconstruct a true τ jet as
a combined cluster is shown in Figure 4.1 as a function of the transverse momentum that
the visible τ decay products carry. A true τ jet is considered as reconstructed, if a cluster
is found with a barycentre within ∆R < 0.2 of the true τ jet direction. The reconstruction
efficiency rises from 12% at 15 GeV to 90% at 25 GeV and saturates at about 99% for
transverse momenta above 30 GeV.

4.3.2 Identification Variables

After a cluster has been reconstructed, all calorimeter cells around the cluster barycentre
within a cone with ∆R < 0.4 are collected. Cells that have a measured energy less than
two times their expected noise are removed from the list of cells. Noise in the energy
measurement arises from electronic noise and fluctuations of the pile up energy. The cut
on the cell energy is applied to suppress this noise.

Tracks are associated to the τ candidate by looking for tracks inside a cone of ∆R < 0.3
around the cluster centre with a transverse momentum of at least 2 GeV. The considered
tracks are reconstructed by the default track reconstruction packet of the ATHENA soft-
ware, called ‘new Tracking’ [30]. At the time of implementation of the original version of
tauRec, the default track reconstruction package was called ‘xKalman’, where tracks were
required to meet significantly tighter criteria with regard to the quality of the reconstructed
track.4 These criteria are are given in [11]. This should be kept in mind, when comparing
results presented here to the reference.

Several variables are calculated from the calorimeter cells and the associated tracks.
These variables try to exploit some characteristic properties of τ jets to distinguish them

4The quality of the track reconstruction is determined with criteria like the number of hits in different
detector systems and the compatibility of the fitted trajectory with these hits.
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Figure 4.1: Reconstruction efficiency for τ jets as a function of pT. Note that the used sample
has a minimum pT cut of 12 GeV applied on truth level.

from QCD jets. Eight variables are constructed to be used for the identification procedure.
These are described in the following.

- EM-Radius
The electromagnetic radius is exploring the smaller transverse shower profile of τ jets
compared to QCD jets with similar energy. It is defined as

Rem =

∑
iE

i
T

√
(ηi − ηcluster)2 + (φi − φcluster)2∑

iE
i
T

. (4.3)

The sums run over all cells in the electromagnetic calorimeter with ∆R < 0.4 with respect
to the cluster center, ηi and φi are the geometric centres of each cell.

The distributions of Rem for τ jets and QCD jets is shown for several ET ranges in Fig-
ure 4.2. This variable provides a good separation for low transverse energies. For higher
energies the separation becomes less effective, as signal and background are both more
collimated due to higher boosts.

- Calorimeter isolation fraction
Due to the strong collimation and low multiplicity of τ jets they deposit nearly all their
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Figure 4.2: EM-Radius for different ET ranges of the τ candidates after requiring 1 to 3 associated
tracks. The black distributions are for τ jets and the red ones are for QCD jets. The distributions
are normalised to a unit area.
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energy in a small region around the τ jet axis. QCD jets on the other hand spread out their
energy more evenly. The calorimeter isolation fraction is designed to capture this difference.
It is calculated as the ratio between the transverse energy in a ring of 0.1 < ∆R < 0.2 and
the total transverse energy in the electromagnetic calorimeter

∆E12
T =

∑
j Ej

T∑
i Ei

T

, (4.4)

where j runs over all cells with 0.1 < ∆R < 0.2 in the EM calorimeter, and i runs over all
cells with ∆R < 0.4.

Figure 4.3 shows the the distributions of the isolation fraction for τ jets and QCD jets
in bins of ET . τ jets tend to exhibit smaller values for this variable. As for the EM-Radius
the distributions get narrower with higher boosts and the separation diminishes. Also, the
performance of this variable depends on the event type. In events with a higher level of
activity like tt production, it is expected to provide less separation.

- Energy width in the η-strip layer
To make use of the lower number of π0 mesons in τ jets and their subsequent higher boosts
than in comparable QCD jets, the width in the η-strip layer (η-strip width) is calculated.
It is defined by

∆ηstrip =

∑
i(ηi)

2Ei
T

2∑
iE

i
T

2 − (
∑

i ηiE
i
T )2

(
∑

iE
i
T )2

(4.5)

The sums are to be taken over all associated cells belonging to the first layer of the elec-
tromagnetic calorimeter.

The distributions for this variable are shown in Figure 4.4. Again this variable shows a
good separation for low ET, but loses separation power with higher boosts.

- Number of hits in the η-strip layer
A similar criterion is the number of hits in the η-strip layer. It is defined by the number
of cells in the first layer of the electromagnetic calorimeter with ∆R < 0.4 and containing
an energy of at least 200 MeV.

The distributions for this variable are shown in Figure 4.5. A significant fraction of τ
jets have no hit in the η-strip layer, owing mostly to the single pion decay mode of the τ .
This happens less frequently for QCD jets. For high ET, QCD jets tend to produce more
hits than τ jets.

- Number of associated tracks
The naive expectation from the τ decay modes, would be to see mostly one or three

associated tracks for each τ jet. However, a significant fraction of τ jets have two associated
tracks, and a smaller fraction has zero or more than three tracks.
τ jets with no associated tracks originate mainly from 1-prong decays, where the pion

track is not reconstructed due to inefficiencies in the inner detector or where it does not have
the required transverse momentum of at least 2 GeV. In addition, hadronic interactions
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Figure 4.3: Calorimeter isolation for different ET ranges of the τ candidates after requiring 1 to 3
associated tracks. The black distributions are for τ jets and the red ones are for QCD jets. The
distributions are normalised to a unit area.
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Figure 4.4: η-strip width for different ET ranges of the τ candidates after requiring 1 to 3
associated tracks. The black distributions are for τ jets and the red ones are for QCD jets. The
distributions are normalised to a unit area.
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Figure 4.5: Number of hits in the η-strip layer after requiring 1 to 3 associated tracks. The black
distributions are for τ jets and the red ones are for QCD jets. The distributions are normalised
to a unit area.
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of the pion early in the dector can lead to a number of low pT tracks, which are not
reconstructed.

Several effects can lead to candidates with two associated tracks. For 3-prong decays,
one track can be lost for similar reasons as discussed for 1-prong decays. In one prong
decay modes containing π0 mesons, additional tracks can arise if one of the photons from
the π0 decay has converted in the inner detector and one of the resulting electron/positron
tracks is not reconstructed or does not pass the selection criteria. Additional tracks can
also originate from multiple interactions and pile up events or can be picked up from nearby
objects belonging to the same final state as the τ lepton.

As a first step in the identification, a preselection of the τ candidates is done, requiring
one to three associated tracks. About 90% of real τ jets pass this preselection, as shown in
Figure 4.6 as a function of the transverse momentum of the true τ jets. The efficiency of
the preselection for selecting QCD jets is shown in Figure 4.7 separately for jets initiated
by gluons (gluon jets),for jets initiated by b quarks (b jets) and for jets initiated by other
quarks (quark jets).5 One can see that less gluon jets and b jets pass the preselection for
comparable jet energies than light quark jets. The reason for this are differences in the
composition of the different types of jets. Gluon jets and b jets consist of more particles
than quark jets for different reasons. Gluons have twice the colour charge of quarks and
therefore have a higher probality to split up into two gluons, which leads to a higher
multiplicity in gluon jets. In b jets the decay of the heavy B-hadron produces on average
about five charged particles [3], so that b jets also show a higher track mulitplicity.

The distributions for the number of tracks after applying the preselection are shown in
Figure 4.8. Apart from some threshold effects for the lowest ET bins, the dependence on
ET is not very strong for candidates passing the preselection.

- Absolute Charge
The charge of the τ candidate is defined by the sum of the charge of all associated tracks.

The absolute value is used for identification purposes rather than the signed one. The
sign of the charge is however useful for certain analyses where the final state contains a
τ− τ+ pair. Events which contain two τ leptons with the same sign can be used to estimate
the background contribution in the selected sample.

For τ jets a charge of one could be always expected if the number of associated tracks is
odd. But about 3% of the τ jets with three associated tracks have a charge of three. The
main source of a wrongly assigned charge are electron tracks from converted photons.

The distribution of the absolute charge is shown in Figure 4.9. A larger fraction of QCD
jets are reconstructed with a charge of zero or three. The charge is strongly correlated
with the number of associated tracks.

- Lifetime signed transverse impact parameter significance
A variable designed to exploit the lifetime of the τ lepton is the ‘lifetime signed transverse

5The particle that initiated a jet is defined as the particle with the highest transverse momentum inside
a cone of ∆R < 0.4 around the τ candidate direction.
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Figure 4.6: Efficiency of requiring 1 to 3 associated tracks for τ jets as a function of the true pT

of the visible tau decay products.

impact parameter significance’. For conciseness ‘signed impact parameter’ will be used
synonymously where there is no danger of ambiguity.

The signed impact parameter is based on the 2-dimensional impact parameter in the
transverse plane with respect to the beam direction. The transverse impact parameter of a
track is the minimum distance of the track to the nominal beam line when projected onto
the x-y plane. The geometric quantities are clarified in Figure 4.10. Tracks originating
from the decay of particles with a lifetime will on average have a non vanishing impact
parameter.

Using the direction of the τ candidate reconstructed from the calorimeter, one can assign
a sign to each track. The direction of the τ candidate is assumed to reproduce the direction
of the τ lepton. This approximation is valid for boosted τ leptons, where the neutrino is
emitted almost collinear with the τ flight direction. A positive sign is given to tracks that
intersect the axis defined by the τ direction in ‘front of’ the primary vertex, a negative sign
is given to tracks that intersect the axis ‘behind’ the primary vertex. This is illustrated
in Figure 4.10. For particles coming from the primary vertex, the assigned lifetime sign is
random due to the limited impact parameter resolution. For particles coming from a real
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Figure 4.7: Efficiency of requiring 1 to 3 associated tracks for QCD jets as a function of the true
ET. The efficiencies are shown separately for different types of jets.

τ decay, negative signs can be assigned due to a badly reconstructed impact parameter or
due to a badly reconstructed flight axis of the τ lepton.

Since the resolution of the impact parameter measurement varies strongly with the track
momentum and the quality of the track reconstruction, the significance of the impact
parameter is used, that is the impact parameter divided by its error. The error can
be obtained from the track fitting procedure. The final definition of the lifetime signed
transverse impact parameter significance is

σIP = d0/σd0 · sign(sin(φjet − φtr)). (4.6)

Here d0 is the impact parameter with a sign according to the direction of the angular
momentum of the track with respect to the primary vertex, and σd0 its error. φjet is the
azimuthal angle of the τ candidate and φtr is the azimuthal angle of the track at the point
of closest approach to the primary vertex in the transverse plane. The distributions of the
singed impact parameter significance for τ jets and QCD jets are shown in Figure 4.11.

The average distance the τ lepton travels before it decays is proportional to the boost γ,
while at the same time the opening angle of the decay products is proportional to 1/γ, so
the average impact parameter is approximately independent of the boost. A bias towards
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Figure 4.8: Number of associated tracks in the range 1 to 3. The black distributions are for τ
jets and the red ones are for QCD jets. All distributions are normalised to a unit area. See page
46 for a detailed discussion.
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Figure 4.9: Absolute charge of the τ candidate after requiring 1 to 3 associated tracks. The black
distributions are for τ jets and the red ones are for QCD jets. All distributions are normalised
to a unit area.
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Figure 4.10: The lifetime signed transverse impact parameter significance of a track is defined
in a way to be positive if the decay from which it originated happened in flight direction of the
reference jet. An example for this is Track1 above. Track2 could not have originated from the
decay of a particle within the jet. The sign of the impact parameter is defined as positive, if for
the azimuthal angle of the point of closest approach to the primary vertex ϕ and the azimuthal
angle of the tangent to the track at this point φ the relation ϕ−φ = (π/2)+n · 2π holds, where n
is any integer. Otherwise it is negative. Here d0 is positive and d0 is negative. Both tracks have
a similar φ, so sign(sin(φjet − φtr)) has also the same sign for both tracks. Hence, the resulting
σIP is positive for Track1 and negative for Track2.

a positive σIP is expected for τ jets, which can be seen in Figure 4.11. Since the impact
parameter resolution improves with the track pT, a slightly increased excess towards posi-
tive values can be observed for τ jets with higher transverse energies.

- ET over pT of the leading track
On average the most energetic particle of a τ jet carries around 50% of the total visible
energy, and 100% for the single pion decay mode. In QCD jets, where the energy is
more evenly distributed between the decay products, this fraction tends to be lower. This
becomes more pronounced for higher jet energies. The ratio of the calibrated reconstructed
ET of the τ candidate to the pT of the leading track aims to exploit this difference.6

The distributions for this variable for τ jets and QCD jets are shown in Figure 4.12. One
can see a peak around one for τ jets, compatible with the single pion decay mode. For high
ET bins, where the average charged multiplicity of QCD jets is high, the preselection cut
introduces a bias towards jets with a generally low particle multiplicity, leading to lower
values of the ET/pT variable.

4.3.3 Identification

To distinguish real τ jets from QCD jets, the eight variables described above are combined
with a likelihood method. The PDFs (see Section 3.2) are created separately for eleven

6The leading track is defined as the track with the highest transverse momentum of the associated tracks.
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Figure 4.11: Lifetime signed transverse impact parameter significance of the τ candidate after
requiring 1 to 3 associated tracks. The black distributions are for τ jets and the red ones are for
QCD jets. All distributions are normalised to a unit area.
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Figure 4.12: ET over pT of the leading track of the τ candidate after requiring 1 to 3 associated
tracks. The black distributions are for τ jets and the red ones are for QCD jets. All distributions
are normalised to a unit area.
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different regions of the transverse energy of the τ candidate to approximately take into
account the correlations of the identification variables with the transverse energy of the τ
candidate. The different ET bin boundaries as given in [12] are 15, 28, 44, 62, 88, 134, 218,
334, 434, 600 and >600 GeV. Of the eight identification variables three are discrete and
five are continuous.

− The discrete variables are:

- NTr Number of associated tracks

- Nη−hits Number of hits in the η-strip layer

- Absolute Charge of the τ candidate

− The continuous variables are:

- Rem Electromagnetic radius

- ∆E12
T Calorimeter Isolation fraction

- ∆ηstrip Energy width in the η-strip layer

- d0/σd0 Lifetime signed impact parameter significance

- ET/pT,1 Ratio of transverse energy to leading track transverse momentum

For the discrete variables the normalised histograms of the distributions are directly used
as PDFs. The PDFs of the continuous variables were obtained by fitting appropriate
polynomials to finely binned histograms of the distributions. It has to be remarked, that the
PDFs have been obtained from older, so called ‘rome’ data sets. The detector description
used to simulate the samples from which the results in this section were produced was more
realistic with regard to the amount of passive material in the detector and the simulation
of noise, than the one used in [12]. This leads to a diminished rejection of QCD jets for
the same identification efficiency for τ jets of about a factor of two.

Although the likelihood method discards all correlations between the identification vari-
ables, the method nevertheless provides good separation power between τ jets and QCD
jets. Typical distributions for the likelihood discriminant are shown in Figure 4.13 for τ
jets in black and QCD jets in red. The τ jets are obtained from Z → ττ and A → ττ
events, and the QCD jets come from QCD dijets samples. The A boson is the CP-odd
Higgs boson, arising in supersymmetric models with two Higgs doubletts, and constitutes
a source for τ leptons with large transverse momenta. The mass of the A boson is varied
between 150 GeV and 800 GeV by choosing the model parameters appropriately. It should
be noted, that events in which a heavy particle like the A boson is produced exhibit in
general a higher amount of activity than for example Z → ττ events, due to the larger
momentum transfer in the partonic interaction. This can have an influence on the iden-
tification performance of the τ reconstruction algorithms. All samples where simulated
and reconstructed with ATHENA release 12 as part of the central ATLAS Monte Carlo
production.

The background rejections for the signal efficiencies that result from different cuts on the
likelihood value are shown in Figure 4.14 separately for different pT ranges. In the lowest
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Figure 4.13: Distribution of the likelihood value for τ jets from Z/A → ττ events in black and
QCD jets from QCD dijet events in red after requiring 1 to 3 associated tracks. The rise at large
negative likelihood values is due to a penalty of -10 for values outside the fitted region of the
probability density function.
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Figure 4.14: Rejection of QCD jets as a function of the efficiency to select true τ jets. The
rejections are shown for different bins of the true visible pT.

pT bin shown, between 15 and 25 GeV, one can see the effect of the low reconstruction
efficiency for soft τ leptons.

In Figure 4.15 the rejection is shown as a function of the true transverse momentum of
the τ candidates for two typical signal efficiencies of 30 and 50 percent. The separation
between τ jets and QCD jets becomes better at higher transverse momenta, owing in part
to the growing track multiplicity of the QCD jets, so less of them pass the preselection.
The values of the rejection factors for a few selected points are shown in Table 4.2.

4.4 The tau1P3P Package

Tau1P3P, The second of the two τ reconstruction algorithms more strongly focuses on
information from the inner detector. The seeds for τ candidates are tracks with a pT

above a certain configurable threshold, which fulfil some minimal requirements on the
quality of the track reconstruction. Additional nearby tracks are then associated and the
direction of the τ candidate is defined by the pT weighted barycentre of all associated
tracks. Calorimeter cells in a cone around the τ direction are collected, as in the tauRec
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Figure 4.15: Rejection against QCD jets as a function of pT. The rejections are shown for signal
efficiencies 30% (red) and 50% (blue) for each pT bin.

signal efficiency

truth pT,vis 30% 50%

15− 25 GeV 245.3 ± 3.5 19.35 ± 0.08
25− 40 GeV 415.5 ± 9.4 120.4 ± 1.5
40− 60 GeV 626 ± 22 174.2 ± 3.2
60− 90 GeV 1128 ± 53 293 ± 7
90− 120 GeV 1744 ± 145 395 ± 16
170− 220 GeV 2850 ± 362 531 ± 29

Table 4.2: Rejection factors for some selected signal efficiencies and pT ranges.
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algorithm, and several identification variables are calculated from them as well as from the
properties of the tracks.

To define the energy of the reconstructed τ candidate, an energy flow approach is applied.
The energy flow algorithm attempts to subtract the energy deposited by charged pions from
the calorimeter, in order to replace it with the momentum of the corresponding tracks.
For the typical pion transverse momenta in τ jets the momentum resolution of the track
reconstruction is about an order of magnitude better than the energy resolution of the
hadronic calorimeter. The energy flow approach therefore has the potential to determine
the energy of the τ jets more precisely, especially for low energies. The energy measured
in the hadronic calorimeter is assumed to arise only from charged pions, and is completely
replaced by the track momenta. This property of the energy flow algorithm will be of
importance in Section 6.3.3.

The tau1P3P algorithm offers several discriminant values, obtained from the variables
calculated before by different analysis techniques, ranging from a simple cut based approach
to a more sophisticated neural network analysis. Both the identification and the energy
reconstruction have been mainly optimised for transverse energies of the τ jets below
100 GeV.

4.4.1 Seeding

To be considered as a seed for a τ candidate, a track is required to fulfil:

− pT greater than 6 GeV.

− transverse impact parameter less than 1 mm.

− at least eight hits in the silicon detectors and ten hits in the TRT.

− reduced χ2 of the track fit smaller than 1.7.

The tracks that fulfil these requirements are ordered by pT, starting with the highest
transverse momentum. For each τ candidate defined by these seed tracks other tracks are
searched for around the direction of the seed track in a cone of ∆R < 0.4. Those additional
tracks are required to have a pT greater than 1 GeV. A loose rejection against electrons
from photon conversions is achieved by requiring less than 20% of the TRT hits to be high
threshold hits and at least one hit in the innermost pixel layer. Of those tracks, the ones
with ∆R < 0.2 are associated to the candidate as core tracks, and are used subsequently
to calculate the direction and the charge of the τ object. The tracks with 0.2 < ∆R < 0.4
are counted as isolation tracks, and their number is used in the identification step later on.
Candidates with up to seven additional tracks in the core region are reconstructed.

Finally all calorimeter cells in a cone of ∆R < 0.4 are collected. Only cells which pass a
cut of |E| > 2σnoise on the cell energy are used for the following steps, in order to suppress
the contribution of noise.
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4.4.2 Identification Variables

The tau1P3P algorithm builds several identification variables from the calorimeter cells
and associated tracks, some of which are quite similar to the variables calculated by the
tauRec algorithm. Only a short overview of the different variables will be given here.

The purely calorimeter based variables are:

- EM-Radius
The definition of the electromagnetic radius is analogous to the tauRec variable of the same
name, but only cells inside a cone of ∆R < 0.2 around the τ jet direction are considered.
This leads on average to a smaller value of the variable, especially for QCD jets, which will
usually deposit energy outside the cone of radius 0.2.

- Number of hits in the η-strip layer
This variable is again analogous to the corresponding variable in the tauRec algorithm,
also only considering cells within a cone of radius 0.2. This leads to a lower number of hits
for both signal and background compared to the tauRec definition.

- Width in the η-strip layer
The width in the η-strip layer for the tau1P3P algorithm is defined in the same way as the
corresponding variable for the tauRec algorithm, but only cells in the η-strip layer with
∆R < 0.2 are taken into account.

- Annular isolation fraction
The annular isolation fraction is defined as the ratio of the energy deposited in a ring with
0.1 < ∆R < 0.2 to the total energy in a cone of ∆R < 0.2. All calorimeter layers are taken
into account.

- Isolation ratio
This variable is very similar to the annular isolation fraction. It is defined as the ratio
of the energy in the isolation region (0.2 < ∆R < 0.4) to the energy in the core region
(∆R < 0.2).

- Number of π0 clusters
In τ jets, significant electromagnetic energy depositions arise mainly from π0 mesons, which
decay into two photons. If the clusters in the electromagnetic calorimeter produced by these
pions can be reconstructed, the additional information can constrain other variables that
are correlated with the τ decay mode. At high energies the number of π0 mesons in QCD
jets becomes much higher than for τ jets, so the number of reconstructed electromagnetic
clusters might also provide for additional discrimination at these energies.

The π0 clusters are reconstructed by the topological clustering algorithm, which will be
described in Section 5.1. The clustering algorithm is configured to only consider cells in
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the first two layers of the electromagnetic calorimeter and in the presampler and to use
seed, neighbour and cell thresholds of 4, 2 and 0 σnoise, respectively.7 To be considered
as a π0 cluster, the electromagnetic clusters need to have a transverse energy of at least
1 GeV, at least 10% of the cluster energy must be deposited in the presampler and the
η-strip layer and none of the associated tracks must be close by.

The number of π0 clusters is shown in Figure 4.16 for τ candidates with a true trans-
verse momentum between 12 GeV and 100 GeV. On the left the distributions for the most
important 1-prong decay modes of τ leptons are shown. On the right the distribution for
QCD jets is shown.
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Figure 4.16: Number of π0 clusters for τ candidates with a true visible transverse momentum
between 12 GeV and 100 GeV. On the left the number of π0 clusters is shown for different decay
modes of τ jets. On the right number of π0 clusters is shown for QCD jets. The distributions are
each normalised to one.

The variables calculated from the associated tracks are:

- Number of Isolation Tracks
This is the number of isolation tracks in a region with 0.2 < ∆R < 0.4 around the seed.
This variable is quite powerful, since τ jets are almost entirely contained within a cone of
radius 0.2, and tracks in the isolation region should therefore only arise from conversions
or nearby tracks from the underlying event. Consequently around 90% of the τ jets show
zero and about 5% show one isolation track. From the QCD jets that are reconstructed by
tau1P3P with up to eight tracks within a cone of ∆R < 0.2, about 50% have zero isolation
tracks for very low transverse energies, settling at about 20% for high energies.

- Track width
The width of the track system is only defined for τ candidates with more than one associ-

7The meaning of the different thresholds will be explained in Section 5.1.
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ated track. The definition is, similar to the width in the η-strip layer, the variance of the
pseudorapidity of the tracks weighted by the transverse momentum of the track

∆ηtracks =

∑
i(ηi)

2piT
2∑

i p
i
T

2 − (
∑

i ηip
i
T )2

(
∑

i p
i
T )2

, (4.7)

where i labels the associated tracks. The variable shows a good separation, especially at
higher energies, where the τ jets become much more collimated than comparable QCD jets.

- Invariant mass of the track system
Hadronic τ decays proceed mainly through a small number of intermediate resonances
with masses below the τ mass. The invariant mass of the tracks associated to the τ jet
is therefore expected to show several peaks in the range up to 1 GeV, which are heavily
smeared by the width of the intermediate particles and the detector resolution. For QCD
jets a continuum of invariant masses can be expected, and the invariant mass is strongly
correlated with the energy of the jet. This can indeed be observed. The invariant mass
of the associated tracks provides some separation for very low transverse momenta and
becomes more discriminating with growing momentum. The distribution of the invariant
track mass is shown in Figure 4.17 for τ candidates with a true transverse momentum
between 12 GeV and 100 GeV.
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Figure 4.17: Invariant mass of the track system for τ jets and QCD jets with a true transverse
momentum between 12 GeV and 100 GeV and more than one associated track. The distribution
for τ jets is shown in black, the one for QCD jets in red.

- Transverse flight path significance
If a τ candidate has more than one associated track, it is often possible to reconstruct a
displaced vertex using those tracks. The significance of the distance between this vertex
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and the primary vertex of the event in the transverse plane is calculated, and a sign is
assigned in analogy to the lifetime signed impact parameter. The sign is positive if the
distance vector between the primary vertex and the reconstructed vertex from the τ tracks
and the direction of the τ candidate enclose an angle of less than 90◦ in the transverse
plane, negative otherwise.

For τ jets with higher transverse energies larger values of the flight path significance are
observed on average, owing to the better resolution of the relevant track parameters for
tracks with larger transverse momenta. This leads to a better discrimination against quark
and gluon jets at larger transverse energies.

Although b jets contain long lived particles with a lifetime which is about five times
larger than the lifetime of the τ lepton, they tend to show similar distributions for the
transverse flight path significance [27]. Therefore this variable does not provide a discrim-
ination between τ jets and b jets.

- Transverse and longitudinal impact parameter significance
For τ candidates with only one associated track, the unsigned transverse impact parameter
significance is used as an identification variable. Since the direction of the τ candidate is
defined from the direction of the track, a lifetime sign cannot be defined and hence the
usigned impact parameter is used. The longitudinal impact parameter of the track is also
used. The longitudinal impact parameter is the distance along the beam axis between the
point of closest approach and the primary vertex.

To determine the transverse and logitudinal impact parameters of the associated track,
the primary vertex is refitted without including this track in the fitting procedure. The
point of closest approach is redefined by extrapolating the track to the point with the
smallest transverse distance to the refitted primary vertex along the track. For calculating
the significances the errors of the impact parameters as well as the error of the primary
vertex position are taken into account. Higher mean values than for QCD jets are expected
for τ jets for both variables. They are not calculated for τ candidates with more than one
associated track.

Additionally some variables are calculated that combine calorimetric and tracking infor-
mation:

- Invariant mass between tracks and electromagnetic cluster
In addition to the invariant mass of the track system, one can also calculate the invariant
mass of the track system and the electromagnetic component in the calorimeter. The EM
component is taken from the cells in the first two layers of the EM calorimeter, removing
the cells close to a track.

This variable shows a similar behaviour to the invariant mass of the track system, but
can also be applied to τ candidates with only one associated track.

- Ratio of hadronic energy to transverse momentum of track system
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The ratio of the uncalibrated transverse energy deposited in the hadronic calorimeter in
a cone of ∆R < 0.2 to the sum of the transverse momenta of the associated tracks is also
used as a variable. It shows only a very modest separation power. This is to be expected,
as in both τ jets and QCD jets most tracks arise from charged hadrons, which deposit
most of their energy in the hadronic calorimeter.

4.4.3 Identification

For the identification step there are several methods implemented in the tau1P3P package.
The method offering the best performance in terms of rejection of QCD jets is based on
a neural network. The τ candidates are assigned to four different categories, and separate
networks have been trained for each category. The categories are:

− one associated track, no π0 cluster

− one associated tracks, ≥ 1 π0 clusters

− two associated tracks

− more than two associated tracks

For each category a neural network with eleven input variables and two hidden layers with
30 nodes each is trained with hadronically decaying τ leptons from Z0→ ττ and W → τντ
events and QCD jets from QCD dijet events. Nine of the input variables are the same for
all categories. These are

− ET calculated from energy flow

− EM-Radius

− Isolation fraction

− Isolation ratio

− η-strip width

− Hits in the η-strip layer

− Hadronic ET over sum of pT

− Invariant mass between tracks and EM cluster

− Number of isolation tracks.

For the categories with one associated tracks the last two input variables are the transverse
and the longitudinal impact parameter significance of the track. For the categories with
more than one track these are the width of the track system and the transverse flight path
significance.

67



5 Improvements for tauRec

As shown in Section 4.3.1, the tauRec algorithm seeded by the sliding window clusters
shows a very low reconstruction efficiency for τ jets with small transverse momenta be-
low 20 GeV. Since this energy region is interesting for different physics scenarios, it was
desirable to improve the reconstruction efficiency for soft τ leptons. Also the sliding win-
dow clusters in the configuration used for the τ reconstruction were no longer actively
maintained, which provided additional motivation to switch to a different type of seeding.

There are two clustering algorithms implemented in the ATLAS reconstruction software.
One is the sliding window algorithm that was used for seeding the existing version of the
tauRec package. The other clustering algorithm is the topological clustering (TopoCluster).
In a preliminary study it was shown that the topological clustering can provide a high
reconstruction efficiency down to transverse momenta of about 10 GeV.

The topological clustering, in addition to the higher reconstruction efficiency, has the
beneficial feature of a better noise suppression than the simple fixed cut on the signifi-
cance of the cell energy used so far. This feature promises to make improvements to the
identification possible, especially in the very low energy region, where the contribution of
calorimeter noise on the shower shape variables is more prominent.

In the following a short overview over the TopoCluster algorithm is given and the inte-
gration of the TopoClusters in the tauRec package is explained. Using a large data sample
reconstructed with this modified version of tauRec, the probability density functions for
the likelihood discrimination were updated to make full use of the good noise suppres-
sion capabilities of the topological clustering algorithm. At the end of the chapter the
performance of this updated identification procedure is discussed.

5.1 Topological Clustering

The topological clustering algorithm exploits the neighbourship relations between calorime-
ter cells and the significances of their energy measurements, to reconstruct calorimeter
clusters consisting of a variable number of cells and showing low sensitivity to noise. The
topological clustering algorithm makes it possible to use a relatively low threshold on the
cluster energy while keeping the number of fake clusters low.

The algorithm makes the assumption that the noise of the energy measurement is un-
correlated between nearby calorimeter cells. On the other hand, the real deposited energy
from a particle obviously is correlated with the distance from the shower maximum. A
cell neighbouring a cell with a highly significant energy content is therefore more likely to
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contain a real energy deposition than the same cell would be without the neighbour. The
topologial clustering algorithm exploits this fact.

The algorithm has three adjustable thresholds on the significance |Ecell|/σnoise of the
energy measured by a cell. These are the seed threshold, the neighbour threshold and the
cell threshold. They are used in the three steps of the cluster building. In the first step
the cell with the highest significance above the seed threshold, which is not a member of
any cluster so far, is searched for and a new cluster is created containing this cell. In
the second step the neighbouring cells of the cells that are already part of the cluster are
added if they have a significance above the neighbour threshold. This is step is repeated
until there a no new cells added to the cluster. If a cell to be added is already member
of another cluster, both clusters are merged into one. In a final step, one more iteration
of adding neighbour cells is performed with the lowest threshold on the significance, the
cell threshold. The neighbour relations are defined between cells in all space directions
crossing different calorimeter layers and subsystems if applicable.

These three steps are repeated until there are no more unclustered seed cells left. The
algorithm will often merge the energy depositions from different particles into one cluster,
so a splitting procedure is performed on all clusters. Cell forming local maxima are searched
for in the second and third layer of the electromagnetic calorimeter and, if more than one
is found in a cluster, each will form a new cluster. A cell is considered to form a local
maximum if it has an energy of at least 500 MeV, no neighbouring cell has a larger energy
and it has at least 4 neighbours in the clusters. The border cells between two split clusters
will be shared amongst them, with the two weights w1 and w2 calculated from the energies
E1 and E2 of the two clusters and the distances d1 and d2 of the cells from the cluster
centres as

w1 =
E1

E1 + rE2

, w2 = 1− w1, with r = exp(d1 − d2). (5.1)

The clusters created by different configurations of the TopoCluster algorithm are char-
acterised by the three cell energy thresholds and the calorimeter layers, that are con-
sidered for the selection of cells. Two collections of clusters are created in the ATLAS
default reconstruction. The first is called ‘CaloTopoClusters’ and uses the cells from all
calorimeter layers with the thresholds on the cell significance in a 4/2/0 configuration for
seed/neighbour/cell thresholds. The cell threshold of zero means, that in the last step
of the cluster building one extra layer of neighbour cells will always be added, regardless
of their energy. The CaloTopoClusters are used inside the ATLAS reconstruction soft-
ware to reconstruct calorimeter jets with various algorithms and configurations and also
to reconstruct the missing transverse energy of the event. The second collection is called
‘EMTopoClusters’ and uses only the electromagnetic barrel and end-cap calorimeters with
a 6/3/3 configuration for the thresholds. In the following, when speaking of TopoClusters
it is implied that they come from the CaloTopoCluster collection.
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5.2 Implementation of TopoJet Seeds

The topological clustering described above typically produces one cluster per particle. A
τ jet or QCD jet therefore gives rise to several clusters, which need to be identified as
belonging to the same jet. This is done with a jet reconstruction algorithm, of which
several have been developed [5] and are available in the Athena software [29]. One of
the most often used jet reconstruction algorithms is the seeded cone algorithm, which
combines clusters within a radius R into one object.1 Typical radii used for inclusive jet
reconstruction in ATLAS are 0.4 and 0.7.

To define the jet axis in the seeded cone algorithm, the axis is first centered on the cluster
with the highest energy (the seed) and then it is iteratively recalculated by combining all
the four-momenta of the clusters2 inside the radius R. The algorithm stops when the axis
has become stable. Overlapping jets are subject to a splitting/merging step. The shared
constituents of the jets are split up between the jets according to their distance to both
of the jets and the ratio of the transverse jet energies if both jets have at least half the
transverse energy of the other jet. Otherwise the two jets are merged into one.

In the course of the default event reconstruction inside ATHENA, different jet recon-
struction algorithms with different parameters are run, each with calorimeter towers as
well as TopoClusters as input. In addition, for simulated events also the simulated stable
particles are grouped into jets with the same algorithms. The cone jets with a radius of 0.4
created from the TopoJets of the event offer the functionality that is needed to seed the
τ reconstruction. The 0.4 radius coincides with the cone size used for the cell selection in
the original tauRec package, which makes it a robust choice to base the switch to TopoJets
on. In ATHENA these jets are called ‘Cone4TopoJets’.

The Cone4TopoJets are only accepted as seeds if they have a transverse energy of more
than 10 GeV and an absolute pseudorapidity of |η| < 2.5. The efficiency to reconstruct
a true τ jet with |η| < 2.5 as a Cone4TopoJet is shown in Figure 5.1 as function of the
transverse momentum of the true τ jet for a combined Z → ττ and A → ττ sample. The
samples have a lower cut of 12 GeV applied to the visible transverse energy on generator
level. The reconstruction efficiency is above 96% for the lowest energies and quickly satu-
rates at nearly 99%.

The jet objects in ATHENA give access to the underlying constituents down to the
detector level. In the present case this allows to get the list of calorimeter cells contained
in the TopoClusters which in turn make up the jet. This feature makes it possible to
directly save a link to the seed jet inside the τ candidate and subsequently access the
calorimeter cells – used to calculate identification variables and calibrate the energy of
the τ jet – through that jet object. The advantage of this approach is on the one hand
execution speed, as unnecessary copying of data is avoided and already reconstructed
objects can be utilised, and on the other hand it provides for a one-to-one relationship

1The radius R =
√

∆η2 + ∆φ2 is defined as the distance in the η-φ plane.
2The four-momentum of a cluster is calculated by treating each cell as a massless particle and adding

their four-vectors.
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Figure 5.1: Probability to reconstruct a true τ jet as a Cone4TopoJet as function of pT. Note
that the used sample has a minimum pT cut of 12 GeV applied on the truth level.
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between reconstructed jets and τ candidates, making a matching between the two kind of
objects simple and unambiguous.

In order to use the seed jet in the above way, the τ object was modified to include a link
to the jet object and methods where added to access the associated cells inside the τ object.
The reconstruction tools, which make use of the calorimeter cells where changed to ask
the τ object for the list of cells, without the need to know the source of the cells. These
changes made it possible to switch between the default behaviour and the new seeding
through the runtime configuration without changes to the C++ code.

5.3 Shower Shape Variables with TopoClusters

It is expected, that the distributions for variables calculated from energy depositions in
the calorimeter will change when the cells are taken from the clusters reconstructed by
the topological clustering algorithm as opposed to the default cell selection by applying a
fixed cut on the significance of the energy deposition in each cell. In order to compare the
distributions with and without the use of the topological clustering, about 135.000 Z→ ττ
and A→ ττ events as signal and about 140.000 dijet events for the QCD background have
been reconstructed on a local cluster in Freiburg with a modified version of the ATHENA
release 13. This version included the changes described above. The simulated detector
data used for these samples came from the official ATLAS Monte Carlo production, and
where produced with release 12 of the ATHENA software.

The more efficient suppression of noise by the topological clustering leads in most cases
to smaller mean values for variables describing the size of a shower. As expected, the low
energy range is affected more strongly, because the relative contribution of noise to the
measured energy is larger for smaller real energy depositions. Also one should keep in mind
that the mean transverse energy of the lowest bin is shifted to smaller values because of
the higher reconstruction efficiency in this range.

The discrimination of a variable can be quantified by the separation power S, which is
defined by [10]

S =
1

2

∫
(Psig(y)− Pback(y))2

Psig(y) + Pback(y)
dy. (5.2)

Psig and Pback are the probability densities of the considered variable for signal (sig) and
background (back), respectively. The separation power has a value of one if the distribu-
tions for signal and background do not overlap, hence the variable discriminates perfectly
between signal and background. If the distributions of the variable are the same for signal
and background the separation power has a value of zero. The separation powers of some
of the variables used for the τ identification are shown for two intervals of the transverse
energy in Table 5.1, separately for the two samples seed with and without topological
clusters. One can see that most variables have a better separation power in the sample
that was reconstructed with TopoJet seeds, especially in those cases where a significant
difference can be observed.
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separation power S

variable ET range default TopoJet

EM radius
17− 32 GeV 0.4214 0.5411

45− 70 GeV 0.3861 0.5317

Isolation
17− 32 GeV 0.3647 0.3477

45− 70 GeV 0.4235 0.4811

η-strip width
17− 32 GeV 0.1768 0.3883

45− 70 GeV 0.2026 0.4338

no. of η-strip hits
17− 32 GeV 0.040 0.035

45− 70 GeV 0.076 0.066

ET/pT,leading
17− 32 GeV 0.2730 0.2855

45− 70 GeV 0.2206 0.2363

Table 5.1: Separation power of the calorimeter based variables for default reconstruction and
seeding by TopoJets. Most variables have a better separation power when reconstructed from
topological clusters.

The variables that changed the most are the EM-Radius, the isolation fraction, the η-
strip width and the number of η-strip hits. Comparisons of those four variable distributions
between the original and the modified version of the algorithm are shown in the following
for different ET bins. The other variables are not affected much and are therefore not
shown here but in Appendix A.

The change of the EM-Radius distribution, which is shown in Figure 5.2, increases the
discrimination of the variable, especially in the very low energy region. In the lowest ET bin
shown in Figure 5.2 the effect of the adaptive noise suppression of the topological clustering
can be observed. The EM-Radius for τ jets is shifted to lower values while it becomes much
larger for QCD jets. τ jets deposit their energy in a small cone and therefore a lot of cells
in the cone of radius 0.4 used for calculating the EM-Radius have only very little energy
deposited in them and are more efficiently supressed by the topological clustering then
by a fixed cut on the significance. For QCD jets the situation is reversed. They spread
out their energy over a large region, so that on average only a small amount of energy
is deposited in each cell. In the default reconstruction many cells with real energy were
therefore supressed by the fixed cut on the significance. The topological clustering retains
these cells if they are close enough to the shower maximum of one of the particles in the
jet, leading to a broader reconstructed shower shape. At the higher transverse energies
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Figure 5.2: Comparison of the EM-Radius between default tauRec and TopoJet seeded tauRec
for different ET ranges. Light coloured distributions are for the default version and the dark
coloured ones for TopoJets. Black/grey distributions are for τ jets and the red ones are for QCD
jets.

both signal and background tend to be shifted to smaller values, but the effect is more
pronounced for τ jets for the same reasons, also leading to a stronger separation.

The isolation fraction, which is shown in Figure 5.3, also shows some small differences
in the shape of the distributions, mainly in the lowest ET bin. But the discrimination does
not change much.

The η-strip width shows the most pronounced change in the shape of the distribution, as
shown in Figure 5.4. The distribution generally peaks at lower values and especially for the
signal has a very sharp peak at zero. Also now negative values can be observed, which is
due to the cut on the absolute cell energy applied by the TopoCluster algorithm, whereas in
the default algorithm cells with negative energy where discarded. This might also explain
the dramatic change in the shape, since cells with positive and negative fluctuations now
cancel each other out. The discrimination of the variable is somewhat larger than in the
default reconstruction.

The distribution for the number of η-strip hits is practically unchanged other than in
the lowest ET bin, as can be seen in Figure 5.5. This is expected, since the 200 MeV
requirement on the cell energy already corresponds to an energy of about 4σnoise. So, cells
that were counted as hits in the default algorithm will be able to start a TopoCluster most
of the time, and are therefore also contained in the list of cells for the new algorithm.
The change in the lowest bin can be attributed to the lower mean energy of reconstructed
objects, due to the higher efficiency at low energies.
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Figure 5.3: Comparison of the isolation fraction between default tauRec and TopoJet seeded
tauRec for different ET ranges. Light coloured distributions are for the default version and the
dark coloured ones for TopoJets. Black/grey distributions are for τ jets and the red ones are for
QCD jets.
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Figure 5.4: Comparison of the η-strip width between default tauRec and TopoJet seeded tauRec
for different ET ranges. Light coloured distributions are for the default version and the dark
coloured ones for TopoJets. Black/grey distributions are for τ jets and the red ones are for QCD
jets.

5.4 New Likelihood Distributions

To make use of the better discrimination offered by the identification variables when calcu-
lated from TopoCluster cells, it was necessary to create new probability density functions
to be used in the calculation of the likelihood ratio.

To obtain the PDFs from the available samples, all reconstructed τ objects from the
signal samples that could be matched to a true τ jet within a cone of 0.2 where used
as the signal. All unmatched τ objects from the QCD dijet samples were used as the
background. Only candidates having one to three associated tracks where used to create
the probability density functions, corresponding to the preselection cut later applied during
the τ reconstruction inside ATHENA.

The probability density functions of the eight variables where created for nine different
ET bins. Their bin boundaries were chosen as 10, 17, 32, 45, 70, 100, 150, 220, 500 and
> 500 GeV, to have roughly the same number of τ jets in each bin. The distributions for
the five continous variables where smoothed using the ‘Locfit’ software package [18, 19].
The Locfit package implements various methods for density estimation based on the kernel
techniques described in Section 3.2 in a computationally efficient way. The specific method
used was the local likelihood method described at the end of Section 3.2, where polyomials
are fitted to weighted neighbourhood of each point. A nearest neighbour bandwidth and
third order polynoms were used in the local fitting procedure. The number of nearest
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Figure 5.5: Comparison of the number of η-strips hits between default tauRec and TopoJet seeded
tauRec for different ET ranges. Light coloured distributions are for the default version and the
dark coloured ones for TopoJets. Black/grey distributions are for τ jets and the red ones are for
QCD jets.

neighbours that where used to determine the bandwidth was adapted to the available
statistics in each ET bin to produce a smooth result and still reproduce the gross features
of the distributions. An example for the result of this estimation procedure can be seen in
Figure 5.6 for the ET bin between 45 GeV and 70 GeV.

The discrete distributions for the number of η-strip hits were smoothed using a moving
average smoothing algorithm described in [16], which evens out bin by bin fluctuations.
The first bin was excluded from the smoothing procedure. An example of this is also
included in Figure 5.6. For the number of tracks and the charge, the histograms were
directly used as the PDFs.

As already mentioned, the PDFs used in the default version of tauRec were created
from older monte carlo samples, based on a simpler detector geometry and simulation
compared to the current version of ATHENA. To disentangle the effect on the identification
performance due to a more up to date training from the effect due to the switch to TopoJet
seeds, the same procedure as described above was also used to extract PDFs from samples,
that were reconstructed with an unmodified version of the ATHENA software.
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Figure 5.6: The smoothed PDFs overlaid with the unsmoothed distributions for the ET bin from
45 GeV to 70 GeV. The black distributions are for τ jets and the red ones are for QCD jets. The
smoothed distributions are shown in blue. The Ntrack and Charge variables are not shown, since
their distributions are not smoothed.
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5.5 Performance

In order to assess the performance of the tauRec algorithm based on TopoClusters, the
same samples where used, from which the PDFs have been extracted. Ideally, statistically
independent data samples should be used, but it was necessary to use the same samples
because of the limited available statistics. Due to the high achievable rejection factors a
large number of QCD jets is needed to reach a useful error on the rejection. A slightly
higher rejection can be expected compared to a statistically independent sample. But
the effect should be fairly small, since the likelihood method is generally not very prone
to overtraining, and the applied density estimation procedure further helps to reduce the
effects of fluctuations in the training sample on the probability densities.

The distributions of the likelihood discriminant were calculated for several pT bins using
the different probability density functions, which were extracted from the official samples
used for the results shown in Section 4.3.3, and the privately created samples with TopoJet
seeding. By varying the cut on the discriminant the background rejection for different signal
efficiencies can be determined.

The resulting rejections for the TopoJet samples when applying the likelihood with PDFs
created from the same samples are shown in Figure 5.7 as a function of the signal efficiency
for different pT bins and in Figure 5.8 as a function of the true visible pT for two selected
signal efficiencies. Here again the true visible The values for some selected pT bins and
signal efficiencies are given in Table 5.2 together with the rejections achived by the default
version of tauRec. The efficiencies and rejections are calculated with respect to the true τ
jets and Cone4Truth jets respectively, both are required to have |η| < 2.5.

truth pT,vis signal efficiency TopoJet signal efficiency default gain

[GeV] 30% 50% 30% 50% 30% 50%

12− 15 139.5 ± 7.1 41.5 ± 1.1 - - - -
15− 25 319 ± 18 77.5 ± 2.1 245.3 ± 3.5 19.35 ± 0.08 +30% +300%
25− 40 630 ± 61 170.4 ± 8.6 415.5 ± 9.4 120.4 ± 1.5 +52% +42%
40− 60 1116 ± 174 267 ± 20 626 ± 22 174.2 ± 3.2 +78% +53%
60− 90 1299 ± 213 389 ± 35 1128 ± 53 293 ± 7 +15% +33%
90− 120 5290 ± 2366 635 ± 98 1744 ± 145 395 ± 16 +203% +61%

Table 5.2: Rejection factors for some selected signal efficiencies and pT ranges. For even higher
transverse momenta the errors on the rejection become extremely large due to limited statistics.
For comparison the rejections which can be achieved with the default version of tauRec are given
(see Section 4.3.3) and the also the relative gain of the TopoJet seeded reconstruction over the
default reconstruction is shown in the last two columns.

Compared to the rejections achieved with the default tauRec package, given in Sec-
tion 4.3.3, improvements of 15-78% can be observed in the pT range below 100 GeV. For
low transverse momenta (between 15 GeV and 25 GeV) and 50% efficiency the TopoJet
seeded reconstruction can even improve the rejection by a factor of four. Below 15 GeV
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Figure 5.7: Rejection of QCD jets as function of the efficiency to select true τ jets. The rejections
are shown for different bins of the true visible pT.

the new algorithm is now able to reach an efficiency of 50% after identification, while still
providing some modest rejection against QCD jets.

It should be noted, that the sample from which the above results have been obtained
was reconstructed with release 13 of the ATLAS reconstruction software ATHENA, while
the numbers shown in Section 4.3.3 where obtained from a sample which was reconstructed
with release 12 of ATHENA. Both samples where created from simulated detector data
based on the same simulation code and the same detector geometry. No significant changes
in the reconstruction affecting the performance of the tauRec package were introduced be-
tween the two releases. There was not enough statistic available for a direct comparison
of the identification performance between release 12 and release 13, but a small sample
reconstructed with release 13 was available for a comparison of the identification variables.
This comparison is shown in Appendix A. The distributions of the indentification variables
agree quite well, so no significant difference in performance is to be expected between the
two releases.

It is interesting to know how much of the performance gain between the default tauRec
version and the TopoJet seeded one can be attributed to an intrinsically better discrimi-
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Figure 5.8: Rejection against QCD jets as a function of the visible pT for a signal efficiency of
30% (red) and 50% (blue). For the highest pT bin at 30% efficiency no QCD jets passed the
selection.

nation power of the identification variables when calculated from TopoCluster cells, and
how much arises due to fact that the PDFs where created from data simulated with the
same detector description as the data used to determine the rejection of the new method.

To disentangle those two effects, new PDFs where also created from the sample that was
reconstructed with release 12 of ATHENA and was used for the results shown in Section 4.3.
The likelihood method was applied to this same sample, to compare the identification
performance to the one achieved on the TopoJet sample with the appropriate likelihood
training. The resulting rejections are shown in Figure 5.9 as a function of the transverse
momentum of the τ jets.

It is evident that for small transverse momenta up to about 60 GeV the rejection
against QCD jets that can be reached with the default tauRec implementation can be
only marginally increased by updating the likelihood with data, which were simulated
with an up to date detector description. In the intermediate pT region roughly half of the
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increase in the rejection can be reproduced by using the updated likelihood on top of the
default tauRec reconstruction.
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Figure 5.9: Comparison of the rejection against QCD jets as a function of the visible pT between
the reconstruction with TopoJet seeds and the default reconstruction with two different likelihood
discriminants. These are the default likelihood (old LLH), as implemented in ATHENA, and a
likelihood where the PDFs have been retrained from the same sample used to calculate the
rejection (new LLH). The TopoJet seeded sample and the sample using the default tauRec version
were reconstructed with release 13 and release 12 of ATHENA, respectively. Details are given in
the text.
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The two distinct τ reconstruction algorithms, tauRec and tau1P3P, have some complemen-
tary strengths and weaknesses. The ‘end user’ doing an analysis involving τ leptons needs
to decide which algorithm to use when selecting τ leptons. In an experiment as complex as
ATLAS this means a lot of time has to be spent to obtain the detailed knowledge that is
needed to make an optimal choice. It was therefore decided to merge both algorithms into
a single default algorithm, providing the best features of both algorithms and hopefully
eliminating some of the weaknesses.

A first step towards a merged algorithm was implemented in the scope of this thesis,
by combining the τ objects created by both algorithms into one collection. This was done
by matching the seeds of both algorithms at reconstruction level, and adding functionality
which enables the user to check by which of the two algorithms a specific τ object was
reconstructed. This can also include τ jets reconstructed by both algorithms, and each
τ object can have the detailed information reconstructed by each of the two existing τ
algorithms attached to it.

6.1 Merging of tauRec and tau1P3P

The two τ reconstruction algorithms tauRec and tau1P3P were essentially implemented as
two independent algorithms sharing some common code and data structures. During the
event reconstruction in ATHENA both algorithms were called in sequence, each looping
over all appropriate seeds in the event. In the end two separate collections of TauJet
objects were produced, one each for tauRec and tau1P3P, with no connection between
corresponding objects in both of them.

A necessary condition for combining both algorithms is to have a common definition of
a reconstructed τ object. The decision was made to use the union of the τ candidates
reconstructed by both algorithms. In Figure 6.1 the number of true τ jets reconstructed
by either both algorithms or only one of them is shown for a Z→ ττ sample as a function
of the visible transverse momentum of the τ jets. The sample was reconstructed with
a version of ATHENA which already included a version of tauRec seeded by topological
clusters.

The fraction of τ jets reconstructed by both algorithms is about 75% for the whole sam-
ple. At a transverse momentum of 12 GeV this fraction is 50% and reaches about 90% for
high transverse momenta above 80 GeV. This fraction is dominated by the reconstruction
efficiency of the tau1P3P algorithm. Due to the high reconstruction efficiency of tauRec
only a small fraction of τ jets is reconstructed by tau1P3P only. The fractions of τ jets
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truth pT,vis both only tauRec only tau1P3P

12− 20 GeV 60% 37% 1%
20− 30 GeV 74% 26% 0.5%
30− 40 GeV 80% 19% 0.2%
40− 50 GeV 83% 16% 0.1%
50− 60 GeV 86% 13% 0.1%
60− 70 GeV 87% 13% 0.1%
70− 80 GeV 90% 10% 0.1%
80− 90 GeV 91% 9% 0.3%

Table 6.1: Fraction of τ jets that is reconstructed by each algorithm or by both for different bins
of the true visible transverse momentum.

reconstructed by both algorithms or only one of them are listed in Table 6.1 for different
ranges of the true visible transverse momentum.
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Figure 6.1: Transverse momentum of τ jets reconstructed by either of the two algorithms for a
Z→ ττ sample. Shown is the sum of the distributions for τ jets reconstructed by both algorithms
(green), only tauRec (red), only tau1P3P (blue) or none of the two (yellow) algorithms. For the
whole sample about 75% of all τ jets are reconstructed by both algorithms, saturating at about
85% for higher pT.

The reconstruction efficiencies of the two algorithms for QCD jets are shown in Fig-
ure 6.2. Tau1P3P reconstructs QCD jets with a lower probability than τ jets at compa-
rable momenta, which provides already a very modest rejection against QCD jets up to
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transverse momenta of about 60 GeV. This can mostly be attributed to the requirement
of at least one track with a transverse momentum of more than 6 GeV, which many QCD
jets do not fulfil.
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Figure 6.2: Reconstruction efficiency for QCD jets for a combination of several QCD dijet samples.
Shown is the sum of the efficiencies for QCD jets to be reconstructed by both algorithms (green),
only tauRec (red), or only tau1P3P (blue).

The goal of combining the algorithms was to reconstruct exactly one τ object for each
true τ jet, which offers the specific information reconstructed by each of the two algorithms.
By separately saving the data reconstructed by tauRec and tau1P3P in the τ object, it is
possible to use them as if the algorithms were still completely separated. This is especially
important for validating the implemented changes by checking them for consistency with
the known behaviour of the two original algorithms.

6.2 Technical Implementation

At the time when the implementation of the merged τ algorithm started, the version of
the ATHENA software was already considered to be close to the final version used for the
first data taking. It was therefore important to take the first steps towards this merging
in a way to minimise the amount of code that had to be changed and validated. It was
also important to keep a high degree of ‘backward compatibility’, to make it possible to
perform previously established analyses on data that will be reconstructed with the merged
algorithm without the need for extensive changes to the analysis code.
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When using the combination of the two different seed definitions, the cone jets made
from topological clusters and the tracks in the inner detector with a transverse momentum
above a certain threshold, it is desirable to combine two seeds which originate from the same
particle or jet into one τ object, in order to avoid the reconstruction of duplicate τ objects.
In this first step towards a combined algorithm this was, for reasons of simplicity mentioned
above, implemented as a simple cone matching between the τ objects reconstructed by the
tau1P3P package and the Cone4TopoJets which are the seeds for the tauRec package. For
every τ object that is reconstructed by tau1P3P, it is checked if any eligible seed for tauRec
is inside a cone of radius 0.2 around the direction of this τ object and has not been used
before.

The cone size has been chosen to be large enough to match nearly all candidates orig-
inating from the same τ jet. Figure 6.3 shows the distribution of the distance in the η-φ
plane between tau1P3P candidates and tauRec candidates that are both matched to each
other and where the tau1P3P candidate is matched to a true τ jet within a cone of radius
0.2. The plot was created from a mixed Z→ ττ and A→ ττ sample with various masses
of the A boson, in which the τ jets are mostly isolated from the rest of the event. Within
this sample, the applied matching procedure shows an efficiency of nearly 100%. The situ-
ation will most likely be different for QCD jets or for events in which many jets and other
objects are produced and hence combinatorial effects will play a bigger role. In such events
the axis of the tau1P3P or tauRec candidates reconstructed from a τ jet can be shifted
by nearby tracks or energy depositions in the calorimeter, respectively. This can lead to
duplicate reconstructed τ jets or to two different close by true objects being matched to
the same τ candidate. Therefore the matching procedure should be studied in more detail
in the future, to determine the probability of such occurrences in different types of events.

After no more seeds for tau1P3P are left, all Cone4TopoJets that are not yet matched to
a tau1P3P candidate are used to seed a τ candidate which is only reconstructed by tauRec.

As already mentioned, the C++ class TauJet allows to attach algorithm specific infor-
mation of different content in order to use the same class for τ objects reconstructed by
either tau1P3P or tauRec. This is done by attaching specialised objects with class names
like TauRecDetails and Tau1P3PDetails. The user can retrieve the objects with a tem-
plate method using the class name as an identifier. It was therefore straightforward to
attach more than one of these detail objects to the TauJet object, coming from different
algorithms. Furthermore, a method was added to check whether a given τ object was
reconstructed by tau1P3P, by tauRec or by both of them. This scheme has the advantage
that the interface could be left unchanged, so the migration is straightforward for users of
the τ objects.

Some basic properties of the τ objects, like the four vector and the list of associated
tracks, are contained in the TauJet class itself and have conflicting definitions in both
algorithms. In this cases it was decided upon one definition to be used as the default in
case a τ candidate is reconstructed by both algorithms and the conflicting definition is
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Figure 6.3: The distance in the η-φ plane between matched tau1P3P and tauRec candidates. The
tau1P3P candidate is also required to be matched to a true τ jet within a cone of radius 0.2.

stored in the algorithm specific TauRecDetails or Tau1P3PDetails object. Specifically,
the following definitions are used for overlapping candidates:

− transverse energy: tauRec

− η, φ: tau1P3P

− charge: tau1P3P

− associated tracks: tau1P3P

This choice was based on the quality of the reconstruction by both algorithms for those
properties. The transverse energy was taken from the tauRec algorithm, although the
transverse energy reconstructed by tau1P3P has a better resolution in the range below
about 100 GeV. However, the energy flow calculation of tau1P3P is not calibrated for
higher energies and does not have a linear response in this region, whereas the transverse
energy reconstructed by tauRec has the correct scale over the whole energy range. The
pseudorapidity and the azimuthal angle are reconstructed with a slightly better resolution
by tau1P3P, where they are determined from the track system, owing to the higher granu-
larity of the inner tracker compared to the calorimeter. Also the percentage of τ jets with
correctly assigned charge and track multiplicity is higher for tau1P3P, due to the more
stringent requirements on the track quality.
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All these modifications, though often trivial on their own, can have unwanted side effects
in a complex software like ATHENA, where a lot of sometimes hidden dependencies exist
between different parts of the code. Therefore a great deal of attention was put into
validating the modifications at each step, to make sure the produced results are consistent
with the ones before the merged reconstruction was implemented.

6.3 Optimisation of Identification Performance

The merged TauJet objects make it possible to use identification variables coming from
both tauRec and tau1P3P in case the τ jet is reconstructed by both algorithms. In order
to see how this can be exploited to further improve the performance of the identification
offered by the individual algorithms, a study was done to gauge the potential gain when
combining variables from both algorithms. It was decided to base the new identification
procedure on a neural network discriminant.

The τ candidates fall into three categories: reconstructed by both algorithms (overlap
candidates), reconstructed only by tauRec (tauRec candidates) and reconstructed only by
tau1P3P (tau1P3P candidates). Only the overlap candidates in the first category have all
the identification variables from both algorithms available. To make use of the maximum
available information for each category, different neural networks are trained for overlap
candidates and tauRec candidates. No special training was done for tau1P3P candidates,
since they constitute only a relatively small fraction of the signal candidates, mainly in the
very low pT region, and an optimised neural network discriminant is already available for
them.

The newly trained discriminant is later compared to the recommended discriminant for
each of the two standalone algorithms, which is the likelihood developed in Section 5.4
for tauRec and the neural network discriminant described in Section 4.4.3 for tau1P3P.
Compared to what is described in Section 4.3 and Chapter 5, an additional development
took place for the tauRec package, which has an impact on the identification performance.
The criteria for associating tracks where changed, lowering the minimal required transverse
momentum to 1 GeV and introducing some loose requirements on the quality of the track
reconstruction. The probability density functions were updated to reflect this change and
the rejection against QCD jets was improved by about 10-20% compared to the numbers
shown in Section 5.5.

6.3.1 Training of the Neural Networks

For the training and evaluation of the neural networks the FORTRAN package JETNET
was used in the version 3.5 [22], and was interfaced through an enhanced version the C++
class TJetNet [23, 35]. The JETNET package offers a wide variety of options for training
multilayer feed-forward networks, such as different learning algorithms, activation func-
tions and error measures, and is a well established software package in high energy physics.
To train the neural networks, a program was written, which implements the early stopping
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described in Section 3.3 in an automated way, so that a large number of different neural
networks can be efficiently trained to compare their performance.

To become familiar with the properties of the training procedure and the preparation of
the training data influencing the classification performance of the resulting neural network,
the configuration of the neural network inside the tau1P3P package was used as a template
for further optimisation. A neural network with a fixed topology of two hidden layers with
30 nodes each and a fixed set of input variables given in Section 4.4.3 was trained using
different options for the training procedure and the composition of the training samples
(splitting of the data into a training and a validation sample, scaling of the input variables
onto a fixed range of values) until comparable results to the tau1P3P neural network
discriminant could be reached. This training was done separately with tau1P3P candidates
with one associated track and more than one track.

It showed that the performance of the trained network was not very sensitive to the
different training parameters, as long as the convergence of the training is guaranteed. But
the necessary time to train a network was dependent on the applied learning procedure.
The RPROP algorithm described in Section 3.3 proved to lead to shorter training times and
better convergence than the Backpropagation algorithm in most cases, and was therefore
used for further training. Also some standard parameters have been chosen for all further
trainings. Some important of these where:

− a sigmoid activation function for all hidden nodes and the output node

− a quadratic error function

− an initial random Gaussian distribution of the connection weights with a width of
0.8

− an initial learning rate of 2 to speed up the early learning phase

− weight update parameters of the RPROP algorithm of η+ = 1.2 and η− = 0.5

− the input variables were scaled to have the bulk of the values to lie between −1 and
1 for signal and background1

Also it was determined, that in order to get a consistently good training result it is
important to chose a sensible fraction of the available data to be used as the validation set.
If the validation set is too small, the fluctuations of the validation error are too large for
the training program to find the training epoch with the minimal error, and the network
is often over- or undertrained. If, on the other hand, the fraction of the training events
used for the validation is too large, then the remaining events available for training the
network may not be able to constrain the weights well enough during the training and
the optimal performance is often not reached. For the available statistics, good results

1Scaling of the input variables avoids extremely large or small values for the weights, which can lead to
numerical instabilities and longer training times.

89



6 τ Algorithm Merging

could be achieved when using between a quarter to a third of the training samples for the
validation set.

6.3.2 Training Categories and Data Preparation

For the training of the neural networks and the evaluation of their performance, about
290.000 reconstructed τ candidates matched to true τ jets as the signal and about 1.4 mil-
lion reconstructed τ candidates from QCD dijet events as the background where available
from several productions done for validation purposes inside the ATLAS collaboration and
a private production on a local cluster. Of these candidates around 80% of the signal and
40% of the background were overlap candidates. It should be noted, that a mix of sam-
ples reconstructed with different versions of ATHENA has been used, mostly from version
13.0.40 and version 14.0.0, but it was ensured that no significant changes to the recon-
struction have been introduced between those versions. No samples were reconstructed
twice from the same simulated data. Other than that, all samples are based on data which
was simulated with the same version of the simulation code and the same detector geometry.

The neural network discriminant of the tau1P3P package uses four different categories
for the τ candidates as described in Section 4.4.3. It has not been demonstrated that
this complex setup can significantly improve the identification performance. After some
experimentation with the tau1P3P categories and a simple classification into candidates
with one track and candidates with more than one track, it was decided for the present
study to use the latter, since no significant difference in performance could be observed.

One third of the signal sample and two thirds of the background were set aside to be
later used as a statistically independent sample to evaluate the performance of the trained
neural networks. The rest of the data was split up into four different training sets:

− overlap candidates with exactly one associated track as defined by tau1P3P and at
least one track as defined by tauRec

− overlap candidates with more than one and less than nine associated tracks as defined
by tau1P3P and at least one track as defined by tauRec

− candidates reconstructed at least by tauRec with one associated associated track as
defined by tauRec

− candidates reconstructed at least by tauRec with more than one and less than nine
associated tracks as defined by tauRec.

Requiring at least one associated track as defined by tauRec for the overlap candidates
makes sure that all tauRec variables are defined, and can be later used in the neural network
discriminant. A negligible fraction of events is removed by this additional requirement.

These four training sets are used to train neural networks for each of the four respective
categories. The network topology and the used subset of identification variables are opti-
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mised independently for each of the categories.

Since some of the most separating identification variables are strongly correlated with
the transverse energy, it is highly desirable to include the ET of the τ candidate in the
identification procedure in some way, especially if the goal is to offer a very generic τ iden-
tification over a wide kinematic region. In the existing discriminants this is already done.
The tau1P3P neural network discriminant explicitly uses the transverse energy calibrated
by the energy flow approach as an input variable to the neural network, whereas the like-
lihood discriminant of the tauRec package does so implicitly by binning the probability
density functions into different ranges of the transverse energy.

For a general purpose particle identification, like the τ identification considered here, one
must be careful not to introduce a bias towards the specific signature of the sample used
for training the identification procedure. This is especially relevant when incorporating
kinematic variables into the discriminant, since the kinematical properties will usually be
the ones that show the largest variation between different physical processes. This means
that the kinematic variables itself should have no discrimination power between signal and
background candidates, but should only contribute through their correlations with other
variables used in the identification procedure.

One way to achieve such a behaviour, is to modify the samples used for the training of
the discrimination method in such a way as to have the same kinematic properties. At
the very least those properties that are used as inputs to the identification need to have
approximately the same distribution.

To equalise the distributions of a variable for the signal and background sample the
following procedure was applied:

− scale the distributions for signal and background to an area of one

− take the ratio of signal to background in an appropriate number of bins

− optionally smooth the histogram of the ratio to avoid large discontinuities between
adjacent bins

− loop over the events and look up the ratio r in the bin given by the variable

− draw a random number x between 0 and 1

− if it is a signal event, remove the event from the sample if r > 1 and x > 1
r

− if it is a background event, remove the event from the sample if r < 1 and x > r

This procedure will be called normalisation in the following. Since events are removed
from the sample this normalisation reduces the available statics.

The normalisation was first applied to each of the four training samples on the trans-
verse energy ET as defined by tauRec. The samples resulting from this step were again
normalised to have roughly the same distribution for the pseudorapidity η. It was checked
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that the normalisation of η did not affect the one applied on the transverse energy. The
resulting distribution of the transverse energy and the pseudorapidity in the training sam-
ples containing only overlap candidates is shown in Figure 6.4. For the sample containing
candidates with only one associated track not many candidates above about 100 GeV sur-
vive the normalisation, since only a very small fraction of QCD jets fall into this category
at high energies. A similar effect can be observed for the tauRec training samples, but it is
more pronounced due to the looser requirements on the quality of the associated tracks and
a therefore even smaller fraction of QCD jets with only one associated track. The trained
networks might therefore not develop the full potential for single track candidates with
high transverse energies. Since the fraction of QCD jets with one associated track becomes
very small for high energies this should not have a large effect on the overall rejection in
real applications, since it is dominated by the rejection of QCD jets with a higher track
multiplicity.
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Figure 6.4: Comparison of the ET (left column) and η (right column) distribution between τ jets
and QCD jets in the normalised training sample for overlap candidates. In the top row the
candidates with only one associated track are shown. In the bottom row the ones with more than
one associated track are shown.

The remaining number of τ candidates in each category after normalising the training
samples are listed in Table 6.2.
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category no. of τ jets no. of QCD jets

overlap, 1 track 31324 15612
overlap, >1 track 32443 84353

tauRec, 1 track 32850 28924
tauRec, >1 track 52606 141933

Table 6.2: Number of τ jets and QCD jets in each training sample.

6.3.3 Optimisation for Overlap Candidates

The optimisation of the neural network discriminant for the overlap candidates was based
on the configuration of the neural network discriminant used in the tau1P3P package,
except for the smaller number of different classes of τ candidates as mentioned above.
The tau1P3P neural network discriminant offers a superior performance to the tauRec
likelihood discriminant for very small transverse momenta below about 40 GeV, where the
need for an improved rejection is most pressing. Therefore the tau1P3P neural network
was considered to be a good basis for further optimisation.

It must be mentioned, that the tau1P3P neural network has been trained without apply-
ing any normalisation to the training sample as it was for example shown in Section 6.3.2.
The exact composition of the training sample used is not known, but it consisted of τ
jets from Z → ττ and W → τντ events and QCD jets from QCD dijet events [26]. This
seems to lead to a higher performance for transverse momenta below about 40 GeV at
the cost of strongly distorting the pT spectrum of identified τ candidates. Also in the
available samples, the neural network discriminant is not defined for τ candidates with
ET,eflow > 100 GeV. When comparing the performance of other discriminants to the
tau1P3P neural network, therefore only τ candidates with ET,eflow ≤ 100 GeV are consid-
ered if no explicit dependency on the transverse energy or momentum is shown.

The eleven input variables used for the neural networks in the tau1P3P package are listed
again in Table 6.3. Nine variables are the same for candidates with one associated track
and those with more than one track. The other two variables in the multi track class, the
transverse flight path significance and the width of the track system, are only defined for
more than one track and are replaced by the transverse and longitudinal impact parameter
significance in the networks used for single track candidates.

For some of the identification variables a very similarly defined variable is reconstructed
by tauRec, which exploits the same property of τ jets but uses for example a different
selection of the cells from which it is calculated. The EM-Radius is an example for such
a variable. Some of those variables will later be replaced by their tauRec counterparts to
determine if the latter offer a better discrimination.

One additional variable that has been devised, combining information from tauRec and
tau1P3P, is the ratio of the transverse energy reconstructed by the energy flow approach
in the tau1P3P to the transverse energy reconstructed purely from the calorimeter as in
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1 track candidates multi track candidates

ET reconstructed by energy flow

EM-Radius

Isolation fraction

Isolation ratio

η-strip width

Hits in the η-strip layer

Hadronic ET over sum of pT,tracks

Invariant mass between tracks and EM cluster

Number of isolation tracks

Transverse impact parameter
significance

Transverse flight path

Longitudinal impact
parameter significance

Width of track system

Table 6.3: The list of variables which are used as input for the tau1P3P neural network discrim-
inant. The first nine variables are used both for one and multi track τ candidates.

tauRec. This variable will be referred to as ‘ET ratio’. The reason why the ET ratio
offers any discrimination power lies in the fact, that the energy flow algorithm is optimised
for τ jets and therefore severely underestimates the energy of QCD jets which have a
different composition and shower shape than τ jets. For low transverse energies this effect
is enhanced, because only tracks and calorimeter cells in a cone of radius 0.2 are taken into
account by the energy flow algorithm. QCD jets with low transverse energies, which are
very broad on average, often deposit energy outside of this cone. At higher energies more
and more of the energy of QCD jets is carried by neutral hadrons. Their contributions to
the total jet energy are discarded by the energy flow approach, since the energy measured
in the hadronic calorimeter is not included in the reconstruction.

The distributions of the ET ratio for τ jets and QCD jets in the training samples are
shown in Figure 6.5 for candidates with true transverse momentum between 15 GeV and
100 GeV. One can see that this variable provides quite some separation if considered in
isolation, but it can be expected that underestimation of the energy is much smaller for
QCD jets that have a signature which is more similar to a τ jet than the average QCD jet.
This leads to strong correlations of the ET ratio with other identification variables.
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Figure 6.5: Distribution of the ET ratio in the training samples for single track candidates on the
left and multi track candidates on the right for candidates with a true pT between 15 GeV and
100 GeV.

Single Track Candidates

First the optimisation of the neural network for overlap candidates in the single track
category will be discussed. In Figure 6.6 the rejection against QCD jets is shown as
function of the efficiency for τ jets for several neural networks with one hidden layer and
different numbers of hidden nodes. Contrary to plots shown before, the efficiency and the
rejection are calculated with respect to the number of reconstructed overlap signal and
background candidates with one associated track. Those candidates additionally have to
be matched to a τ jet or a Cone4TruthJet respectively, which are required to have a true
transverse momentum between 12 GeV and 100 GeV and an absolute pseudorapidity of
less than 2.5.

To relate the efficiencies and rejections shown here to the efficiencies and rejections
shown in other plots before, one needs to take into account the reconstruction efficiencies
for τ jets and QCD jets as well as the probabilities to reconstruct a candidate with one
associated track. It should therefore be kept in mind, that the numbers shown here cannot
be directly compared to the ones shown in earlier plots. Nevertheless the numbers for
different networks are calculated from the same sample, so it is still valid to compare the
relative performance between those networks.

The performance of the neural network for single track candidates with one hidden layer
depends little on the number of hidden nodes at high efficiencies above about 70%, but
for lower efficiencies the rejection rises when the number of hidden nodes is raised from
20 to 30. When increasing the number of nodes further, no improvement is observed. In
Figure 6.7 the same networks are compared for a fixed signal efficiency of 50% at different
pT bins. The rejections for the tau1P3P neural network discriminant and the tauRec
likelihood are shown for comparison. The conclusion on the number of hidden nodes also
holds when comparing individual pT bins.
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Figure 6.6: Rejection against QCD jets as function of the signal efficiency for overlap candidates
with one associated track and a true transverse momentum between 12 GeV and 100 GeV. Dif-
ferent network topologies with one hidden layer are compared. The legend denotes the number
of hidden nodes. Also the rejection of the default tau1P3P network and the tauRec likelihood
are shown for comparison. Note that, contrary to plots shown before, the efficiencies and the
rejections are calculated with respect to reconstructed τ candidates.

In Figure 6.7 one can also see the effect of the training with ET normalised samples
compared to the tau1P3P network, which uses the same input variables. The tau1P3P
network has a much better performance at small transverse momenta below about 35 GeV,
but quickly looses rejection power for higher momenta, whereas the newly trained neural
networks and the tauRec likelihood stay at decent level up to transverse momenta of
400 GeV.

Also networks with two hidden layers where tested for their performance. In Figure 6.8
the rejection against QCD jets is shown as function of the signal efficiency for some neural
network topologies with two hidden layers. The best performing neural network with one
hidden layer, having 30 hidden nodes, is shown for comparison. The performance could
not be improved any further by adding a second hidden layer.
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Figure 6.7: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. Different network topologies with one hidden layer are shown. The efficiency
and rejection are calculated with respect to reconstructed overlap candidates with one associated
track. The rejection of the default tau1P3P network and the tauRec likelihood are shown for
comparison.
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Figure 6.8: Rejection against QCD jets as function of the efficiency for real τ jets for overlap can-
didates with one associated track and 12 GeV < pT,vis < 100 GeV. Different network topologies
with two hidden layers are compared. The legend denotes the number of hidden nodes in the first
and the second hidden layer. Also the rejection of the best performing network with one hidden
layer (30) is shown for comparison. The efficiency and the rejection is calculated with respect to
reconstructed τ candidates.
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For the following comparison of different set of input variables for the category of single
track overlap candidates the network topology was fixed to one hidden layer with 30 hidden
nodes.

The transverse energy reconstructed with the energy flow algorithm, which is used as a
variable in the neural networks shown so far, has the disadvantageous property of possessing
complicated correlations with other properties of the τ candidate. These are expected to
be quite different for τ jets and QCD jets and also between jets initiated by quarks and jets
initiated by gluons. This makes the ET defined by the energy flow algorithm sensitive to the
differences between quark jets and gluon jets. Therefore a certain amount of discrimination
on the specific kinematic composition of the training sample is indirectly trained into the
network, even when normalising the sample with respect to ET,eflow. It was therefore
deemed more natural to use the transverse energy as reconstructed in the calorimeter as
an input variable to the network instead, since it is much less sensitive to the exact jet
composition. The discrimination power offered by the energy flow approach can later be
reintroduced via the ET ratio defined before, which is only weakly correlated with the true
transverse energy.

In the following therefore a network where the transverse energy defined by tau1P3P is
replaced by the transverse energy as defined by tauRec is used as the basis for further op-
timisation. This leads to a small loss in performance compared to the networks considered
above, which is expected, since the training sample was not normalised with respect to the
transverse energy from tau1P3P.

On top of that, the following changes were made to the set of input variables used by
this base network

− adding the number of π0 clusters from tau1P3P (denoted by +num π0 in plots),

− adding the ET ratio (denoted by +ET,Eflow/ET in plots) and

− replacing ET,had/
∑

tracks pT from tau1P3P by ET/pT,leading from tauRec (denoted by
+ET/pT in plots),

as well as combinations thereof. The rejections as function of the signal efficiency for some
combinations of the above variations are shown in Figure 6.9. The default tau1P3P neural
network is shown as a reference, as well as the base network where the tau1P3P ET,eflow

variable has been replaced by the tauRec ET. The latter is denoted by ‘base’ in the legend
of Figure 6.9.

The rejection can be improved by adding each of the above three variables alone, but
the biggest improvement can be observed when adding the ratio between the transverse
energy and the transverse momentum of the leading track. Since this variable is sensitive
to the the presence of neutral particles one can expect a strong correlation with the number
of π0 clusters. In fact one can observe a further improvement of the same magnitude in
the performance when adding both ET/pT,leading and the number of π0 clusters together.
Adding also the ET ratio actually diminishes the performance. This can happen when a
variable is added to a neural network which is very strongly correlated with the existing
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Figure 6.9: Rejection against QCD jets as function of the efficiency for real τ jets for overlap
candidates with one associated track and 12 GeV < pT,vis < 100 GeV. Different combinations of
input variables are compared. In the legend the addition of variables is denoted by a plus sign.
See the text for a more detailed description. The efficiency and rejection are calculated with
respect to reconstructed overlap candidates with one associated track.

input variables. Such a variable essentially adds no new information but the dimensionality
of the problem is enlarged, making it harder for the neural network to discriminate signal
an background due to the ‘curse of dimensionality’.2 The combination of ET/pT,leading and
the number of π0 clusters clearly offers the best performance.

In addition to the changes just shown, also four shower shape variables where replaced
by their counterparts in the tauRec package which exploit the same properties of τ jets
but are defined slightly different than in the tau1P3P package. These four variables are
the EM-Radius, the isolation fraction, the η strip width and the number of η strip hits.
All four variables differ between tauRec and tau1P3P only in the list of calorimeter cells
that are used for calculating them. In the tau1P3P package only cells within a cone of
radius 0.2 around the τ direction are used, whereas in the tauRec package a cone of radius
0.4 is used. One would expect a better discrimination if a larger radius is used, because τ

2The curse of dimensionality is explained in Section 3.2.
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jets are nearly always contained within a cone of radius 0.2, while QCD jets deposit also
energy outside this cone. Therefore the identification variables would be unaffected for τ
jets but are shifted to larger values for QCD jets when using a larger cone size.

Another difference between the shower shape variables of the two algorithms arises,
because the tauRec package was already based on topological clusters, which means the
cuts on the significance of the cell energies differ between the two algorithms. As has been
shown in Chapter 5, the topological clustering improves the separation power of the shower
shape variables.

In Figure 6.10 the rejection for several combinations of input variables when also re-
placing the four shower shape by their tauRec equivalents ( +tauRec shape ) are shown
as function of the signal efficiency. For comparison the base network without additional
variables and the best network with shower shape variables taken from tau1P3P ( +ET/pT

+num π0 ) are also shown. Using the tauRec shower shape variables can improve the re-
jection of the previous best network by roughly another 10% for signal efficiencies of more
than 40%. For lower efficiencies it does not add much to the performance.

In Figure 6.11, where the rejection for different combinations of input variables is shown
at a signal efficiency of 50% as function of pT, one observes an improvement by adding
ET/pT,leading to the input variables or using tauRec shower shape variables only for trans-
verse momenta below about 50 GeV. Combining both of those on other hand can improve
the rejection power over the whole range momenta. The addition of the number of π0

clusters can improve the rejection by roughly another 10% in the pT region below 25 GeV
at the cost of reducing the rejection around 100 GeV by a similar factor. Since ratio of
QCD jets with one associated track is extremely small at 100 GeV the loss of performance
in this region is outweighed by the better rejection at very low transverse momenta.

The best configuration of the input variables for the category of overlap candidates with
one associated track uses therefore the following input variables:

− ET defined by tauRec

− EM-Radius, calorimeter isolation fraction, η-strip width and number of η-strip hits
defined by tauRec

− Isolation ratio

− ET/pT,leading

− number of π0 clusters

− invariant mass between track and EM cluster

− number of isolation tracks

− unsigned transverse and longitudinal impact parameter

In Figure 6.12 the performance of this network is compared to the default discriminants
of tau1P3P and tauRec and to the base network where the transverse energy as defined
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Figure 6.10: Rejection against QCD jets as function of the efficiency for real τ jets for overlap
candidates with one associated track and 12 GeV < pT,vis < 100 GeV. Different combinations of
input variables are compared. In the legend the addition of variables is denoted by a plus sign,
and ‘+tauRec shape’ denotes replaced variables. See the text for a more detailed description.
The efficiency and rejection are calculated with respect to reconstructed overlap candidates with
one associated track.

by tauRec is used. The rejection at an τ efficiency of 50% is shown in bins of the true
transverse momentum. The rejections are also listed in Table 6.4. The new network offers
the best rejection of the compared discriminants for transverse momenta above 25 GeV.
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Figure 6.11: Rejection against QCD jets as function of the true transverse momentum at a
signal efficiency of 50%. Different combinations of input variables are shown. The efficiency
and rejection are calculated with respect to reconstructed overlap candidates with one associated
track.
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Figure 6.12: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. Shown are the default discriminant of tau1P3P and tauRec, the base network
and the network with the best performing combination of input variables. The efficiency and
rejection are calculated with respect to reconstructed overlap candidates with one associated
track.
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discriminant default tau1P3P default tauRec base network best configuration

true pT,vis

12− 15 GeV 30.1 ± 2.8 7.5 ± 0.3 12.8 ± 0.7 17.3 ± 1.2
15− 20 GeV 45.0 ± 3.8 14.9 ± 0.7 21.0 ± 1.2 30.1 ± 2.0
20− 25 GeV 55.4 ± 5.6 28.4 ± 2.0 35.2 ± 2.8 48.7 ± 4.6
25− 30 GeV 67.4 ± 8.6 54.8 ± 6.3 51.2 ± 5.7 84 ± 12
30− 35 GeV 67.1 ± 9.4 61.5 ± 8.2 50.5 ± 6.1 97 ± 16
35− 45 GeV 39.8 ± 3.6 51.0 ± 5.3 40.0 ± 3.7 70 ± 9
45− 55 GeV 37.7 ± 4.9 78 ± 15 62 ± 10 127 ± 31
55− 70 GeV 33.2 ± 4.6 71 ± 14 71 ± 14 107 ± 27
70− 100 GeV 26.0 ± 3.4 80 ± 19 58 ± 12 75 ± 17
100− 150 GeV - 62 ± 14 69 ± 17 91 ± 25
150− 250 GeV - 75 ± 19 80 ± 21 109 ± 33

Table 6.4: Rejections at an efficiency of 50% for true τ jets for the default discriminants of
tau1P3P and tauRec, the base network and the optimal network. The efficiency and rejection
are calculated with respect to reconstructed overlap candidates with one associated track.
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Multi Track Candidates

For the multi track category the same procedure was used to find the optimal network con-
figuration as in the single track category. First the impact of different network topologies
was checked with the input variables as used by the default neural network in the tau1P3P
package given in Table 6.3. One fixed network topology was then chosen to optimise the
list of input variables used for the neural network.

Figure 6.13 shows the rejections for a number of different network topologies as function
of the signal efficiency for τ candidates with a true transverse momentum between 12 GeV
and 100 GeV. The performance of the different network topologies is quite similar as long
as there a more than ten nodes in the first hidden layer. Also no significant improvement
over the default tau1P3P network can be observed when averaging over the efficiency. A
network topology with two hidden layers with 20 and 10 hidden nodes respectively has
was chosen for the further optimisation, since it provides a slightly better performance at
transverse momenta above 100 GeV.

Like in the single track category, the transverse energy calculated by the energy flow
algorithm was replaced by the transverse energy reconstructed in the calorimeter for all
networks for reasons given above. A neural network with just this modification, again
called base network, will be used as a reference. The different changes to the list of input
variables that were considered are:

− adding the ET ratio (denoted by +ET,Eflow/ET in plots),

− replacing ET,had/
∑

tracks pT from tau1P3P by ET/pT,leading from tauRec (denoted by
+ET/pT in plots)

− adding the invariant mass of the track system (+inv track mass in plots)

− adding the absolute value of the charge (+|charge| in plots)

− adding the number of associated tracks as defined by tauRec (+no of tracks in plots)

− replacing the four shower shape variables EM-Radius, calorimeter isolation fraction,
η-strip width and the number of η-strip hits with the same variables from the tauRec
package (+tauRec shape in plots)

Various combinations of these changes were again evaluated.
In Figure 6.14 the performance for most combinations of the first three modification are

shown as function of the τ efficiency for true transverse momenta between 12 GeV and
100 GeV. The largest improvement can be observed when adding the ET ratio to the input
variables. The performance can be further improved when the invariant track mass is also
added to the list of variables. The rejection decreases slightly for low efficiencies when the
ET/pT,leading variable is also introduced, but rises for high efficiencies. Typical efficiency
working points for τ candidates with more than one track will be rather low, since QCD
jets most of the time have more than one track at the typical transverse momenta for τ jets.
In Figure 6.15 some configurations which include also the last three modifications of the

106



6 τ Algorithm Merging

signal efficiency
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

b
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

210

310

default tau1P3P
10
15
20
30
20,10
30,15
30,30
tauRec LLH

Figure 6.13: Rejection against QCD jets as function of the efficiency for real τ jets for overlap
candidates with more than one associated track and 12 GeV < pT,vis < 100 GeV. Different net-
work topologies with one and two hidden layers are compared. The legend denotes the number of
hidden nodes in the first and the second hidden layer. Also the rejection of the default discrim-
inants are shown. The efficiency and the rejection is calculated with respect to reconstructed τ
candidates. The error bars are suppressed.
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Figure 6.14: Rejection against QCD jets as function of the efficiency for real τ jets for overlap can-
didates with more than one associated track. Different combinations of input variables are shown.
The efficiency and rejection are calculated with respect to reconstructed overlap candidates with
more than one associated track. The error bars are suppressed.

above list are shown. The network using the ET ratio and the invariant track mass as input
variables, which was one of the best so far, is shown as a reference in dark blue. Although
the tauRec shower shape variables decrease the rejection when included on their own, they
boost the performance if they are used in combination with the invariant track mass. Also,
the tauRec shower shape variables provide a better rejection for large transverse momenta
above 60 GeV, as can be seen in Figure 6.16. Another large gain in performance can be
achieved by adding the absolute charge, providing a better separation for large efficiencies,
and the number of associated tracks as defined by tauRec, which improves the performance
for small efficiencies. Also the number of tracks as defined by tau1P3P has been tested as a
variable, but the performance was much worse for low efficiencies. Altogether the rejection
can be increased by a factor of about two compared to the base network.

The rejection for some configurations, successively adding or replacing more variables, is
shown for a signal efficiency of 50% as function of the transverse momentum in Figure 6.16.
The improvement of the rejection is quite uniform over all pT bins for the best performing
network.
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Figure 6.15: Rejection against QCD jets as function of the efficiency for real τ jets for overlap can-
didates with more than one associated track. Different combinations of input variables are shown.
The efficiency and rejection are calculated with respect to reconstructed overlap candidates with
more than one associated track. The error bars are suppressed.
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The neural network with the strongest discrimination power of the tested configurations
has the following input variables:

− ET defined by tauRec

− EM-Radius, calorimeter isolation fraction, η-strip width and number of η-strip hits
defined by tauRec

− Isolation ratio

− ET,had/
∑

tracks pT

− invariant mass between track and EM cluster

− number of isolation tracks

− lifetime signed transverse flight path significance

− ET ratio

− invariant mass of the track system defined by tau1P3P

− absolute value of the charge defined by tau1P3P

− number of associated tracks defined by tauRec

In Figure 6.17 the performance of this network is compared to the default discriminants
of tau1P3P and tauRec and to the base network where the transverse energy as defined
by tauRec is used. The background rejection at a τ efficiency of 50% is shown in bins of
the true transverse momentum. The rejections are also listed in Table 6.5. The best new
network outperforms the default tau1P3P neural network and the base network by a factor
of more than two for transverse momenta above 20 GeV and by more than 20% for lower
transverse momenta.
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Figure 6.16: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. Different network with successively added variables are shown. The efficiency
and rejection are calculated with respect to reconstructed overlap candidates with more than one
associated track.
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Figure 6.17: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. Shown are the default discriminant of tau1P3P and tauRec, the base network
and the network with the best performing combination of input variables. The efficiency and
rejection are calculated with respect to reconstructed overlap candidates with more than one
associated track.
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discriminant default tau1P3P default tauRec base network best configuration

true pT,vis

12− 15 GeV 6.3 ± 0.3 3.4 ± 0.1 4.9 ± 0.2 7.8 ± 0.4
15− 20 GeV 18.0 ± 0.8 6.8 ± 0.2 12.8 ± 0.5 28.0 ± 1.6
20− 25 GeV 42.3 ± 2.6 14.8 ± 0.5 38.3 ± 2.2 82.5 ± 7.0
25− 30 GeV 82.7 ± 6.4 26.0 ± 1.1 70.2 ± 5.0 182 ± 20.8
30− 35 GeV 116 ± 10 39.4 ± 1.9 121 ± 10 277 ± 35.7
35− 45 GeV 179 ± 13 60.7 ± 2.6 171 ± 12 418 ± 47.2
45− 55 GeV 213 ± 19 85.2 ± 4.9 322 ± 36 866 ± 159
55− 70 GeV 208 ± 18 109 ± 6.6 341 ± 37 695 ± 107
70− 100 GeV 224 ± 17 163 ± 11 599 ± 74 1181 ± 205
100− 150 GeV - 240 ± 17. 1245 ± 199 2208 ± 471
150− 250 GeV - 271 ± 19 1398 ± 222 2268 ± 460

Table 6.5: Rejections at an efficiency of 50% for true τ jets for the default discriminants of
tau1P3P and tauRec, the base network and the optimal network. The efficiency and rejection
are calculated with respect to reconstructed overlap candidates with more than one associated
track.
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6.3.4 Optimisation for tauRec Candidates

In the category for tauRec candidates no optimisation of the input variables was performed,
since no new variables became available by the merging of the algorithms. Further opti-
misation is surely possible but is outside the scope of this study. The neural networks in
this category are trained mainly to have a discriminant value with a similar distribution
to the ones for overlap candidates, so that one discriminant value can be used to cut on
when using overlap candidates and also candidates reconstructed only by tauRec. The
higher τ reconstruction efficiency when using candidates from both categories allows to
use a tighter cut on the discriminant value for the same overall signal efficiency. At the
same time a larger fraction of QCD jets is reconstructed. It remains to be seen, if the
tighter identification criterion can outweigh the larger background efficiency.

Single Track Candidates

The input variables used for the neural networks in the single track category were taken
to be the same as the variables used for the likelihood discriminant in the tauRec package:

− EM-Radius

− Isolation fraction

− η-strip width

− number of η-strip hits

− ET/pT,leading

− lifetime signed transverse impact parameter significance

− ET from the calorimeter

The transverse energy has been added to account for correlations with the transverse boost
of the τ candidate. The number of associated tracks and the absolute charge were not used,
since those variables always have a value of one in this category with one associated track.

Neural networks with different topologies were trained to compare their relative perfor-
mance. The rejection achieved by these networks is shown in Figure 6.18 as function of the
true transverse momentum for a τ jet efficiency of 50%. Only some prominent configura-
tions are shown. The performance of the networks with one hidden layer is quite similar,
provided that at least ten hidden nodes are used. By adding a second hidden layer the
performance could be further improved for transverse momenta above 25 GeV by about
10%. Only the best of those networks is shown, which has two hidden layers with 20 and
10 nodes, respectively. This network topology was used in the following for the category
of single track tauRec candidates. In general, the performance can be improved slightly
by 20-50% for transverse momenta below 100 GeV compared to the tauRec likelihood. For
higher momenta the number of background events was to small to draw any conclusions.
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Figure 6.18: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. Different network topologies are shown. The default tauRec likelihood is
included as a reference. The efficiency and rejection are calculated with respect to reconstructed
tauRec candidates with one associated track.

The rejections for the tauRec likelihood and the best performing network are listed in
Table 6.6.

Multi Track Candidates

For the category of tauRec candidates with more than one associated track two new iden-
tification variables where used compared to the tauRec likelihood discriminant. The first
of those variables, the lifetime signed transverse flight path significance, became available
for tauRec candidates some time before the merging of the algorithms was implemented.
The same code is shared between tauRec and tau1P3P to reconstruct a secondary vertex
from the associated tracks and calculate the transverse flight path significance. The second
variable, the invariant track mass of the track system defined by tauRec, has been calcu-
lated in the offline scripts, which were used to write out all τ candidates from the full event
data. It has been checked, that those two variables actually improve the discrimination
power. A network trained without them will be shown later for comparison.
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discriminant default tauRec best configuration

true pT,vis

12− 15 GeV 30.4 ± 1.7 36.5 ± 2.3
15− 20 GeV 43.4 ± 2.8 41.9 ± 2.7
20− 25 GeV 62.4 ± 6.9 51.6 ± 5.2
25− 30 GeV 68 ± 11 96 ± 19
30− 35 GeV 37.3 ± 5.6 51.5 ± 9.2
35− 45 GeV 40.6 ± 6.4 54.6 ± 10
45− 55 GeV 39.4 ± 10 59 ± 19
55− 70 GeV 54 ± 20 54 ± 20
70− 100 GeV 24.8 ± 7.3 46 ± 18

Table 6.6: Rejections at an efficiency of 50% for true τ jets for the default discriminant of tauRec
and the best performing network with two hidden layers with 20 and 10 nodes, respectively. The
efficiency and rejection are calculated with respect to reconstructed tauRec candidates with one
associated track.

The number of hidden layers and hidden nodes have been optimised using the following
input variables:

− EM-Radius

− Isolation fraction

− η-strip width

− number of η-strip hits

− ET/pT,leading

− absolute charge

− ET from the calorimeter

− invariant track mass using tracks as defined by tauRec

− lifetime signed transverse flight path significance

The rejections for different network topologies are shown in Figure 6.19 for a τ jet efficiency
of 50% as function of the true transverse momentum. As before, more than ten hidden
nodes must be used to reach a good performance, but improvements can still be observed
up to 40 hidden nodes. Also neural networks with two hidden layers can slightly improve
the performance by a few percent over a network with 40 hidden nodes in one hidden layer.
A network with two hidden layers with 30 and 10 nodes has been chosen, since it provided
the best performance for small transverse momenta, which is usually the region populated
by the most QCD jets.
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Figure 6.19: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. Different network topologies are shown. The default tauRec likelihood is
included as a reference, as well as a network which uses the same variables. See the text for a
detailed description. The efficiency and rejection are calculated with respect to reconstructed
tauRec candidates with one associated track.

In Figure 6.19 the rejections achieved by the default tauRec likelihood discriminant are
shown. Also the performance for a network is shown, which uses only the variables used
in the likelihood and the transverse energy and which uses a topology of two hidden layers
with 30 and 10 nodes denoted by ‘30,10 tauRec LLH variables’ in the legend. In this
network the lifetime signed transverse flight path significance and the invariant track mass
are not used and instead the number of associated tracks and the lifetime signed transverse
impact parameter significance are added to the list of variables. The rejections for these
two networks and for the optimal network determined above are given in Table 6.7.

In this category a large improvement of the discrimination of a factor of two to three is
achieved by the optimal neural network discriminant compared to the tauRec likelihood.
The neural network discriminant might therefore prove useful when using only tauRec
candidates, without making use of the merged algorithm.
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discriminant default tauRec tauRec LLH variables best configuration

true pT,vis

12− 15 GeV 8.1 ± 0.1 9.1 ± 0.1 12.1 ± 0.2
15− 20 GeV 12.6 ± 0.2 17.2 ± 0.3 24.2 ± 0.5
20− 25 GeV 21.8 ± 0.4 29.8 ± 0.7 46.1 ± 1.3
25− 30 GeV 36.3 ± 1.0 47.3 ± 1.5 86.3 ± 3.7
30− 35 GeV 38.1 ± 1.1 60.2 ± 2.3 123 ± 6.6
35− 45 GeV 52.0 ± 1.5 77.3 ± 2.7 160 ± 8.0
45− 55 GeV 58.8 ± 2.3 92.4 ± 4.5 199 ± 14
55− 70 GeV 72.4 ± 3.3 114 ± 6.5 243 ± 20
70− 100 GeV 89.4 ± 4.4 143 ± 8.9 285 ± 25
100− 150 GeV 89.4 ± 4.7 131 ± 8.2 294 ± 28
150− 250 GeV 75.8 ± 3.8 115 ± 7.1 256 ± 24

Table 6.7: Rejections at a τ jet efficiency of 50% for the default likelihood discriminant of tauRec,
a neural network using the same variables as the likelihood and the best performing network
using the transverse flight path and the invariant track mass. Both neural networks consist of
two hidden layers with 30 and 10 nodes, respectively. The efficiency and rejection are calculated
with respect to reconstructed tauRec candidates with more than one associated track.

6.3.5 Combined Performance

In Section 6.3.3 it has been shown that the identification performance can be improved
significantly for τ candidates that are reconstructed by both τ identification algorithms, by
making use of the additional information available for those τ candidates. Especially for
overlap candidates with more than one associated tracks a large improvement of a factor
of more than two could be observed above a transverse momentum of 25 GeV.

A better identification performance could be also attained for the τ candidates which
are only reconstructed by tauRec. Compared to the likelihood method implemented in
the tauRec package by using a neural network discriminant which is trained separately for
candidates with one associated track and candidates with more than one track. In the
latter category the rejection against QCD jets was increased by a factor more than two.

However, the numbers shown so far cannot be readily used to compare the rejection
against true jets that can be expected between the different discriminants, since they are
calculated with respect to a different number of total signal and background candidates in
each category. Therefore the sample that was set aside at the beginning of the training,
was used to assess the performance of the new discriminants on a sample containing a
‘natural’ mixture of τ candidates, where no special selection has been applied.

A discriminant value is calculated for every τ candidate using the best neural network
that has been determined above for its respective category. τ candidates which do not
belong to any of the four categories, like tau1P3P only candidates, get assigned a value of
-1, so that they are never selected as a τ jet.
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In Figure 6.20 the rejection for the the tau1P3P neural network discriminant and the
tauRec likelihood discriminant are compared with the rejection for the neural networks
that were optimised in Section 6.3.3 and Section 6.3.4 for a τ efficiency of 50%. Here the
efficiency and rejection is given with respect to the true τ jets and the Cone4TopoJets,
respectively. The new discriminant provides the best performance for transverse momenta
below 60 GeV. For higher momenta the performance of the tauRec likelihood becomes
better, because it has a much lower efficiency for τ candidates with more than one track.
In this high transverse momentum region the background is dominated by such candidates.
For higher efficiencies the new discriminant subsequently gains performance relative to the
two default discriminants. This can be seen in Figure 6.21 and Figure 6.22 where the
rejections for 60% and 70% signal efficiency are shown.

Even though the new discrimininant performs better in each category than the two
default discriminants, the combined discriminant still shows a worse rejection against QCD
jets in some pT ranges for low signal efficencies. Clearly the performance of the new
discriminant for low τ efficiencies could be further improved by optimising the cut on the
discriminant value independently for single track and multitrack candidates. The optimal
relative signal efficencies for the the different categories will depend on the specific analysis,
and should be optimised from case to case.
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Figure 6.20: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 50%. The rejection of the tau1P3P neural network discriminant and the tauRec
likelihood discriminant are compared to rejection of the optimised neural network discriminant.
The efficiency and rejection are calculated with respect to true τ jets and Cone4TruthJets, re-
spectively.
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Figure 6.21: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 60%. The rejection of the tau1P3P neural network discriminant and the tauRec
likelihood discriminant are compared to rejection of the optimised neural network discriminant.
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Figure 6.22: Rejection against QCD jets as function of the true transverse momentum at a signal
efficiency of 70%. The rejection of the tau1P3P neural network discriminant and the tauRec
likelihood discriminant are compared to rejection of the optimised neural network discriminant.
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7 Summary

At the LHC, final states containing hadronically decaying τ leptons will be an important
signature in the search for a standard model Higgs boson in the low mass region as well for
new physics beyond the standard model. Once a signal for new physics can be observed, τ
leptons might be able to provide further insight into the spin structure and couplings of the
new phenomena. Therefore, the efficient reconstruction and identification of hadronically
decaying τ leptons is an important task for the detectors at the LHC.

In this thesis the existing algorithms for the reconstruction of τ leptons in the ATLAS
experiment have been studied in view of potential improvements, which lead to a cleaner
selection of τ jets. Two complementary τ reconstruction algorithms have been developed
for the ATLAS experiment, following somewhat different strategies.

The older of the two algorithms, tauRec, is based on energy depositions in the calorimeter
and reconstructs hadronically decaying τ leptons with a high efficiency above a visible
transverse momentum of about 30 GeV. It provides a very strong discrimination against
QCD jets with high transverse momenta.

The second algorithm, tau1P3P, is based on tracks reconstructed in the inner detector.
It is aimed at low transverse momenta below 100 GeV and reconstructs specifically τ jets
with a charged particle carrying a sizable fraction of the visible transverse momentum of
the τ . This provides some suppression of QCD jets already at the reconstruction stage but
also limits the maximal reconstruction efficiency, especially for low transverse momenta.

Modifications to the tauRec package have been presented, which were developed in the
scope of this thesis with the goal to improve the efficiency for reconstructing τ leptons
with small transverse momenta. To reach this goal, use was made of a more sophisticated
topological clustering algorithm to reconstruct energy clusters in the calorimeter. It was
shown that the topological clustering algorithm provides a higher reconstruction efficiency
for τ jets with small visible transverse momenta. At the same time the clustering algorithm
is able to reduce the contribution of noise to shower shape variables calculated from the
cells of the calorimeter. The reconstruction efficiency was considerably improved in the
transverse momentum region below 30 GeV, reaching a level of more than 90% down to
transverse momenta of 10 GeV. The reconstruction of τ leptons in this low momentum
regime might prove important in certain scenarios for new physics, like MSSM scenarios
with a large value of the tan β parameter.

Since the cross section for QCD jets becomes very high at such low transverse momenta,
the ability to discriminate hadronically decaying τ leptons from QCD jets had to be im-
proved. This has been aided by the mentioned property of the topological clustering, to
provide an excellent suppression of noise in the energy measurement of the calorimeter
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while retaining real energy depositions. The identification performance has been improved
by optimising the existing likelihood discriminant of the tauRec package. This lead to
a significantly better rejection against QCD jets for a wide kinematic region with trans-
verse momenta between 15 GeV and 120 GeV, where the rejection factors for a typical τ
efficiency of 30%, as used in many analyses, could be improved by up to 78% percent.

The modifications to the tauRec package have since become the default in the ATLAS
reconstruction software.

A first step towards a merged algorithm has been developed, combining the two comple-
mentary approaches to the reconstruction of hadronically decaying τ leptons implemented
in the ATLAS reconstruction framework. The implementation of the merged algorithm
was documented and the choices that where made during this work have been motivated.
One motivation for combining the two approaches into a single algorithm was to concen-
trate development efforts and to facilitate the usage of the reconstructed τ leptons in high
level analyses by eliminating the burden of choice from the user. Apart from that, this
development also offered the chance to investigate possible synergy effects between the two
approaches and their potential to further improve the discrimination between hadronically
decaying τ leptons and QCD jets.

A study of this potential was shown, which combined different properties of τ leptons
and QCD jets reconstructed by the calorimeter based and the track based algorithm in
a neural network discriminant. The reconstructed τ candidates were grouped in four
categories depending on whether they are reconstructed by both algorithms or not and on
their number of associated tracks.

It was shown for the overlap candidates reconstructed by both algorithms, that the rejec-
tion against QCD jets can be significantly improved when certain identification variables
defined by only one of the two algorithms are used in conjunction. Especially for 3-prong
decays of the τ lepton the rejection against QCD jets with more than one reconstructed
charged particle could be improved by more than a factor of two over a wide range of
transverse momenta between 12 GeV and 250 GeV and a wide range of signal efficiencies.
For 1-prong decays the rejection against QCD jets with one reconstructed charged particle
could be improved by 50% on average over the same kinematic region and wide range of
efficiencies. These results can provide insight for the further development of a merged
algorithm, where the reconstruction of certain strongly discriminating properties should
be extended to all τ candidates.
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A Comparison of tauRec Identification
Variables between Release 12 and 13

In the following the identification variables used by tauRec are compared between ATHENA
release 12 and release 13. This is done to justify the comparison of the identification perfor-
mance between these two releases in Chapter 5. In all the following plots the distributions
for release 12 will be shown in light colours (light gray/light red) and the distributions for
release 13 in dark colours. The black/gray distributions are for τ jets and the red/light red
distributions are for QCD jets. Please note that the errors are only statistical. The sam-
ples do not consist of the same events and therefore have a somewhat different kinematic
composition.
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Figure A.1: Comparison of the EM-Radius between ATHENA release 12 and release 13 using the
default tauRec reconstruction for different ET ranges
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Figure A.2: Comparison of the calorimeter isolation between ATHENA release 12 and release 13
using the default tauRec reconstruction for different ET ranges
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Figure A.3: Comparison of the η strip width between ATHENA release 12 and release 13 using
the default tauRec reconstruction for different ET ranges
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Figure A.4: Comparison of the number of η strip hits between ATHENA release 12 and release
13 using the default tauRec reconstruction for different ET ranges
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Figure A.5: Comparison of the number of associated tracks between ATHENA release 12 and
release 13 using the default tauRec reconstruction for different ET ranges
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Figure A.6: Comparison of the absolute value of the τ charge between ATHENA release 12 and
release 13 using the default tauRec reconstruction for different ET ranges
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Figure A.7: Comparison of the signed transverse impact parameter significance between ATHENA
release 12 and release 13 using the default tauRec reconstruction for different ET ranges
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Zusammenfassung

Im Sommer diesen Jahres wird der Large Hadron Collider (LHC) am CERN Forschungszen-
trum nahe Genf nach langjähriger Bauzeit den Betrieb aufnehmen, und Protonen bei einer
Schwerpunktsenergie von 14 TeV/c mit instantanen Luminositäten von bis zu 1034 cm−2 s−1

zur Kollision bringen. Vier Detektoren befinden sich an den Wechselwirkungspunkten, um
die bei den Kollisionen entstehenden Teilchen zu vermessen und dadurch Rückschlüsse auf
die bei der Kollision abgelaufenen Prozesse zu ermöglichen. Einer dieser Detektoren ist
der ATLAS Detektor, der als Allzweckdetektor konzipiert ist um einen möglichst großen
Bereich von physikalischen Fragestellungen abdecken zu können.

Zu den wichtigen Fragen, die man durch die Experimente am LHC hofft klären zu
können, gehört die Frage, ob das Higgs Boson wie es im Standardmodell der Teilchenphysik
vorhergesagt wird in der Natur existiert. Die bisherigen experimentellen Daten deuten
hierbei auf ein Higgs Boson mit einer Masse unterhalb von 160 GeV/c2.

Auch wird die Suche nach neuer Physik, welche über das Standardmodell hinausgeht
einen wichtigen Aspekt der Arbeit darstellen. Verschiedene supersymmetrische Modelle
sind vielversprechende Kandidaten für solch neue Physik.

In beiden Fällen können Signaturen mit τ Leptonen im Endzustand eine wichtige Rolle
spielen, weshalb eine effiziente Rekonstruktion und Identifikation von τ Leptonen einen
entscheidenden Beitrag zur Untersuchung dieser Phänomene liefert.

In dieser Arbeit wurden die existierenden Methoden und Algorithmen zur Rekonstruk-
tion und Identifikation von semileptonisch zerfallenden τ Leptonen im ATLAS Experiment
hinsichtlich ihrer Leistungsfähigkeit untersucht. Es wurden Verbesserungen an den Al-
gorithmen vorgenommen, die zu einer effektiveren Rekonstruktion von τ Leptonen mit
kleinen transversalen Impulsen geführt haben. Desweiteren konnte auch die Fähigkeit zur
Unterscheidung von τ Leptonen und Jets in diesem Bereich gesteigert werden. Jets werden
durch die starke Wechselwirkung produziert und stellen den größten Untergrund bei der
Rekonstruktion von τ Leptonen dar.
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