The Physics Program at the LHC

- What can be done during the first years ? -

Karl Jakobs Physikalisches Institut Universität Freiburg / Germany

• Introduction

- Search for Higgs Bosons
 Standard Model Higgs Boson
 How reliable are the signals at low mass?
 MSSM Sector
- Supersymmetry
- Other Physics beyond the Standard Model

The Large Hadron Collider (LHC)

<u>Revised Time Schedule:</u>

Dec. 2006	Ring closed and cold

Jan. - Mar. 2007 Machine commissioning

Spring 2007 First collisions , pilot run. $L=5x10^{32}$ to $2x10^{33}$ cm⁻² sec⁻¹,

 $\leq 1 \text{ fb}^{-1}$ Start detector commissioning, ~ $10^5 \text{ Z} \rightarrow \ell \ell$, W $\rightarrow \ell \nu$, tt events

June - Dec. 2007Complete detector commissioning,
Physics runIow luminosity: $L = 1x10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$
10 fb⁻¹ / year $\rightarrow 2009$ L=1-2 x10^{34}, 100 fb⁻¹ per year
(high luminosity LHC)high luminosity:L = 1x10^{34} cm^{-2} \text{ sec}^{-1}
100 fb⁻¹ / year

Which physics the first year(s)?

Process	Events / sec	Events for 10 fb ⁻¹	Total stat. collected at previous machines by 2007
$W \to e \nu$	15	10 ⁸	10 ⁴ (LEP) 10 ⁷ TeV
$Z \rightarrow e e$	1.5	10 ⁷	10 ⁷ (LEP)
tt	1	10 ⁷	10 ⁴ (Tevatron)
bb	10 ⁶	10 ¹² -10 ¹³	10 ⁹ (BaBar/Belle)
Higgs M _H = 130 GeV	0.02	10 ⁵	?
Squarks, Gluinos M ~ 1 TeV	0.001	10 ⁴	

Already in first year, <u>large statistics</u> expected from:

-- known SM processes \rightarrow <u>understand detector</u> and physics at \sqrt{s} = 14 TeV

-- several New Physics scenarios

First goals

- Understand and calibrate detector and trigger in situ using well-known physics samples
 - e.g. $-Z \rightarrow ee, \mu\mu$ tracker, ECAL, Muon chambers calibration and alignment, etc. - tt $\rightarrow b\ell\nu$ bjj 10⁴ evts/day after cuts \rightarrow jet scale from W \rightarrow jj, b-tag performance, etc.
- Understand basic SM physics at $\sqrt{s} = 14 \text{ TeV} \rightarrow \text{ first checks of Monte Carlos}$ (hopefully well understood at Tevatron)
 - e.g. measure cross-sections for W, Z, tt, QCD jets, events features (P_T spectra etc.)

.... and in parallel...

- Prepare the road to discovery:
 - -- measure backgrounds to New Physics : e.g. tt and W/Z+ jets (omnipresent ...)
 - -- look at specific "control samples" for the individual channels:
 - e.g. ttjj with j \neq b "calibrates" ttbb irreducible background to ttH \rightarrow ttbb
- Look for New Physics potentially accessible in first year (SUSY, Higgs, ...)
- Note: if m_H < 120 GeV : fast Higgs discovery may be crucial in case of competition with Tevatron This may be the most difficult physics goal for the first year ...

Higgs Boson Production at Hadron Colliders

Large higher order QCD corrections for the gluon fusion process

1000

<u>Summary of the LHC Higgs boson</u> discovery potential (one experiment)

- Higgs boson discovery possible over the full mass range with ~10 fb⁻¹
- Low mass region may be difficult (calibration, backgrounds,)
- How reliable is the signal in the low mass region ? VBF is important

Higgs Boson Search using vector boson fusion at low mass

Motivation: Increase discovery potential at low mass Improve measurement of Higgs boson parameter (couplings to bosons, fermions (taus)) Search for non-standard decays (invisible Higgs)

proposed by D.Rainwater and D.Zeppenfeld et al.: (hep-ph/9712271, hep-ph/9808468 and hep-ph/9906218)

Distinctive Signature of:

- two high P_T forward tag jets
- little jet activity in the central region
 ⇒ central jet Veto

\Rightarrow **Experimental Issues:**

- Forward jet reconstruction
- Jets from pile-up in the central / forward region

Studied in full simulation by ATLAS and CMS

Fraction of events with jet in central region

Efficiency of forward jet reconstruction

Looks feasible at low lumi, higher tag jet P_T- thresholds needed at high lumi

Background for channel:

 $\begin{array}{c} \underline{\text{QCD backgrounds:}} \\ \text{tt production} & Z+2 \text{ jets} \end{array}$

<u>el.weak background:</u> WW jj production

Background rejection:

$qqH \rightarrow qqWW^* \rightarrow qq l \nu l \nu$

- Lepton P_T cuts and tag jet requirements $(\Delta \eta, P_T)$
- Require large mass of tag jet system
- Jet veto
- Lepton angular and mass cuts

How reliable is this signal ?

 Factor of two uncertainty found on the tt background calculation (PYTHIA vs. ttj + ttjj matrix element calculation, issue of parton shower matching) ATLAS-SN-2003-024, Les Houches (2003)

However: large (S : B) ratio, discovery significance is stable

• Cuts can be relaxed, to get background shape from the data:

 Presence of a signal can also be demonstrated in the Δ φ distribution (i.e. azimuthal difference between the two leptons)

Combined significance of VBF channels for 10 fb⁻¹

- VBF channels (in particular WW*) are discovery channels at low luminosity
- For 10 fb⁻¹ in ATLAS: 5σ significance for $120 \le m_H \le 190 \text{ GeV}$
- low mass: combination with $H \rightarrow \gamma \gamma$ and ttH, $H \rightarrow bb$

<u>Remarks for a light Higgs with $m_H < 120 \text{ GeV}$ and 10 fb⁻¹:</u>

Three channels with ~ 2-3 σ each \rightarrow observation of all channels important to extract convincing signal in first year(s)

- different production and decay modes
- different backgrounds
- different detector/performance requirements:

The 3 channels are complementary \rightarrow robustness:

- -- ECAL crucial for $H \rightarrow \gamma \gamma$ ($\sigma/m \sim 1\%$ needed)
- -- b-tagging is crucial for ttH : (4 b-tagged jets needed to reduce combinatorics)
- -- efficient jet reconstruction over $|\eta|<5~$ crucial for $~qq~H~\rightarrow qq~\tau\tau$
- Note : -- all require "low" trigger thresholds
 - e.g. ttH analysis cuts : $p_T (\ell) > 20 \text{ GeV}, p_T (jets) > 15-30 \text{ GeV}$
 - -- ttH requires very good understanding (5 -10%) of the backgrounds

K. Jakobs

$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$

 $\sigma x BR \approx 300 \text{ fb}$ Complex final state: $H \rightarrow bb$, $t \rightarrow bjj$, $t \rightarrow b\ell v$

- Main backgrounds:
 - -- combinatorial from signal (4b in final state)
 - -- Wjjjjjj, WWbbjj, etc.
 - -- ttjj (dominant, non-resonant)
- b-tagging performance is crucial ATLAS results for 2D-b-tag from full simulation (ε_b =60% R_i (uds)~ 100 at low L)
 - Shape of background must be known;
 60% (from ttbb) can be measured from ttjj using anti-b tag
 - LHC experiments need a better understanding of the signal and the backgrounds (K-factors for backgrounds)

S = 38 events B = 52 events S/B ~ 0.73 S/ \sqrt{B} = 3.5 for K = 1.0

Measurement of Higgs-Boson Coupling Ratios

assumptions: only SM particles couple to Higgs boson,

no large couplings of light fermions

Global fit(ATLAS study)(all channels at a given mass point)

Production cross sections

$$\sigma_{ggH} = \alpha_{ggH} \bullet g_t^2$$

$$\sigma_{VBF} = \alpha_{WF} \bullet g_w^2 + \alpha_{ZF} \bullet g_Z^2$$

$$\sigma_{ttH} = \alpha_{ttH} \bullet g_t^2$$

$$\sigma_{WH} = \alpha_{WH} \bullet g_W^2$$

$$\sigma_{ZH} = \alpha_{ZH} \bullet g_Z^2$$

b loop neglected for now in ggH

Fit parameters:

$$\frac{g_Z^2}{g_W^2} \quad \frac{g_\tau^2}{g_W^2} \quad \frac{g_b^2}{g_W^2} \quad \frac{g_t^2}{g_W^2} \quad \frac{g_w^2}{\sqrt{\Gamma_H}}$$

 $\alpha\,$ from theory with assumed uncertainty $\,\Delta\alpha\,$

$$\Delta \alpha_{ggH} = 20\%$$

$$\Delta \alpha_{WF} = \alpha_{ZF} = 4\%$$

$$\Delta \alpha_{ttH} = 15\%$$

$$\Delta \alpha_{WH} = \Delta \alpha_{ZH} = 7\%$$

Ratio of Higgs-Boson Couplings

Branching ratios

$$BR(H \rightarrow WW) = \beta_{W} \frac{g_{W}^{2}}{\Gamma_{H}}$$

$$BR(H \rightarrow ZZ) = \beta_{Z} \frac{g_{Z}^{2}}{\Gamma_{H}}$$

$$BR(H \rightarrow \gamma\gamma) = \frac{(\beta_{\gamma(W)}g_{W} - \beta_{\gamma(t)}g_{t})^{2}}{\Gamma_{H}} \Delta\beta = 1\%$$

$$BR(H \rightarrow \gamma\gamma) = \beta_{\tau} \frac{g_{\tau}^{2}}{\Gamma_{H}}$$

$$BR(H \rightarrow bb) = \beta_{b} \frac{g_{b}^{2}}{\Gamma_{H}}$$

$$Rate as function of x_{i}, e.g.$$

$$(\sigma \bullet BR)_{ggH,H \rightarrow ZZ} =$$

$$\alpha_{ggH} \frac{g_{t}^{2}}{g_{W}^{2}} \frac{g_{W}^{2}}{\sqrt{\Gamma_{H}}} \beta_{Z} \frac{g_{Z}^{2}}{g_{W}^{2}} \frac{g_{W}^{2}}{\sqrt{\Gamma_{H}}}$$

Higgs decays via SUSY particles

 $gb \rightarrow tH^+, H^\pm \rightarrow \chi_{2,3}^0 \chi_{1,2}^\pm \rightarrow 3I + E_T^{miss}$

CMS: special choice in MSSM (no scan) $M_1 = 60 \text{ GeV}$ $M_2 = 110 \text{ GeV}$ $\mu = -500 \text{ GeV}$

Exclusions depend on MSSM parameters (slepton masses, μ)

Updated MSSM scan for different benchmark sceanarios

- · Vector boson channels included
- Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

Updated MSSM scan for different benchmark sceanarios

- Vector boson channels included
- Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

Search for Supersymmetry

- If SUSY exists at the electroweak scale, a discovery at the LHC should be easy
- Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

- 1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations

Squarks and Gluinos

- \bullet Strongly produced, cross sections comparable to QCD cross sections at same Q^2
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{iet} > 4$, $E_T > 100, 50, 50, 50 \text{ GeV}$, $E_T^{miss} > 100 \text{ GeV}$

LHC reach in the m₀ - m _{1/2} mSUGRA plane:

SUSY cascade decays give also rise to many other inclusive signatures: **leptons**, **b-jets**, τ 's

Expect multiple signatures for TeV-scale SUSY

Determination of model parameters

- Invisible LSP ⇒ no mass peaks, but kinematic endpoints
 ⇒ mass combinations
- Simplest case: $\chi_{2}^{0} \rightarrow \chi_{1}^{0} \ell^{+} \ell^{-}$ endpoint: $M_{\ell\ell} = M(\chi_{2}^{0}) M(\chi_{1}^{0})$ (significant mode if no $\chi_{2}^{0} \rightarrow \chi_{1}^{0}Z, \chi_{1}^{0}h, \ell \ell$ decays)
- Require: 2 isolated leptons, multiple jets, and large E_T^{miss}

Modes can be distinguished

using shape of $\ell\ell\text{-spectrum}$

 $\ell\ell$ - endpoint can be observed over a significant fraction of the parameter space (covers part of the SUGRA region favored by cold dark matter (Ellis et al.)) $h \rightarrow bb:$

CMS

important if $\chi_2^0 \rightarrow \chi_1^0 h$ is open; bb peak can be reconstructed in many cases

Could be a Higgs discovery mode !

SM background can be reduced by applying a cut on E_T^{miss}

- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ 's , long lived sleptons)
- Look for ℓ^{\pm} , $\ell^{+} \ell^{-}$, $\ell^{\pm} \ell^{\pm}$, b-jets, τ 's
- End point analyses, global fit

Models other than SUGRA

GMSB:

- LSP is light gravitino
- Phenomenology depends on nature and lifetime of the NLSP
- Generally longer decay chains, e.g. $_{\tilde{\chi}_{0}^{0}}$

$$\tilde{\chi}_2^0 \to \tilde{\ell}^{\pm} \ell^{\mp} \to \tilde{\chi}_1^0 \ell^+ \ell^- \to \tilde{G} \gamma \ell^+ \ell^-$$

- \Rightarrow models with prompt NLSP decays give add handles and hence are easier than SUGRA
- NLSP lifetime can be measured:
 - For $\tilde{\chi}_1^0 \to \tilde{G}\gamma$, use Dalitz decays (short lifetime) or search for non-pointing photons
 - Quasi stable sleptons: muon system provides excellent "Time of Flight" system

RPV :

- R-violation via $\chi^0_1 \to \ell \ell \nu$ or $qq\ell$, $qq\nu$ gives additional leptons and/or E_T^{miss}
- R-violation via $\chi^0_1 \rightarrow$ cds is probably the hardest case; (c-tagging, uncertainties on QCD N-jet background)

LHC reach for other BSM Physics

(a few examples for 30 and 100 fb⁻¹)

Conclusions

- 1. Experiments at the LHC have a huge discovery potential
 - SM Higgs: full mass range, already at low luminosity Vector boson fusion channels improve the sensitivity significantly
 - MSSM Higgs: parameter space covered; also for new proposed benchmark scenarios
 - SUSY: discovery of TeV-scale SUSY should be easy, determination of model parameters is more difficult
 - Exotics: experiments seem robust enough to cope with new scenarios, incl extra dimensions
- 2. Experiments have also a great potential for precision measurements
 - m_W to ~15 MeV
 - m_{top} to ~ 1 GeV
 - $\Delta m_{\rm H} / m_{\rm H}$ to 0.1% (100 600 GeV)
 - + gauge couplings and measurements in the top sector