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• Introduction

• Search for Higgs Bosons

Standard Model Higgs Boson 

How reliable are the signals at low mass?

MSSM Sector 

• Supersymmetry

• Other Physics beyond the Standard Model 
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The Large Hadron Collider (LHC)

• Revised Time Schedule:

Dec. 2006             Ring closed and cold

Jan. - Mar. 2007   Machine commissioning 

Spring  2007         First collisions ,  pilot  run. 

L=5x1032 to  2x1033 cm-2 sec-1,

≤ 1 fb-1

Start detector commissioning,       

~ 105 Z → ��, W → �ν, tt events

June - Dec. 2007 Complete detector commissioning,

Physics run

→ 2009               L=1-2 x1034, 100 fb-1    per year
(high luminosity LHC)

low luminosity:      L = 1x1033 cm-2 sec-1

10 fb-1 / year

high luminosity:    L = 1x1034 cm-2 sec-1

100 fb-1 / year
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Which physics  the first year(s) ? 

Already in first year,  large statistics expected from:

-- known SM processes  → understand detector and  physics at √s = 14 TeV 
-- several New Physics scenarios
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First goals …. 

� Understand  basic  SM physics at  √s = 14 TeV � first checks of Monte Carlos 

(hopefully well understood at Tevatron)

e.g. - measure cross-sections for  W, Z, tt, QCD jets, events features (PT spectra etc.) 

…. and in parallel…

• Prepare the road to discovery:  

-- measure  backgrounds to New Physics : e.g.  tt  and  W/Z+ jets  (omnipresent …)

-- look at specific “control samples” for the individual channels: 

e.g. ttjj with j ≠ b  “calibrates” ttbb irreducible background to  ttH � ttbb

� Understand and calibrate detector and trigger in situ using well-known physics samples 

e.g. - Z → ee, µµ tracker, ECAL, Muon chambers calibration and alignment, etc. 
- tt → b�ν bjj 104 evts/day after cuts � jet scale from W�jj, b-tag performance, etc��

Note: if mH < 120 GeV  : fast Higgs discovery may be crucial  in case of competition with Tevatron

This may be the most  difficult  physics goal for the first year  … 

� Look for New Physics  potentially accessible in first year (SUSY, Higgs, …)
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Higgs Boson Production at Hadron Colliders

Lepton and Photon final states are

essential  (via H � WW , ZZ, (ττττττττ), γγγγγγγγ) 

bb decay mode only possible in 

associated production (W/Z,   tt)

(QCD jet background)

K [1] ~ 1.8

K [2] ~ 2.1

K ~ 1.2

K ~1.3

K ~1.1

Large higher order QCD corrections for the 

gluon fusion process 

M. Spira
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• Higgs boson discovery possible over the full mass range with    ~10 fb-1

• Low mass region may be difficult  (calibration, backgrounds, ….)

• How reliable is the signal in the low mass region ?  VBF is important 
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Higgs Boson Search using vector boson fusion at low mass

Motivation:   Increase discovery potential at low mass 

Improve measurement of Higgs boson parameter 
(couplings to bosons, fermions (taus))

Search for non-standard decays (invisible Higgs) 

proposed by D.Rainwater and D.Zeppenfeld et al.:

( hep-ph/9712271,  hep-ph/9808468 and hep-ph/9906218)

Distinctive Signature of:

- two high PT forward tag jets

- little jet activity in the central region

���� central jet Veto

,��

,��

φφφφ

ηηηη

Tag jets Higgs             
Decay 
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Studied in full simulation by ATLAS and CMS

Higgs tt
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Looks feasible at low lumi,  higher tag jet PT- thresholds needed at high lumi

� Experimental Issues: 

- Forward jet reconstruction
- Jets from pile-up in the 

central / forward region

Rapidity distribution of jets in tt and 
Higgs signal events:

Efficiency of forward jet reconstruction Fraction of events with jet in central region

Low lumi. 
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Background for channel:

QCD backgrounds:

tt  production            Z + 2 jets

Background rejection:

• Lepton PT cuts and tag jet requirements     (∆ η, PT) 

• Require large mass of tag jet system  

• Jet veto 

• Lepton angular and mass cuts 

qqH     →→→→ qqWW* →→→→ qq l νννν l νννν

el.weak background:

WW jj production         Z + 2 jets

qqH     →→→→ qqWW* →→→→ qq l νννν l νννν

ATLAS
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Background for channel:

QCD backgrounds:

tt  production            Z + 2 jets

Background rejection: qqH     →→→→ qqWW* →→→→ qq l νννν l νννν

el.weak background:

WW jj production         Z + 2 jets

qqH     →→→→ qqWW* →→→→ qq l νννν l νννν

CMS
ATLAS
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How reliable is this signal ?

• Factor of two uncertainty found on the tt 

background calculation

(PYTHIA vs. ttj +  ttjj matrix element calculation,

issue of parton shower matching)

ATLAS-SN-2003-024, Les Houches (2003)

However: large (S : B) ratio, 

discovery significance is stable

• Cuts can be relaxed, to get background shape 

from the data:

No kinematical cuts on 

leptons applied:

(ATLAS study) 
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• Presence of a signal can also be demonstrated in the ∆ φ distribution
(i.e. azimuthal difference between the two leptons) 
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qq H     →→→→ qq τ ττ ττ ττ τ
→→→→ qq  l ν νν νν νν ν l ν νν νν νν ν

Combined significance of VBF channels  for 10 fb-1

• For 10 fb-1 in ATLAS:

5 σσσσ significance for

120 ≤≤≤≤ mH ≤≤≤≤ 190 GeV

• low mass: combination with 

H � γγγγγγγγ and ttH, H�bb

• VBF channels    (in  particular WW*) 

are  discovery channels at low luminosity

qq H     →→→→ qq τ ττ ττ ττ τ
→→→→ qq  l ν νν νν νν ν had νννν

CMS

mH = 135 GeV

ATLAS

mH = 120 GeV
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Three channels with  ~ 2-3 σ each → observation of  all channels important to extract 
convincing signal in first year(s)

The 3 channels are complementary → robustness:

Remarks for a light Higgs with mH < 120 GeV  and 10 fb-1:

Note : -- all require “low” trigger thresholds

e.g. ttH analysis cuts : pT (�) > 20 GeV,   pT (jets) > 15-30 GeV

-- ttH requires very good understanding  (5 -10%) of  the backgrounds 

	→→→→ γγγγγγγγ

b

b



	→→→→ 

	��	→→→→ �����νννν ��� ��

H

τ

τ

��	→→→→ ��ττττττττ

� different production and decay modes

• different backgrounds

• different detector/performance requirements: 

-- ECAL crucial for H → γγ (σ/m ~ 1% needed)
-- b-tagging is crucial for ttH : (4 b-tagged jets needed to reduce combinatorics)

-- efficient jet reconstruction over |η| < 5   crucial for   qq H  → qq ττ
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bb t  t H tt →
σ x BR ≈ 300 fb

Complex final state:  H→bb , t → bjj, t → b�ν

• Main backgrounds:

-- combinatorial from signal (4b in final state)

-- Wjjjjjj, WWbbjj, etc.

-- ttjj   (dominant, non-resonant)

• b-tagging performance is crucial

ATLAS results for 2D-b-tag from full simulation 

(εb =60%   Rj (uds)~ 100 at low  L )

• Shape of background must be known; 

60% (from ttbb) can be measured from ttjj using anti-b tag

• LHC experiments need a better understanding of the signal 

and   the backgrounds  (K-factors for  backgrounds)

S =  38 events 

B =  52 events 

S/B  ~ 0.73

S/ √B = 3.5 

for K = 1.0
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Measurement of Higgs-Boson Coupling Ratios

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
� �

		
�

�
		

�

�
		

�

�
		

�

�

Γ
τ

Global fit 
����	������

(all channels at a given mass point)

2

ZZHZH

2

WWHWH

2

tttHttH

2

ZZF

2

wWFVBF

2

tggHggH

g

g

g  

gg

g  

•=

•=

•=

•+•=

•=

ασ

ασ

ασ

αασ

ασ

Production cross sections

��			

���			

��			

���		

��

���

����

���

=∆=∆

=∆

==∆

=∆

ΖΗαα

α

αα

α

α  from theory with assumed

uncertainty ∆α

b loop neglected for now in ggH

assumptions: only SM particles couple to Higgs boson,

no large couplings of light fermions
Fit  parameters:



K. Jakobs                                                       Aspen Winter Conference on Particle Physics,  February 2004 

Η

Ζ

Η

→

ΓΓ

=•
2

W

2

W

2

Z

2

W

2

W

2

t
ggH

ZZHggH,

g

g

gg

g

g

 BR)(

βα

σ

( )

�

�
�

�

�

�

�

�
���
��

�

�
�

�

�

�
�

�

�
		�����
�

�
		���
�

��
		���
�

�
		�����
�

�
		�����
�

Γ
=→

Γ
=→

Γ

−
=→

Γ
=→

Γ
=→

β

βττ

ββ
γγ

β

β

τ
τ

γγ

2

Branching ratios

Rate as function of xi, e.g.

∆β∆β∆β∆β���

Ratio of Higgs-Boson Couplings



K. Jakobs                                                       Aspen Winter Conference on Particle Physics,  February 2004 

mh < 135 GeV 

mA ≈ mH ≈mH± at  large  mA

MSSM  Higgs bosons  h, H, A, H ±±±±

A, H, H± cross-section ~ tan2β

-- best sensitivity from A/H → ττ, H± → τν
(not easy the first year ..)

-- A/H � µµ experimentally easier 
(esp. at the beginning)

Here only SM-like h 

observable  if   SUSY 

particles neglected. 
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Higgs decays via SUSY particles

If  SUSY exists :   search for

H/A → χ0
2χ0

2 → ��χ0
1   ��χ0

1

5σ contours

CMS:  special choice in MSSM  (no scan) 

M1 =  60 GeV

M2 =  110 GeV 

µ =  -500 GeV 

Exclusions depend on MSSM parameters 

(slepton masses, µ)

gb�tH+, H± → χ2,3
0 χ1,2

± → 3l+E
T

miss
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Updated MSSM scan for different benchmark sceanarios
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Excluded by LEP

• Vector boson channels included

• Benchmark scenarios as defined by M.Carena et al. (h  mainly affected) 

ATLAS,   30 fb-1,        5σσσσ coverage for h 

MHMAX scenario (MSUSY=1 TeV )

maximal theoretically allowed region for mh

Nomixing scenario      (MSUSY= 2TeV) 

(1TeV almost excl. by LEP ) 

small mh � difficult for LHC

Gluophobic scenario (MSUSY = 350 GeV)

coupling to gluons suppressed  

(cancellation of top + stop loops)  

small rate for g g � H, H�γγγγγγγγ and Z�4 �

Small α α α α scenario (MSUSY = 800 GeV)

coupling to b (and t) suppressed 

(cancellation of sbottom, gluino loops) for 

large tan β and MA 100 to 500 GeV
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Updated MSSM scan for different benchmark sceanarios
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Excluded by LEP

• Vector boson channels included

• Benchmark scenarios as defined by M.Carena et al. (h  mainly affected) 

ATLAS,   30 fb-1,        5σσσσ coverage for h 
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Search for Supersymmetry

• If  SUSY exists at the electroweak scale, a discovery 

at the LHC should be easy

• Squarks and Gluinos are strongly produced 

They decay through cascades to the lightest SUSY

particle (LSP)

� combination of 

Jets, Leptons, ET
miss

1. Step:  Look for deviations from the Standard Model

Example:   Multijet +  ET
miss signature

2. Step:  Establish the SUSY mass scale use inclusive variables, e.g. effective  

mass distribution

3. Step:  Determine model parameters (difficult)

Strategy: select particular decay chains and use kinematics to  

determine mass combinations
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Squarks and Gluinos

• Strongly produced, cross sections comparable to QCD cross sections at same Q2

• If R-parity conserved, cascade decays produce distinctive events:  

multiple jets, leptons, and ET
miss

• Typical selection:  Njet > 4,       ET > 100, 50, 50, 50 GeV,       ET
miss  > 100 GeV  

• Define: (effective mass)

example:    mSUGRA

m0 = 100 GeV,    m1/2  = 300 GeV 

tan β = 10,             A0 = 0,  µ > 0

LHC reach for Squark- and Gluino masses: 

1 fb-1 � M ~  1500 GeV 
10 fb-1 � M ~  1900 GeV

100 fb-1 � M ~  2500 GeV

TeV-scale SUSY can be found quickly ! 
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LHC reach in the m0 - m 1/2 mSUGRA plane:

SUSY cascade decays give also rise to many

other  inclusive signatures: leptons,  b-jets, ττττ‘sMultijet + ET
miss signature

Expect multiple signatures for TeV-scale SUSY
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Determination of model parameters

• Invisible LSP � no mass peaks,  but kinematic endpoints

� mass combinations  

• Simplest case:  χ0
2 → χ0

1  �
+ �- endpoint:          M

��
= M(χ0

2) - M(χ0
1) 

~
(significant mode if  no χ0

2 → χ0
1Z, χ0

1h,   � � decays)

• Require:  2 isolated leptons, multiple jets, and large   ET
miss

Modes can be distinguished

using shape of ��-spectrum
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�� - endpoint can be observed over a significant fraction  of the parameter space  

(covers part of the  SUGRA region favored by cold dark matter  (Ellis et al.))
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h   →→→→ bb:

important if    χ0
2 → χ0

1h  is open;

bb peak can be reconstructed in

many cases

Could be a Higgs discovery mode ! 

SM background can be reduced 

by applying a cut  on ET 
miss

CMS
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work backwards the decay chain: 
example: SUGRA  study point 5

combine  h → bb with jets to 
determine other masses

endpoint

Strategy in SUSY Searches at the LHC:

• Search for multijet + ET
miss excess 

• If found, select SUSY sample  (simple cuts) 

• Look for special features (γ‘s , long lived sleptons) 
• Look for �±, �+ �-,  �± �±, b-jets, τ‘s
• End point analyses,   global fit 
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Models other than SUGRA
GMSB:

• LSP is light gravitino 

• Phenomenology depends on nature and lifetime of the NLSP 

• Generally longer decay chains, e.g. 

• � models with prompt NLSP decays give add handles and hence    
are easier than SUGRA

• NLSP  lifetime can be measured: 

- For                     use Dalitz decays

(short lifetime) or search for non-pointing photons

- Quasi stable sleptons: muon system provides 

excellent „Time of Flight“ system   

RPV :

• R-violation via  χ0
1 → ��ν or qq�, qqν gives additional leptons  and/or ET

miss

• R-violation via χ0
1 → cds is probably the hardest case; 

(c-tagging, uncertainties on QCD N-jet background) 
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LHC reach for other BSM Physics
(a few examples for 30 and 100 fb-1) 

M (Z‘)   ~  5   TeV

M (W‘)  ~  6   TeV 

M (Z‘)   ~  3   TeV

M (W‘)  ~  4   TeV

Z‘  � ��, jj 

W‘� � ν

Λ ~ 40 TeVΛ ~ 25 TeV Compositeness 
(from Di-jet)

M (LQ) ~ 1.5 TeV M (LQ)  ~ 1 TeV Leptoquarks 

M (q*) ~  6 TeV M (q*)   ~  3.5 TeV Excited Quarks 

Q* � q γ

100 fb -130 fb -1
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Conclusions

1. Experiments at the LHC have a huge discovery potential

- SM Higgs:   full mass range, already at low luminosity

Vector boson fusion channels improve the sensitivity significantly

- MSSM Higgs: parameter space covered;  also for new proposed 

benchmark scenarios

- SUSY: discovery of TeV-scale SUSY should be easy, 

determination of model  parameters is more difficult

- Exotics: experiments seem robust enough to cope with new scenarios,

incl extra dimensions

2.  Experiments have also a great potential for precision measurements

- mW to  ~15 MeV 

- mtop to  ~  1 GeV 

- ∆ mH / mH to  0.1%  (100 - 600 GeV) 

+ gauge couplings and measurements in the top sector ........


