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Physics at Hadron Colliders

Part  2

Standard Model Physics

Test of Quantum Chromodynamics
(Jet production, W/Z production, 

top-quark production,….)

Precision measurements
(W mass, top-quark mass, ….) 
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QCD processes at hadron colliders

• Hard scattering processes are dominated 
by QCD jet production

• Originating  from quark-quark, quark-gluon and
gluon-gluon scattering

• Due to fragmentation of quarks and gluons in
final state hadrons
→ Jets with large transverse momentum PT

in the detector

• Cross sections can be calculated in 
QCD (perturbation theory)

Comparison between experimental data and
theoretical predictions constitutes an important
test of the theory. 

Deviations?  → Problem in the experiment ? 
Problem in the theory (QCD) ? 
New Physics, e.g. quark substructure ?
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A two jet event at the Tevatron (CDF)

ET = 666 GeV 
η =  0.43 

ET = 633 GeV 
η = -0.19

Dijet Mass = 1364 GeV/c2

CDF (φ-r view)

CDF
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A two jet event in the DØ experiment

Mjj = 838 GeV/c2

pT(1) = 432 GeV/c

pT(2) = 396 GeV/c

η
φ
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Test of QCD Jet production 

Data from the DØ experiment
(Run II)

Inclusive Jet spectrum as a function
of Jet-PT

very good agreement over many 
orders of magnitude !

within the large theoretical and 
experimental uncertainties
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Similar data for the CDF experiment

contributions of the various 
sub-processes to the inclusive 
jet cross section
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• A Jet is NOT a well defined object                (fragmentation, detector response)

- one needs an algorithm to define a jet, to measure its energy 

(e.g., a cone around a local energy maximum in the calorimeter, cone size 

adapted such that a large fraction of jet energy is collected, 

typical values:  ∆R = √ ∆Φ2 + ∆η2 = 0.7 

• Cluster energy ≠ parton energy

Main corrections:

– In general, calorimeters show different response to electrons/photons and

hadrons   (see lectures on detector physics)

– Subtraction of offset energy not originating from the hard scattering

(inside the same collision or pile-up contributions, use minimum bias data to 

extract this)

– Correction for jet energy in/out of cone

(corrected with jet data + Monte Carlo simulations) 

Main experimental systematic uncertainty: Jet Energy Scale
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Main experimental systematic uncertainty: Jet Energy Scale

Jet response correction in DØ:

• measure response of particles
making up the jet 

• use photon + jet data - calibrate 
jets against the better calibrated 
photon energy 

q

qg

γ
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Comparison with Theory

– Fully corrected inclusive jet cross section
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Di-jet angular distributions:

• reduced sensitivity to Jet energy scale 
• sensitive to higher order QCD corrections 

Good agreement with 
Next-to-leading order QCD-predictions
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Number of detected W-bosons:

Tevatron:   expected rates  for   2 fb-1:              3 Mio W → ℓ ν events 

LHC:          expected rates for  10 fb-1:            60 Mio W → ℓ ν events 
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Test of W and Z production
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How do W and Z events look like ?

As explained, leptons, photons and missing transverse energy are key 
signatures at hadron colliders 

→ Search for leptonic decays:   W → ℓ ν (large PT (ℓ ), large PT
miss) 

Z  → ℓ ℓ

A bit of history: one of the first W events seen;
UA2 experiment

W/Z discovery by the UA1 and UA2 experiments at CERN 
(1983/84) 
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Electrons

• Isolated el.magn.  cluster in the calorimeter

• PT> 25 GeV/c

• Shower shape consistent with expectation for electrons 

• Matched with tracks

Z ee

• 70 GeV/c2 < mee < 110 GeV/c2

W eν

• Missing transverse momentum > 25 GeV/c

Trigger:

• Electron candidate > 20 GeV/c

Today’s W / Z  → eν / ee signals

CDF W e→ ν

missing transverse momentum PT
miss (GeV/c)
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W ℓν Cross Section

( )νν φ ,cos12 l
T

l
T

T
W PPM ∆−⋅⋅⋅=

Good agreement with 
NNLO  QCD calculations
C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343.

Note: the longitudinal component of the 
neutrino cannot be measured
→ only transverse mass can be reconstructed Precision is limited by systematic effects

(uncertainties on luminosity, parton densities,...



Z→ ℓℓ cross sections

Good agreement with 
NNLO  QCD calculations
C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343.

Precision is limited by systematic effects
(uncertainties on luminosity, parton densities,...
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Comparison between measured W/Z  
cross sections and theoretical prediction (QCD)

C. R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343
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Top Quark Physics

• Discovered by CDF and DØ collaborations  
at the Tevatron in 1995

• Run I top physics results are consistent with 
the Standard Model
(Errors dominated by statistics)

• Run II top physics program will take full 
advantage of higher statistics

- Better precision
- Search for deviations from Standard Model
expectations
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Why is Top-Quark physics so important ? 

• The top quark may serve as a window to New Physics related to the electroweak
symmetry breaking (mass generation)

• We still know little about the top quark: 
its properties (mass, spin, polarization, decay properties (rare decays??),.....)
should be measured with high accuracy to look for deviations from the Standard Model 
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Top Quark Production

�q

q

�t

t

g

g

�t

t

�

g

g

�t

t

�

g

g

�t

t

Pair production: qq and gg-fusion

W �

�q

q

�b

t

W

q

q�

�b

t

g

� W

q

q�

�b

t

g

Electroweak production of single top-quarks
(Drell-Yan and Wg-fusion) 
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BR (t→Wb)  ~ 100%

Both W’s decay via W→ ℓν (ℓ=e or µ; 5%)
dilepton

One W decays via W→ℓν (ℓ=e or µ; 30%)
lepton+jets

Both W’s decay via W→qq (44%)
all hadronic, not very useful  

Top Quark Decays

Important experimental signatures: : - Lepton(s)   

- Missing transverse momentum

- b-jet(s) 

dilepton channel

lepton + jet channel
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pT(e) = 20.3 GeV/c2

pT(µ) = 58.1 GeV/c2

ET
j = 141.0, 55.2 GeV

ET=91 GeV

DØ top candidate event with two leptons
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tt cross section (dilepton)
2 high-pT isolated leptons

Large missing ET , ≥ 2 jets

B-jet

W

t
t

l v

B-jet

W

v

l

L=230 pb-1

(σtt=7 pb)

hep-ex/0505082
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A CDF  Lepton + Jet event

µ

Jet1

Jet2Lego view
Jet3

Jet4

• muon
• electron
• photon

b-jet

b-jet

jet

jet

ν

ℓ

pT(µ) = 54.4 GeV
ET

j = 96.7, 65,8, 54.8, 33.8 GeV
Missing ET= 40.8 GeV

CDF
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tt cross section (lepton + jets)
(topology, no b-jet identification)

1 high-pT isolated lepton

Large missing ET ≥ 3 jets

B-jet

W

t
t

l v

B-jet

W

HT = scalar sum of all high PT objects
(jets, leptons, ET

miss) 

Before b-tagging:   background from W+jet events clearly dominates 
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Tagging a b-quark

Soft lepton tagging

B mesons travel ~ 3 mm before decaying:

– Search for secondary vertex
Search for non-isolated soft lepton in a jet

Silicon Vertex tag
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Silicon detectors

Run II: silicon detectors cover 

a large region of 

acceptance

CDF

Bs→J/Ψ φ

N = 133 ± 17
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IP

Jet 1

Jet 2

µ -µ + jets double-tagged event

µ -

Jet 1

IP

SV

Jet 2

B tagging established in both experiments!

Important for the top 
physics measurements

SV
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tt cross section (lepton + jets)   (including b-tagging)

1 high-pT isolated lepton,   at least one b-tagged jet

Large missing ET

Excess above the W+ jet background in events with high jet multiplicity

Control region

Signal region

≥1 soft-muon tag

hep-ex/0506001

L=230 pb-1

hep-ex/0504058
≥1 secondary vertex tag
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tt cross section summary  (preliminary)

Good agreement among various exp. measurements
and with QCD prediction  (similar results for DØ)

QCD prediction:

- Cacciari et al.,    hep-ph/0303085
- Kidonakis et al., hep-ph/0303086
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Precision measurements of mW and mtop

radiative corrections
∆r ~ f (mtop

2, log mH)
∆r ≈ 3%

rW

EM

∆−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1 sin

1
 

G 2

  
  m

1/2 

F

W θ
απ

Fermi constant
measured in muon
decay

weak mixing angle
measured at 
LEP/SLC

Electromagnetic constant
measured in atomic transitions, 
e+e- machines, etc.

Motivation:
W mass and top quark mass are  fundamental parameters of the Standard Model;
The standard theory provides well defined relations between mW, mtop and mH

GF, αEM, sin θW

are known with high precision

Precise measurements of the 
W mass and the top-quark 
mass constrain the Higgs-
boson mass 
(and/or the theory,
radiative corrections)
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The W-mass measurement

Ultimate test of the Standard Model:  comparison between the direct Higgs boson  
mass (from observation, hopefully) and predictions from rad. corrections….

rW
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1 sin

1
 

G 2
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1/2 

F

W θ
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mW (from LEP2 + Tevatron) = 80.410 ± 0.032 GeV

mtop (from Tevatron) = 172.7 ± 2.9 GeV
1.6%1.6%

4•104•10--44

light Higgs boson is favoured
by present measurements
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Technique used for W-mass measurement at hadron colliders:

Observables:   PT(e) ,   PT(had)          

⇒ PT(ν)  = - ( PT(e)   +   PT(had) ) long. component can not be

⇒ measured

In general the transverse  mass MT is used for the determination of the W-mass 

(smallest systematic uncertainty). 

DØ
Z ee→

( )νν φ ,cos12 l
T

l
T

T
W PPM ∆−⋅⋅⋅=

Event topology:
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mT
W (GeV)

mW= 79.8 GeV

mW= 80.3 GeV

Shape of the transverse mass distribution is sensitive to mW,  the measured 
distribution is fitted with Monte Carlo predictions, where mW is a parameter

Main uncertainties:

result from the capability of the
Monte Carlo prediction to reproduce
real life: 

• detector performance
(energy resolution, energy scale, ….)

• physics: production model 
pT(W), ΓW, ......

• backgrounds

Dominant error (today at theTevatron, and most likely also at the LHC) : 
Knowledge of lepton energy scale of the detector !
(if  measurement of the lepton energy wrong by 1%, then measured mW wrong by 1%)
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Calibration of the detector energy scale: 

Example : EM calorimeter

CALOe- beam
E = 100 GeV

Emeasured

• if  Emeasured = 100.000 GeV for all calorimeter cells
→ calorimeter is perfectly calibrated

• to measure mW to ~ 20 MeV, need to know energy scale to 0.2 ‰ ,
i.e. if   E electron = 100 GeV then  99.98 GeV < Emeasured < 100.02 GeV                 

⇒ one of most serious experimental challenges



K. Jakobs, Universität Freiburg                                 CERN Summer Student Lectures,  Aug.  2005

Calibration strategy:

• detectors equipped with calibration systems which inject known pulses:

• calorimeter modules calibrated with test beams of  known energy
→ set the energy scale

• inside LHC detectors: calorimeter sits behind Inner Detector 
→ electrons lose energy in material of Inner Detector 
→ need a final calibration “ in situ ” by using physics samples:

e.g.     Z → e+ e- decays          1/s  at  low luminosity
constrain     mee = mZ

known to ≈ 10-5 from LEP

cell out

in
in

→ check that all cells give same response:         if not → correct 
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⇒ ∆ mW ~  ± 15 MeV

• Total error per lepton species and per experiment at the LHC is estimated to be  ± 25 MeV

at  the Tevatron ± 34 MeV
• Main uncertainty: lepton energy scale (goal is an uncertainty of ± 0.02 %)
• Many systematic uncertainties can be controlled in situ, using the Z → ll sample  

(PT(W), recoil model, resolution)

Combining both experiments (ATLAS + CMS, 10 fb-1), both lepton species and 
assuming a scale uncertainty of    ± 0.02%

What precision can be reached in Run II and at the LHC ?

Tevatron:       2 fb-1:                                                ∆ mw ~  ± 30 MeV

25 MeV34 MeV116 MeVTotal error

24 MeV28 MeV66 MeVTot. Syst. error

1 MeV2 MeV11 MeVBackground

17 MeV20 MeV30 MeVMonte Carlo model

(PT
W, structure functions, 

photon-radiation….)

16 MeV20 MeV57 MeVEnergy scale, lepton res.

2 MeV19 MeV96 MeVStat. error

10 fb-12 fb-10.08 fb-1Int. Luminosity
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Signature of Z and W decays

Z→l+l–

W→lν
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Top mass measurements

• Top mass calculation:

– Kinematic fit under (tt) hypothesis

– compute likelihood for observed events

as a function of the top quark mass

Maximum likelihood → mtop

B-
jet

W

t
t

l v

B-
jet

W

GeV 5.173     

GeV 7.1)(5.173
1.4
0.4

7.3
6.3

+
−

+
−

=

±+= JESstatmt
Lepton+jets (≥1 b-tag)

L=230 pb-1
*) Most precise single measurement

• Reduce JES systematic by using in-situ 
hadronic W mass in tt events

(simultaneous determination of mt and JES from    
reconstructed mt and MW templates)
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Tevatron results on the top quark mass

expected LHC precision for 10 fb-1:   <  ~ ± 1 GeV
(combination of several methods) 

expected precision in 2007:    ± 1.5 -2 GeV
(Tevatron) 
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Summary of the 2. Lecture

• Hadron Colliders Tevatron and LHC play an important role in  
future tests of the Standard Model

• Predictions of Quantum Chromodynamics can be tested in 
- High PT jet production
- W/Z production 
- Top quark production 
- …….

• In addition, precise measurements of Standard Model parameters can be 
carried out.

Examples:  W mass can be measured   to  ~15 MeV
Top-quark mass                    to  ~  1 GeV

→ Higgs mass constrained indirectly to ~ 25%
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Prospects for top-quark mass measurements at the LHC

Year 2007:   ∆mtop ~  2-3  GeV      (Tevatron) 

Best channel for mass measurement: 

tt → Wb   Wb → l ν b       jet jet b
(trigger)       (mass measurement)

Experimental numbers:
• Production cross section:   590 pb 
• After exp. cuts:   130.000 tt events in 10 fb-1 S/B ~ 65

Syst. uncertainties dominated 
by final state radiation effects

estimated syst. uncertainties:

combination of various methods: ∆ mtop <   ~ ± 1 GeV


