

HIGGS Bosons at the LHC

- Standard Model Higgs Boson
 - Search for a light Higgs at the LHC
 - Vector boson fusion
 - Comparison to the Tevatron potential
- Measurement of Higgs boson parameters
- The MSSM Higgs sector

Karl Jakobs Universität Mainz 55099 Mainz, Germany

Karl Jakobs

Fermilab Higgs workshop, May 2001

Revised LHC Schedule

Dec. 2005 Jan. - March 2006 April 2006

May - July 2006 Aug. 2006 - Feb. 2007 Start detector commissioning ~ $10^5 \text{ Z} \rightarrow \ell\ell, \text{ W} \rightarrow \ell\nu, \text{ tt events}$ Shutdown: continue det. installation Physics run : L=2x10³³, 10 fb⁻¹ Complete detector commissioning, start of physics L=2x10³⁴, 100 fb⁻¹ per year (high luminosity LHC)

Ring closed and cold

First collisions, pilot run

L=5x10³² to $2x10^{33}$, ≤ 1 fb⁻¹

Machine commissioning (1 beam)

Karl Jakobs

 $\rightarrow 2008$

CMS Detector construction

HCAL assembly

Karl Jakobs

Fermilab Higgs workshop, May 2001

ATLAS detector construction

Liquid Argon Calorimeter

Superconducting solenoid ready

Karl Jakobs

SM Higgs production at the LHC

(PDF, NNLO, etc.) $\leq 20\%$ (except ttH)

Karl Jakobs

Fermilab Higgs workshop, May 2001

Main search channels at the LHC

Large QCD backgrounds:

 $\begin{array}{ll} \sigma & (H \rightarrow b \overline{b} \;) \approx 20 \; p b & \mbox{direct production, } m_{H} \, \mbox{=} 120 \; GeV \\ \sigma & (b \overline{b} \;) & \approx 500 \; \mu b \end{array}$

→ no hope to trigger / extract fully hadronic final states → look for final states with ℓ , γ ($\ell = e,\mu$)

Detector performance is crucial: b-tag, ℓ/γ E-resolution, γ/j separation, E_T^{miss} resolution, forward jet tagging,

Karl Jakobs

Discovery potential for a SM Higgs boson

- Good sensitivity over the full mass range from ~100 GeV to ~ 1 TeV
- For most of the mass range at least two channels available

• The Higgs boson discovery is possible over the full mass range already with $\sim 10 \text{ fb}^{-1}$

However:

- It requires the combination of both experiments and two channels ($H \rightarrow \gamma \gamma$ and ttH, $H \rightarrow$ bb) in the low mass region
- It will take time to operate, understand and calibrate the detectors
 - \rightarrow Higgs physics will not be done before 2007

Karl Jakobs

Fermilab Higgs workshop, May 2001

Karl Jakobs

ATLAS study

- $\sigma x BR \approx 300 \text{ fb}$
- Complex final state: $H \rightarrow bb$, $t \rightarrow bjj$, $t \rightarrow b\ell v$

•Main backgrounds:

- -- combinatorial from signal (4b in final state)
- -- Wjjjjjj, WWbbjj, etc.
- -- ttjj (dominant, non-resonant)

S = 62 eventsB = 257 events S/B ~ 0.24

S/ $\sqrt{B} = 3.9$

- b-tagging performance is crucial ATLAS results for 2D-b-tag from full simulation ($\epsilon_b = 60\%$ R₁ (uds)~ 100 at low L)
- Shape of background must be known; 60% (from ttbb) can be measured from ttjj using anti-b tag

Karl Jakobs

Fermilab Higgs workshop, May 2001

CMS Study (new)

- Use similar technique as ATLAS
- ttjj background generation done with CompHep + PYTHIA ISR/FSR
- Based on fast detector simulation only
- Likelihood method for reconstruction of top decays and event kinematics
- K-factors for signal included (1.5)

- Comparable significance for K=1 (gain in significance by using likelihood method is compensated by larger background found with Comphep ttjj calculation)
- LHC experiments need a better understanding of the signal and the backgrounds (K-factors for signal and backgrounds)

Karl Jakobs

Comparison of the LHC and Tevatron potentials

Higgs signal

cross-section are ~10 times larger at LHC for $qq \rightarrow W/Z + H$ and ~70-80 times larger for $gg \rightarrow H$ (large g contribution to PDF's at LHC)

			ΡΥΤΗΙΑ	_
Process	σ · BR pp 2 TeV	σ· BR pp 14 TeV	LHC Tevatron	
WH $\rightarrow \ell \nu b\bar{b}$ m _H =120 GeV	20 fb	210 fb	10	$qq \rightarrow WH$
$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ $m_{\rm H} = 150 \text{ GeV}$	15 fb	1150 fb	77	gg→ H
$H \rightarrow \gamma \gamma$ $m_{\rm H} = 150 \text{ GeV}$	0.3 fb	22 fb	73	gg→ H
$H \rightarrow ZZ \rightarrow 4\ell$ $m_{\rm H} = 150 \text{ GeV}$	0.07 fb	5.5 fb	78	gg→ H
				1

 $\sqrt{s} = 2$ TeV: -- accessible

vs = 2 rev. -- accessible channels: WH, ZH, WW^(*)

-- hopeless : $H \rightarrow \gamma \gamma$, 4 ℓ (best channels at LHC) (rate limited)

Karl Jakobs

Fermilab Higgs workshop, May 2001

Backgrounds

EW cross-section are ~10 times larger at LHC, QCD cross-sections ~ 100 times larger (gg and gq contributions strongly enhanced)

PYTHIA

Process	σ (pb)	σ (pb)	LHC
	pp 2 TeV	pp 14 TeV	Tevatron
WZ WW $q\overline{q}' \rightarrow W^* \rightarrow t\overline{b}$ $t\overline{t}$ $QCD \text{ jets}$ $p_T^{hard} > 30 \text{ GeV}$	$2.5 \\ 8.5 \\ 0.5 \\ 6.4 \\ 10^{6}$	26 71 5 600 10 ⁸	10 8.5 10 95 100

Acceptance

Acceptance of cuts for <u>same detector and analysis</u> is ~ 2 times larger at Tevatron:

- -- physics is more central
 - \rightarrow higher efficiency of η cuts
- -- less initial state g radiation (smaller \sqrt{s})

 \rightarrow jet veto less harmful

Karl Jakobs

For the same integrated luminosity, same detector, same analysis (e.g. ATLAS detector performance and analysis for $p\overline{p}$ $\sqrt{s} = 2 \text{ TeV}$ and pp $\sqrt{s} = 14 \text{ TeV}$), after kinematic cuts :

	$WH \to \ell \nu \ b\overline{b}$ $ZH \to \ell \ell \ b\overline{b}$	$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ (m _H = 160 GeV)
$\begin{array}{c} S (14 \text{ TeV}) / S (2 \text{ TeV}) \\ B (14 \text{ TeV}) / B (2 \text{ TeV}) \\ S/B (14 \text{ TeV}) / S/B (2 \text{ TeV}) \\ S/\sqrt{B} (14 \text{ TeV}) / S/\sqrt{B} (2 \text{ TeV}) \end{array}$	≈ 5 ≈ 25 ≈ 0.2 ≈ 1	≈ 30 ≈ 6 ≈ 5 ≈ 10

-- similar potential for WH and ZH, with larger S at $\sqrt{s} = 14$ TeV and better S/B at $\sqrt{s} = 2$ TeV

-- larger potential at $\sqrt{s} = 14 \text{ TeV}$ for $H \rightarrow WW$ (*) (production dominated by gg $\rightarrow H$)

Why are the WH and ZH channels (discovery channels for the Tevatron) not included in the LHC results ?

Backgrounds (tt, Wjj, Wbb, WZ):

- -- large and with different shapes
- -- not all well known today (missing K-factors)
- -- not all can be measured precisely with data
- \rightarrow large background systematics in this channel and S/B $\,\sim$ few %

 \rightarrow considered as marginal discovery channel at the LHC

 $ZH \rightarrow \ell\ell$ bb, $ZH \rightarrow \nu\nu bb$ have smaller sensitivity and/or even higher backgrounds \rightarrow hopeless

Karl Jakobs

Fermilab Higgs workshop, May 2001

Karl Jakobs

Higgs production via Weak Boson Fusion

 $\begin{array}{c|c} q & q \\ W, Z \\ W, Z \\ W, Z \\ W, Z \\ q', q & q', q \end{array}$

Motivation:

- •Additional potential for Higgs boson discovery
- •Important for the measurement of Higgs boson parameters
- (couplings to bosons, fermions (taus), total width)
- •Detection of an invisible Higgs

proposed by D.Zeppenfeld et al. (several papers...)

 σ = 4 pb (20% of total cross section for m_H = 120 GeV) however: distinctive signature of

- two high P_T forward jets
- little jet activity in the central region

ATLAS and CMS studies have been performed, first, preliminary results available

Karl Jakobs

Fermilab Higgs workshop, May 2001

$qqH \rightarrow qq WW \rightarrow qq l \nu l \nu$

ATLAS:

- Signal and background simulations with PYTHIA
- El.weak backgrounds (t-channel vector boson exchange from matrix element calculation, D.Zeppenfeld et al.)
- Initial and final state radiation included (PYTHIA)
- Basic cuts on isolated leptons: $P_T > 20 \text{ GeV}$ $|\eta| < 2.5$
- Basic cuts on tagging jets: $P_T > 20 \text{ GeV}$ $\Delta \eta > 4.4$

Dominant background at that level: tt production

Additional rejection:

- M_{jj} (inv. Mass of tag jets)
- $P_T(tot) = P_T(l_1) + P_T(l_2) + P_t^{miss} + P_T(j_1) + P_T(j_2)$ (less sensitive to pile-up than jet-veto over large rap.)
- Jet Veto (no jets with $P_T > 20 \text{ GeV in} |\eta| < 3.2$)

Karl Jakobs

Expected event rates for 10 fb⁻¹: $m_H = 160 \text{ GeV}$ preliminary

m _H (GeV)	130	140	150	160	170	180	190	200	
Signal	11	20	31	50	53	47	37	28	
S/B	0.5	0.9	1.4	2.3	2.4	2.1	1.7	1.3	

Main background:remaining tt background(13.1 events)WW el. weak background(7.1 events)

• For the same cuts: significance is worse than in orig. publ. by Zeppenfeld et al. (ISR/FSR effects, jet calibration, efficiencies)

However: confirmed that WBF channel has a large discovery potential

• Still to be done:

proper estimate of forward jet tag efficiencies in a full simulation, combination with ee and $\mu\mu$ signature, optimization of cuts

Karl Jakobs

Fermilab Higgs workshop, May 2001

$qqH \rightarrow qq \tau \tau \rightarrow qq l \nu \nu l \nu \nu$

ATLAS:

- Similar basic cuts as in WW analysis
- Tau mass reconstruction using collinear approximation
- Optimized cuts for eµ, ee and µµ channels

Combined significance (ee, $\mu\mu$, $e\mu$):

m _H (GeV)	110	115	120	125	130	140	150
10 fb ⁻¹	2.2	2.6	2.6	2.4	2.3	1.3	0.6 σ
30 fb ⁻¹	3.8	4.3	4.3	4.1	3.8	2.7	1.4 σ

Preliminary, no systematics yet, 1-had channel to be added

*) More details in talk by G. Azuelos

Karl Jakobs

Can VBF improve the significance at high mass ? Signals with $H \to WW \to \ell \nu \ell \nu$

CMS Study

marginal signals for $gg \rightarrow H \rightarrow \ell \nu \ell \nu$ perhaps possible once M_H known!

good signals with jet tagging $qq \rightarrow qqH$: M_H =300–600 GeV: $\approx 100 - 150$ events

*) more details in talk by M.Dittmar

Karl Jakobs

Fermilab Higgs workshop, May 2001

Measurement of the Higgs boson parameters

Mass of Standard Model Higgs boson

No theoretical error e.g. mass shift for large $\Gamma_{\rm H}$ (interference resonant/non-resonant production)

Dominant systematic uncertainty: γ / ℓ E scale. Assumed 1% Goal 0.2% Scale from Z $\rightarrow \ell \ell$ (close to light Higgs)

Mass of MSSM Higgs bosons

MSSM Higgs	<u>∆m/m</u> (%)	300 fb [.]
h, A, H $\rightarrow \gamma \gamma$	0.1–0.4	
$H \rightarrow 4 \ell$	0.1-0.4	
$H/A \rightarrow \mu\mu$	0.1-1.5	
$h \rightarrow bb$	1–2	
$H \rightarrow hh \rightarrow bb \gamma\gamma$	1-2	
$A \to Zh \to bb \ \ell \ell$	1-2	
$H/A \rightarrow \tau \tau$	1-10	

Karl Jakobs

Measurements of Higgs couplings

• Without theoretical input only measurment of coupling ratios possible

i) Ratio between couplings to bosons

• Direct measurement
$$-\frac{\sigma \times BR(H \rightarrow WW^*)}{\sigma \times BR(H \rightarrow ZZ^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

(OCD corrections cancel)

• Indirect measurement
$$-\frac{\sigma \times BR(H \to \gamma \gamma)}{\sigma \times BR(H \to ZZ^*)} = \frac{\Gamma_g \Gamma_\gamma}{\Gamma_g \Gamma_Z} \sim \frac{\Gamma_W}{\Gamma_Z}$$

(Use proportionality between Γ_W and Γ_{γ} .

needs theoretical input, 10% uncertainty assumed)

Karl Jakobs

Fermilab Higgs workshop, May 2001

Ratios of boson/fermion couplings

• Direct measurement

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{qq} \to \mathsf{qqH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{qq} \to \mathsf{qqH}(\mathsf{H} \to \tau\tau))} = \frac{\Gamma_W \Gamma_W}{\Gamma_W \Gamma_\tau} = \frac{\Gamma_W}{\Gamma_\tau}$$

• Indirect measurement

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \gamma \gamma))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \gamma \gamma)} = \frac{\Gamma_W \Gamma_\gamma}{\Gamma_g \Gamma_\gamma} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)} = \frac{\Gamma_W \Gamma_W}{\Gamma_g \Gamma_W} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{ttH}(\mathsf{H} \to \mathsf{bb}))}{\sigma \times \mathsf{BR}(\mathsf{ttH}(\mathsf{H} \to \gamma\gamma))} = \frac{\Gamma_t \Gamma_b}{\Gamma_t \Gamma_\gamma} \sim \frac{\Gamma_b}{\Gamma_W}$$

* Uncertainties on the ratio arising through different production processes are not included

Results for 30 $\rm fb^{-1}$ and 300 $\rm fb^{-1}$ per experiment

*) More details in Marc Hohlfeld's talk

Karl Jakobs

Measurement of the Higgs width

<u>Direct measurement</u>: from width of reconstructed mass peak for $m_H > 200 \text{ GeV} (\Gamma_H > \Gamma_{detector} \text{ in SM})$

For lower masses, only indirect methods possible:

from rates of $qq \rightarrow qq H$ with $H \rightarrow \gamma\gamma$, $\tau\tau$, WW (Zeppenfeld et al., Phys. Rev. D62 (2000))

 \Rightarrow talk by D.Zeppenfeld

Karl Jakobs

Fermilab Higgs workshop, May 2001

MSSM HIGGS searches : h, H, A, H[±]

Large variety of channels:

$$\begin{array}{l} -h \rightarrow \gamma\gamma, t\bar{t}h \rightarrow t\bar{t}b\bar{b}, H \rightarrow ZZ^{(*)} \rightarrow 4\ell \quad \text{also in SM} \\ -A/H \rightarrow \mu\mu, \tau\tau, t\bar{t}, H^{\pm} \rightarrow \tau\nu, cs, tb \\ -H \rightarrow hh, A \rightarrow Zh \quad \end{array} \right\} \begin{array}{l} \text{typical} \\ \text{of MSSM} \end{array}$$

 $\begin{array}{c} -\mathrm{A/H} \rightarrow \chi^{0}{}_{2}\chi^{0}{}_{2} \\ -\chi^{0}{}_{2} \rightarrow \mathrm{h} \chi^{0}{}_{1} \end{array} \right\} \quad \text{if SUSY particles} \\ \text{accessible} \end{array}$

2 steps:

- ☆ SUSY particles are heavy \rightarrow do not contribute to Higgs production / decay
- ⁽²⁾ SUSY particles contribute

Results are 5σ discovery contours on m_A , tan β plane for $m_{top} = 175 \text{ GeV}$, $M_{SUSY} = 1 \text{ TeV}$, max mixing (for minimal mixing $m_h < 115.5 \text{ GeV} \rightarrow \text{MSSM} \sim \text{fully explored by LEP}$).

2-loop calculations for masses and couplings (Carena et al., Phys. Lett. B355, 1995)

Karl Jakobs

LHC discovery potential for MSSM Higgs bosons

- Plane fully covered (no holes) at low L (30 fb⁻¹)
- Main channels : $h \to \gamma \gamma, b \overline{b}, A/H \to \mu \mu, \tau \tau, H^{\pm} \to \tau \nu$
- Two or more Higgs can be observed over most of the parameter space \rightarrow disentangle SM / MSSM
- If LEP excess due to hZ production $(\tan\beta > 2, m_A > 115 \text{GeV})$, LHC will observe:

 $\begin{array}{ll} \textbf{h} & \mbox{ for any tan } \beta \mbox{ and } m_A \\ \textbf{A}, \textbf{H}, \textbf{H}^{\pm} & \mbox{ for large tan } \beta \mbox{ and moderate } m_A \end{array}$

Karl Jakobs

Fermilab Higgs workshop, May 2001

here only SM-like h observable if SUSY particles neglected.

Karl Jakobs

Discovery potential for 10 fb⁻¹

Large part of plane can be explored in 2007

Karl Jakobs

$A/H \rightarrow \tau \tau \rightarrow h^+ \nu \ h^- \nu$:

Provides best reach for large m_A . (CMS and ATLAS analyses)

Signature: two stiff opposite-sign isolated tracks ($P_T > 40 \text{ GeV}$) P_T^{miss} or 1 b-tagged jet (bbA/H)

Main challenge: reject QCD jet backgr. (already at trigger-level) Feasible for $m_A > 300$ GeV: (high P_T hadrons, larger P_T^{miss} , larger rejection from isolation)

CMS: Additional studies on trigger acceptance performed

*) see talk by A.Nikitenko for details

Karl Jakobs

Fermilab Higgs workshop, May 2001

Higgs decays via SUSY particles

Exclusions depend on MSSM parameters (slepton masses, μ)

Karl Jakobs

How robust is this potential?

- SUSY loops can enhance/suppress Higgs production (e.g. $gg \rightarrow h$) and decay (e.g. $h \rightarrow \gamma\gamma$)
- $A/H/H^{\pm} \rightarrow$ sparticles can compete with SM decays

Preliminary study : mSUGRA impact of SUSY on Higgs decays to SM particles is small :

- -- $gg \rightarrow h \rightarrow \gamma \gamma 10\%$ smaller
- -- tth/Wh $\rightarrow \gamma\gamma$ 30% smaller
- -- ttH \rightarrow tt bb not affected
- -- BR (A/H/H $^{\pm} \rightarrow$ SM particles) reduced by at most 40%

However : impact of mixing on couplings not studied for all possible mixing scenarios \rightarrow more work needed

Karl Jakobs

Fermilab Higgs workshop, May 2001

Conclusions

- 1. LHC has a large discovery potential for a Standard Model and for MSSM Higgs Bosons
- -- SM Higgs can be discovered over full allowed mass range after ~ 1 year at 10³³ cm⁻² s⁻¹ (provided detectors are well understood)
- -- MSSM Higgs sector can be fully explored. Two or more Higgs bosons should be observable in many cases.
- -- In addition, precise measurements of Higgs boson parameters (mass and couplings) can be performed

2. Vector Boson fusion channel seems to significantly enhance the discovery potential

- -- Tau tau channel in the low mass region
- -- Enhanced WW channels
- -- Can it be used to see invisble Higgs decays ?
 - **3. New promising channels also in the MSSM section** (Charged Higgs, had. Tau decays)
 - 4. Next steps:
 - use improved calculations (K-factors for S and B)
 - MC work important (Tevatron data \rightarrow MC \rightarrow LHC)
 - new topics (CP violation, ...)
 - prepare for the discovery / measurement

Karl Jakobs