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 Introduction to Hadron Collider Physics

e The present Hadron Colliders
- The Tevatron and the LHC
- The experiments

 Test of the Standard Model
- QCD: Jet, W/Z, top-quark production
- W and top-quark mass measurements

» Search for the Higgs Boson

 Search for New Phenomena




Building blocks of the Standard Model

e Matter

made out of fermions
(Quarks and Leptons)

 Forces
electromagnetism, weak and strong force
+ gravity
(mediated by bosons)

 Higgs field

Lep ons needed to break (hide) the electroweak
symmetry and to give mass to weak gauge
bosons and fermions

chectron neutrino

— Higgs particle (see lecture by C. Grojean)
Theoretical arguments: m,, < ~1000 GeV/c?
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Where do we stand today?

e*e” colliders LEP at CERN and SLC at SLAC + the Tevatron pp collider
+ HERA at DESY + KEK in Japan + many other experiments (fixed target.......
have explored the energy range up to ~100 GeV with incredible precision

 The Standard Model is consistent

with all experimental data ! Summer 2007

Measurement Fit  |Oo™=_Ofygme=
0 1 2 3
* No Physics Beyond the SM observed m,[GeV] 91.1875+0.0021 91.1874
I,[GeV] 24952400023 24957
o’ [nb] 4154040037  41.477
: R 20.767+0.025  20.744
* No Higgs seen (yet) !
Al 0.01714+0.00095 0.01640
AP 0.1465+0.0032  0.1479
Ry 0.21629 % 0.00066 0.21585
R, 0.1721£0.0030  0.1722
Alb 0.0992+0.0016  0.1037
Only unambiguous Al 0.0707+0.0035  0.0741
example Of Observed A, 0.923 +£0.020 0.935
: A, 0.670 £ 0.027 0.668
Higgs
A(SLD)  0.1513+0.0021  0.1479
sin“05f(Q,) 0.232410.0012 0.2314
(P. Higgs, Univ. Edinburgh) my [GeV] 80.392+0.029  80.371
I, [GeV]  2.147+0.060 2.091
m, [GeV] 171.41 2.1 171.7

Direct searches at LEP: m,, >114.4 GeV/c? (95% CL)




Consistency with the Standard Model

Sensitivity to the Higgs boson and other new particles via quantum corrections:

M, [GeV]
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Interpretation within the Standard Model
(incl. new (2009) m,, and m, measurements)
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Constraints on the HIggs mass
INn a supersymmetric theory

O. Buchmdtiller et al., arXiv:0707.3447
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...watch the low mass region !
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The Open Questions




Key Questions of Particle Physics

1. Mass: What is the origin of mass?
- How is the electroweak symmetry broken ?
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- Does the Higgs boson exist ? re wi
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2. Unification: What is the underlying fundamental theory ? : B .
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3. Flavour: or the generation problem
- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?
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Problems at a larger scale

We are here

Surrounded by

 Mass
(planets, stars, ....,hydrogen gas)

- Dark Matter

* Dark Energy

DARK
75% EnERGY

o,. NORMAL
4% \ATTER © Rocky Kolb




- Supersymmetry - New gauge bosons
Extra dimensions - Leptoquarks

- . - Little Higgs Models
Composite quarks and leptons -

- . - Invisibly decaying Higgs
bosons



....and they have still not finished

[Hitoshi Murayama]
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The role of the present Hadron Colliders

1. Explore the TeV mass scale ,
The link between SUSY and Dark Matter ?

- What is the origin of the electroweak g —— T ——
symmetry breaking ? 3

focus point
region

- The search for “low energy” supersymmetry .,

Can a link between SUSY and dark matter be P rapid annihilation
eStainShed? _:~ ‘\‘ my, b-sy funnel

- Other scenarios beyond the Standard Model

\
\ ’/ h% co—annihilation region 2
A}

Look for the “expected”, but we need to be i
open for surprises ] ‘ Charged LSP

my,

2' PreCISe teStS Of the Standard MOdel M. Battaglia, I. Hinchliffe, D.Tovey, hep-ph/0406147

- There is much sensitivity to physics beyond the
Standard Model in the precision area

- Many Standard Model measurements can be
used to test and to tune the detector performance



Why a hadron collider ?

e*e" colliders are excellent machines for precision physics !

- e+ e are point-like particles, no substructure — clean events
- complete annihilation, centre-of-mass system, kinematic fixed




Proton proton collision are more complex




Main drawbacks of ete- circular accelerators:

1.

Energy loss due to synchrotron radiation
(basic electrodynamics: accelerated charges radiate,
dipole, x-ray production via bremsstrahlung, synchrotron radiation...... )

- Radiated power (synchrotron radiation): ydia EnA
(ring with radius R and energy E) P =
3 R2 \mc?
9 4
- Energy loss per turn: _AE Ame B
3R \mc?
. AE 4
- Ratio of the energy loss between protons and (e) D AL & 1013
electrons: AE(p) M

Future accelerators:

e pp ring accelerators (LHC, using existing LEP tunnel)

e or e*e linear accelerators, International Linear Collider ILC or CLIC
(under study / planning)



2. Hard kinematic limit for e*e- center-of-mass energy from the beam energy:

NS =2 E,pum
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How can interesting objects be produced?

ATLAS Atlantis Event: susyevent

High-pr QCD jets 9™>—4 )

W, Z :: W,Z

Higgs my=150 GeV 9“B> H

gzswm

L. g
q.g pairs, m~ 1 TeV q

ngvm_’_q

T T
X (m)

Quarks and gluons in the initial state

K. Jakobs XIV LNF Spring School “Bruno Touschek”, Frascati, May 2009



Cross Sections

as a function of Vs

Accelerators:

(1) Proton-Antiproton Collider
Tevatron at Fermilab,
Vs = 1.96 TeV

(2) Large Hadron Collider (LHC)
pp collider at CERN
Vs =10 — 14 TeV
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Variables used in the analysis of pp collisions

p Transverse momentum
(in the plane perpendicular to the beam)

P+ = p SinB

\ 4
(]

(Pseudo)-rapidity: 7 = —Intan3x

= o - =
- 0 =90 n=0
n==1.0 E n=1.0 6 - 100 - T] = 24
j 6=170° — n=-2.4
7=-25__ _-M=25
e B iy T BT BT 0= 1° — 1n=5.0




Inelastic low - pr_ pp collisions

Most interactions are due to interactions at large distance between

incoming protons
— small momentum transfer, particles in the final state have large longitudinal,

but small transverse momentum

< p;>=500 MeV (of charged particles in the final state)

daN. ~ 7 - about 7 charged particles per unit of pseudorapidity in the
dn central region of the detector
- uniformly distributed in ®

These events are called
“Minimum-bias events”




Some features of minimum

non-diffractive (PYTHIA)

) non-diffractive (PHOJET)

a” ]
k=] 2

- =
A Tl 5 : B =
I aS eV e n S 2 E +  single diffractive (PYTHIA) E
2 F single diffractive (PHOJET) 3

=

<

double diffractive (PYTHIA)
3 |- a double diffractive (PHOJET) =

* Features of minimum bias events cannot
be calculated in perturbative QCD

» Experimental measurements / input needed

» Models / parametrizations are used to extrapolate
from existing colliders (energies) to the LHC
energy regime — large uncertainties

<p;> (n =0): 550 — 640 MeV (15%)
* Will be one of the first

P hyS ICS measurements CIiI; ‘{: e taens
at th e L H C i ' ::2:::1211: ((C::::::) % ’ S o e
Qﬁ 6 6| | LT
+ Needed to model other © ,|  $Z2TET 5
interesting physics ) A
(superposition of 3 ]
events,...)
’ -~ 0.023In%(s) - 0.25In(s) + 2.5 NSD dota
v 0.27In(s) - 3.2 ® CDF (1.8 TeV)
1 1 O UAS (200 GeV)

Vs (GeV)

dN/dn (=0): 5-7 (~ 33%)



Hard Scattering Processes ....or QCD |et production
Jet

hadronization

parton _—

p distribution |
—
—>
3 Underlying
% event

- parton \?

p distribution —
Jet

Leading order _ o
e Large momentum transfer, high p; in final state;

>m,_< E %{ Qj“g qq, qg, gg scattering or annihilation
0; _ . i‘ntl:lusive iets:lTevatrlTn| l:lin III 4 Tevatron,
3*5 E }ué :g | | ppbar, Vs = 1.96 TeV,

central region |n| < 0.4
0 . e
...some NLO contributions 50 100 200 .
pr (GeV)

>””’“< >”'$:< e Calculable in perturbative QCD

— test of QCD (search for deviations)

« Constraints on the proton structure possible
>~vm< >v§;}< (parton distribution functions of the proton)

qq — jets |

06 |
04 F gq — jets

0.2 : 0
| gg — Jjets
L. . |

fractional contributions




More details on the hard scattering process:

* Proton beam can be seen as beam of quarks and gluons with a wide band of energies

* The proton constituents (partons) carry only a fraction 0 < x < 1 of the
proton momentum

The effective centre-of-mass energy V3 is smaller than Vs of the incoming protons

Y

M = Z1Pa To produce a mass of:
Py = Iy PB > ﬁ ~ paLags = 8 ﬁ LHC Tevatron
i = Br—0 100 GeV: x ~ 0.007 0.05
S 5TeV: x~0.36 -

g:»,q:p;g:?Te'\/J



Elektron

Where do we know the x-values from?

The structure of the proton is investigated in Deep Inelastic Scattering
experiments:

Highest energy machine was the HERA ep collider at DESY/Hamburg
(stopped operation in June 2007)

Scattering of 30 GeV electrons on 900 GeV protons:

— Test of proton structure down to 1018 m
HERA ep accelerator,

6.3 km circumference

3 o= >
e “, ¢
- 2 ~ o




How do the x-values of the proton look like?
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Parton density functions (pdf):

u- and d-quarks at large x-values

Gluons dominate at small x !

Uncertainties in the pdfs,

in particular on the gluon distribution
at small x



Parton densities depend on x and momentum transfer (energy scale) Q2

Impressive results achieved at HERA over the past years;
Measurements of ep scattering cross sections (proton structure function F,(x,Q?))

GI_(X.Qz) x 2!

H1 and ZEUS Combined PDF Fit
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Results from HERA

» Large data sets and combination of the two HERA experiments
(H1 and ZEUS) improve the precision on the parton distribution functions

i H1 and ZEUS Combined PDF Fit
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» Very important to reduce cross section uncertainties at hadron colliders
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Calculation of cross sections

O = Zfdxa de fa (X39 Qz)fb (Xb9 Qz)éab (Xa9 Xb)

Sum over initial partonic states a,b

N

O, = hard scattering cross section

f. (x, Q%) = parton density function

... + higher order QCD corrections (perturbation theory)

which for some processes turn out to be large
(e.g. Higgs production via gg fusion)

usually introduced as K-factors: Kinj = O / Opo

a few examples: Drell-Yan production of W/Z: Kvio ~ 1.2
Higgs production via gg fusion: Ky, o ~ 1.8



The accelerators

P —

1.9

Booster

P . '—: > & : 3 ‘
PRt oS / Main Injector

& Recycler

T
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The Tevatron Collider at Fermilab

T
L.

 Proton antiproton collider

- 6.5 km circumference
_Beam energy 0.98 TeV, s =1.96 TeV

- 36 bunches, 396 ns separation
(time between crossings)

e 2 Experiments: CDF and DY

. _ _ , Main Injector
Main challenges: e & Recycler

T »

- Antiproton production and storage

— luminosity, stability of operation

Collider is running in so called Run Il (since 2001)

[Run | from 1990 — 1996, int. luminosity: 0.125 fb-1, Top quark discovery]
Real Data

« March 2001 — Feb 2006: Run Il a, [Ldt = 1.2fb?
» July 2006- 2010 (11)?: Run b, f Ldt =10-12fb'!



Tevatron performance

Peak luminosities of the machine as a function of time

Collider Run Il Peak Luminosity
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4 Peak Luminosity ~ ¢Peak Lum 20x Average

e Peak luminosity of 3.5 1032 cm=2 s

» Corresponds to ~10 interactions per bunch crossing

(superposition of minimum bias events on hard collision)

100.0

100 |

Average
Number
of
Interactions
per
Crossing

0.1

10

10 F
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The integrated Tevatron luminosity (until Apr. 2009)

* After a slow start-up (2001 — 2003), the Tevatron accelerator has reached an
excellent performance

 Today, Tevatron delivers a data set equal to Run | (~100 pb) every 2 weeks

e Integrated luminosity delivered to the experiments so far ~ 6.5 fb!

 Anticipate an int. luminosity of ~10 fb! until end of 2010, with a potential increase
to 12 - 13 b1, if Tevatron will run until end of 2011

w Run Il Integrated Luminosity [ 19 April 2002 - 19 April 2009 - T T 1 T T T T
@750_ o
6.5 ::.
60 21500+
s el LAl &
50 1 N\ ,/ F12501 .
p to 4.2 fb* of data analysed -
45 - ¥
i l (after data quality , /, %1000_ | -
€ s reguirements) .y [ g 008 2007 =
£ yamiVd 750/ | =
‘é‘ 3.0 VA 4 g i
E 25 // ,/ @, 7
20 i ,/ 500 '[/
15 ,,——// 2006 |
’ L1 ; 250+ ]
10 ] — Delivered = _
05 e — Recorded 0 : 2““;.7,-—-*;-"
0.0 L [ T ] 0 50 100 150 200 250 300 350
- - - oo - Ak - - - - - A Day
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The Large Hadron Collider

Beam energy
(nominal)

SC Dipoles 1232, 15 m, 8.33T
Stored Energy 362 MJ/Beam

Bunch spacing 25 ns
Particles/Bunch 1.15 -101

. became a r'eali‘ry in 2008 Design luminosity 1033 - 1034 cm2s!
after ~15 years of hard work Int. luminosity  10- 100 b1/ year




Descent of the last magnet, 26 April 2007




1\

Work on installation,
interconnection and
testing underground




An excellent start: first beams — September 10, 2008
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First beams at CERN - and everywhere else...
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After September 10

 Successful continuation
of commissioning with beam

(low intensity, 10° protons)

Sept 11

Switched on RF for beam 2
circulating beam for 10 min

Many tests (orbit, dump,...)

Sept 12:

Measure horizontal beam
profile with wire scanner

everything worked impressively
well
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The Event on 19. Sep 2008

- the present understanding
- ongoing repair work
- plans for 2009/2010

T
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Sector 34: the event which started



Actions ongoing and time schedule

» Repair work is well underway
(all magnets in the incident area and in a buffer zone around have been removed,
repaired and meanwhile lowered down in the tunnel again)

* Quench detection system has been improved to generate both early warnings and
interlocks and to encompass magnets, bus bars and interconnects;

Relief devices on the cryostat vacuum vessels increased in discharge capacity
(in the sectors that were warm).

» Powerful techniques have been developed to spot resistive splices at low current;
All sectors have been systematically verified to spot eventual defects.

* |t is expected that machine operation will be resumed in Oct. 2009, with first
collisions towards the end of the year

* Physics run with beam energy of 5 TeV

o Start with low number of bunches / intensity, expect to deliver a
few hundreds of pb-1 until end of 2010
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Physics implications of 10 vs 14 TeV

1 -O L] L] L ll L] L] 1] L] LI ll
" ratios of parton luminosities - At 10 TeV, more difficult to create
at 10 TeV LHC and 14 TeV LHC . high mass objects...
0.8 -
i « Below about 200 GeV, this
8 i suppression is <50%
= " James stirling (process dependent )
© 06| -
> ~ Cross
— —_— Vs [TeV] -
D E section
8 i 13 Wos | 14 20.5 nb
= 0.4 - . W 10 143 nb
S gg 14 2.02nb
— 1 Z-> |
! 10 1.35nb
0.2 - 14 833 pb
- ttbar 10 396 pb
| pdfs: MSTW2007NLO _
0.0 L cvpai o N . Above ~2-3 TeV the effect is more
) 10 10° marked

M, (GeV)

14 TeV simulation results will be
shown throughout the lectures,
unless stated otherwise
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Comparison of the LHC and Tevatron machine parameters

LHC Tevatron
(design) (achieved)

Centre-of-mass energy 14 TeV 1.96 TeV
Number of bunches 2808 36
Bunch spacing 25 ns 396 ns
Energy stored in beam 360 MJ 1 MJ
Peak Luminosity 1033-103%4 cm-2s-1 3.5x 10% cm-3s1
Integrated Luminosity / year 10-100 fb-t ~ 2 fb1

— 7 times more energy (after initial 5 TeV phase)
— Factor 3-30 times more luminosity
— Physics cross sections factor 10-100 larger
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O (proton - proton)

Cross Sections and Production Rates

Fermilab SSC

=M Rates for L = 1034 cm2 s (LHC)
| | | | It
Ctot E710 4= 10° :
UA4/5 il * [nelastic proton-proton
| ) reactions: 10° /s
1 mb . 10
o T <. | * bbpairs 5 10%/s
S | tt pairs 8 /s
1ub . §
%055 V5 % oW —ev 150 /s
: ) a5 e Z —ee 15 /s
ow —»2v) CDF (p p) S
1roS o 8 |- Higgs (150 GeV) 02 /s
g, = 200 GoV £ |« Gluino, Squarks (1 TeV) 0.03 /s
@
1 pb m *(IZT.eV .
LHC is a factory for:
O tigge top-quarks, b-quarks, W, Z, ....... Higgs, ......
m,, = 500 GeV
e wing G D QR G The only problem: you have to detect them !

VS TeV



Detector requirements from physics

* Good measurement of leptons and photons
with large transverse momentum P+

* Good measurement of missing transverse
energy (E;™ss )
and
energy measurements in the forward regions
= calorimeter coverage downtomn ~5

 Efficient b-tagging and t identification (silicon strip and pixel detectors)



Detector requirements from the experimental environment
(pile-up)

e LHC detectors must have fast response,
otherwise integrate over many bunch
crossings — too large pile-up

Typical response time : 20-50 ns

— integrate over 1-2 bunch crossings

— pile-up of 25-50 minimum bias events
=> very challenging readout electronics

* High granularity to minimize probability that
pile-up particles be in the same detector
element as interesting object
— large number of electronic channels, high cost

» LHC detectors must be radiation resistant: high flux of particles from pp
collisions  — high radiation environment
e.g. in forward calorimeters: up to 10" n/cm? in 10 years of LHC operation



The ATLAS experiment

Muon Detectors Tile Calorimeter

Liquid Argon Calorimeter » Solenoidal magnetic field
| (2T) in the central region
(momentum measurement)

High resolution silicon
i detectors:
/ - 6 Mio. channels

(80 um x 12 cm)
- 100 Mio. channels

. ' ‘fﬁ ,.\ / (50 um x 400 um)
vy ‘}" "H ‘ \.%_ | space resolution: ~ 15 um
1 h l ’ﬁ * Energy measurement down

to 1° to the beam line

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker * Independent muon
spectrometer
(supercond. toroid system)
Diameter 25 m
Barrel toroid length 26m
End-cap end-wall chamber span 46 m

Overall weight 7000 Tons



ATLAS Installation

October 2006
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Muon detector system
In the forward region




A historical moment:
Closure of the LHC beam pipe ring on 16t June 2008
ATLAS was ready for data taking in August 2008




'
v, E Atlantis Canvas <4> ‘ 2008-09-10 00:37

ATLAS 2008-09-10 10:19:10 CEST event:Jive LlCaIO Stream
\ Yy /L .

R A The very first

Y . "R

SO AL beam-splash event

from the LHC in ATLAS

on 10™ September 2008,
10:19

yeometry: <default>

Collimators
. . i 1 http://atlas.ch

first beam event seen in ATLAS ,



ATLAS Commissioning

i‘

ATLAS

X (cm)

with cosmic rays.....



Commissioning with cosmics

ATLAS 2008-09-28 10:19:08 CEST event:JiveXML_90272_2065845 run:90272 ev:2
Y Projection
3_
E
N
| Cosmic events recorded and processed by ATLAS since Sep 13, 2008
? tlllllIIIIIIIIIIIIIIII]IIIIIIIII]IIIIII:
] § 220 — | mmm Sum of RPC, TGC, MBTS L1 Triggers 216 million events --------> —
= E 200 | — RPC Triggers (L1) 3
£ - | = Bottom '‘Downward' RPC Triggers (L1) ]
1 = 180 — | tGC Triggers (L1) =
- € 160 | — Min. Bias Scint. Triggers (L1) —
1 g 140 F|— Calorimeter Triggers (L1) =
: [ | == Inner Detector Track Trigger (L2) :
i 2 120 — | —— EM Calorimeter Triggers (L1) —
- ] = everal hundred million cosmic events taken in various =
2 100 F :elecu:rhcont:igsralitns before the fir;t 'LF:C beams. =
| £ E  Lastupdated: Sat Feb 14 23:07:33 2009 =
2 80 [~ Vertical areas indicate magnetic field status: —
[C ORANGE: solenoid on, GREEN: toroid on, BLUE: Both fields on _
1 60 — —
] 40 — —
7 20 — =
o —
- 0 == e
88500 89000 89500 90000 90500 91000 91500 92000
s Run number

more than 200 M events recorded since Oct. 08



ATLAS

2008-10-04 03:58:54 CEST event:JiveXML_90731_62340 run:20731 ev:62340 Atlantis

A combined barrel + endcap track

[e
S
=

| Iy

-100

10
% i

e

* Hits in:
- TRT (endcap)
- SCT (endcap and barrel)
- Pixels (endcap and barrel)

 Very useful for alignment

L
|I

gy VW= IIN | |
| I
2 0 C zm 2
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LAr electromagnetic y
end-cap (EMEC)

The Calorimeters

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic S
barrel

Fine granularity in region of Inner Detector
acceptance, |n| < 2.5:

— 0o/E ~ 10%/NVE @ 0.7%
— Linearity to ~0.1%

Coarser granularity in the other regions sufficient
for jet reconstruction and E;™sS measurements

— o/E~50%/VE ®3% (barrel / endcap)
— of/E ~ 100%NE ® 10% (forward)

Commissioning since ~3 years

 Good performance, small number of
“dead channels”:

-EM: ~0.01%
- HEC: ~0.1%
(+ Low voltage power supply
problems, impacting % of an endcap)
- FCal: none
- Tile Calorimeter: ~1.5%
Most of them recovered during
the shutdown

- Effort is now more focussed on;
* Long term stability

* Prediction of the signal
* Extraction of calibration constants



Some calorimeter commissioning results

Survey of 128 channels in EM Front Layer

> 5
s sF-period 1| period 2| period 3| period 4 |period 5
£
s 3
g 2
2 1 1 Me
= -
g fhid R
£, ‘
: il LN
-1 | = — — e
-2 Pedestal stapility: LAr E
3 (5 month periog)
-4
5706-2008 07-2008 08-2008 09-2008 09-2008
1400 #
12001
1000/~ o
soof- ~ Predicted
600 Difference
400 -
r o ‘g: 10.04
200r" - 0.02
;\9’\‘\ PR TS M\ ]
o: \/ . \4\(/,\17- 0
-200 « 1-0.02
r 1-0.04
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Precise knowledge is very important
for an accurate calibration

ET Colls
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Correlation between had. Trigger

Tower (Level-1 Calo) and had.
Energy (TileCal)
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Pixels
Silicon Microstrips
210 m?2 of silicon sensors
9.6M channels

Drift Tube
Chambers (DT)

CMS

ECAL HCAL
76k scintillating Plastic scintillator/brass
PbWO4 crystals sandwich

~ p

Q. / / [/i -

."

- Q '
& -
Resistive Plate <

Chambers (RPC) Cathode Strip Chambers (CSC)
Resistive Plate Chambers (RPC)

,



CMS Installation

Tracker, outer barrel






CMS Detector closed for 10t Se
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Back to the Tevatron

The riment

12 countries, 59 institutions
706 physicists

19 countries, 83 institutions
664 physicists



The CDF detector in Run |l

Core detector operates since 1985:
— Central Calorimeters

— Central muon chambers

Major upgrades for Run Il:
— Drift chamber (central tracker)
— Silicon tracking detector:
SVX, ISL, Layer 00
» 8layers
e 700k readout channels
e 6 m?
« material:15% X,

— Forward calorimeters
— Forward muon system
— Time-of-flight system

— Trigger and DAQ
— Front-end electronics




Some new CDF subdetectors




m)o—

B0cm

Forward Mini-drift
chambers

AR ACE R A ER DA T SARE L SRR SN

The D@ Run Il Detector

Central Scintillator

! owor

Forward Scintillator

s G R A e e

PR
T SOUTH

TN
el
aet

5

1' TRACKING
SYSTEM

Calorimeter

Solenoid

—

Luminosity
Monitor

e I EEa—

Retained from Run |
LAr calorimeter
Central muon detector
Muon toroid

New for Run Il

Inner detector

(tracking)
Magnetic field added

Preshower detectors
Forward muon detector

Front-end electronics
Trigger and DAQ

In addition: Inner B-layer
(similar to CDF)



D@ Detector w

Fiber Tracker

Solenoid

Silicon Detector
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Data set

Tevatron delivers a data set equal to Run | (~100 pbt) every 2 weeks
+ Well understood detectors with data taking efficiencies of ~90%

Run Il Integrated Luminosity [ 19 April 2002 - 19 Aprit 2009 |
. /4  Similar for CDF
5.0 \ L—J /
e lUp to 4.2 fb' of data analysed I {’ /
v after data quality requirements), )
g 3:5 /,/ r5_72
AT
£ 25 Va4
= 2.0 ////,
1.5 "__// f
1:0 L] 2l — Delivered
0.5 e — Recorded
00 LT | [T T[]
Nevent [1/8] = o - L . ¢ (efficiency - acceptance)

Physics  accelerator experiment

(data taking, detector acceptance,
reconstruction efficiency)




Challenges with high luminosity

Min. bias pileup at the Tevatron, at 0.6 - 1032 cm?s ...and at 2.4 -10%2 cm?s?

0.22
0.2
Average number of interactions: 0.18
0.16

3 ong . - 0.14
LHC: initial “low” luminosity run P

(L=2 -10% cm?s?t): <N>=3.5 o
0.08
0.06
0.04
0.02

LHC : L=2 x 10** cm?s™! <Nint.>= 3.5
TEV : L=3 x 10** cm?s™" <Nint.>= 10.3
LHC : L=1x 10* cm2s™! <Nint.>= 17.3

TTTTTTT]TTT IIIIIIIIIIII

A 4

TeV: (L=3 -10%2 cm?s™t): <N>=10

AIIIIHI{HFT-H-.L{_L]_[_

RPN ST
30 35 40 45 50
Number of Interactions

°Q
w\
-h
o
N
ol
N
(=]
N
L3 )]
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How are the interesting events selected ?

TRIGGER: | much more difficult than at e*e- machines
Interaction rate;: ~ 10° events/s
Can record ~ 200 events/s (event size 1 MB)

= trigger rejection ~ 107

Trigger decision = us — larger than interaction rate of 25 ns

-

store massive amount of data in pipelines
while special trigger processors perform calculations

Detector

YES

' PIPEL INE

trigger\A
' |

NO

!

109 evts/s \ trash ,

»
»

Save

|

102 evts/s




Triggering at hadron colliders

The trigger is the key at hadron colliders

CDF Detector (

Hardware tracking for p; =1.5 GeV

Muon-track matching

1.7 MHz crossing rate J'

Dedicated 421L1
hardware buffers

25 kHz L1 accept 77

H_ardware + 412
Linux PC's

L1 trigger Electron-track matching

Missing E;, sum-E;

Silicon tracking

A

[T L2 trigger

Jet finding, improved Missing E+

buffers
800 Hz L2 accept 77 \ Refined electron/photon finding
. ; D@ trigger:
Linux farm (200) | |3 farm { Full event reconstruction 1.1 1.6 kHz
200 Hz L3 accept l .2: 800 Hz

diskitape L3: 50 Hz




LHC data handling, GRID computing

Balloon

/ (30 Km)

CD stack with
1 year LHC data!

(= QAKm)

w

/

Concorde
(15 Km)

Trigger system selects
~200 “collisions” per sec.

LHC data volume per year:
10-15 Petabytes
= 10-15 -10%° Byte

A\
AL

W LUV
\&\\\\\\\\
aii uu \\k‘;&\\\\\&\\\\ :

(T
AR
v LRI

A typical Tier-2 GRID center
(example: Tokyo University)

\\\\\\\\\\\\\\\\\\\




Towards Physics:
some aspects of reconstruction of physics objects

 As discussed before, key signatures at Hadron Colliders are

Leptons: e (tracking + very good electromagnetic calorimetry)
u (dedicated muon systems, combination of inner tracking and
muon spectrometers)
t hadronic decays: Tt >+ na® +v (1 prong)
— atrnt+na’+v (3 prong)

Photons: vy (tracking + very good electromagnetic calorimetry)

Jets: electromagnetic and hadronic calorimeters
b-jets identification of b-jets (b-tagging) important for many physics
studies

Missing transverse energy: inferred from the measurement of the total energy
in the calorimeters; needs understanding of all
components... response of the calorimeter to low
energy particles



Jet reconstruction and energy measurement

* Ajetis NOT a well defined object
(fragmentation, gluon radiation, detector response)

» The detector response is different for particles
interacting electromagnetically (e,y) and for |
hadrons . t.
— for comparisons with theory, one needs to
correct back the calorimeter energies to the
Jparticle level“ (particle jet)

Common ground between theory and experiment

calorimeter jet

W,

particle jet

* One needs an algorithm to define a jet and to
measure its energy

conflicting requirements between experiment and
theory (exp. simple, e.g. cone algorithm, vs.
theoretically sound (no infrared divergencies)) [)-

parton jet

« Energy corrections for losses of fragmentation products
outside jet definition and underlying event or pileup
energy inside
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Main corrections:

* In general, calorimeters show different response to electrons/photons and
hadrons

« Subtraction of offset energy not originating from the hard scattering
(inside the same collision or pile-up contributions, use minimum bias data
to extract this)

« Correction for jet energy out of cone
(corrected with jet data + Monte Carlo simulations)
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Jet Enerqy Scale

31'6 Jet Response vs Jet Energy (R = 0.7 Cone) Jet reSDonse COrrECtlon I DQ
g4__ ..................................................... .............................. P Measure response Of part|C|eS
i making up the jet
1P I S e
I  Use photon + jet data - calibrate
R R —— — — jets against the better calibrated
- photon energy
: | d e VAYAYAY
Y q v
: : : 4
- d g M s g
0.6 || e g Q0O QQ
| DO Run Il Preliminary
. ! ! I I | I ‘ I ° 1 1 1 .
0.4 50 100 150 200 250 Achieved jet energy scale uncertainty:
E (GeV)

D@: AE/E ~1-2%
(excellent result, a huge effort)
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Jet energy scale at the LHC

* A good jet-energy scale determination is
essential for many QCD measurements
(arguments similar to Tevatron, but kinematic

range (jet p-) is larger, ~20 GeV — ~3 TeV)

* Propagate knowledge of the em scale to
the hadronic scale, but several processes
are needed to cover the large p; range

Measurement
process

Jet prrange

Z + jet balance | 20 < p; <100 — 200 GeV

50 < py <500 GeV
(trigger, QCD background)

500 GeV < p;

v + jet balance

Multijet
balance

Reasonable goal: 5-10% in first runs (1 fb1)
1- 2% long term

Example: Z + jet balance

E Z->ee+ljet incl. e Z->ee+bkg
10°L Coneo7 jets "'. CJacp
F 200 pb-1 - %‘?p
B “0‘ “ W -ev
wmﬁﬂpww
; ATLAS 0.
50 60 70 80 90 100 110 120 130 140 150
M(e,e) (GeV)
» 0045 arxiv/0901.0512
[\_l,’_0.02:—
S 0%
S.0028 M ¢
R St S
a.-0.04
-0.06F ¢
- ® reco, PT(2)
=0.08; 500 pb-1
'0'15_ Cone07 jets A twth, PTEZ)
-0.12
-0.14F A tuth, (PT(e)+PT(2))/2
=0.16F" ATLAS
=0.18 | | | | Lo

Stat. precision (500 pb1): 0.8%

ol 111l L1l [ 111 111
50 100 150 200 250 300 350

1 I 1
400
P, Z (GeV)

Systematics: 5-10% at low p+, 1% at high p+



