Higgs boson physics at ATLAS

Karl Jakobs, University of Freiburg

-On behalf of the ATLAS Collaboration-

Outline

- LHC and ATLAS
- Higgs boson studies
 - Di-boson decays $H \rightarrow \gamma\gamma, H \rightarrow ZZ^*, H \rightarrow WW^*$
 - Decays into fermions
 - Search for rare decays
- Higgs boson parameters
- Spin / parity

Publication in Phys. Lett. B (2012)

2

Steve Myers PLHC 2012:

"The first two years of LHC operation have produced sensational performance: well beyond our wildest expectations. The combination of the performance of the LHC machine, the detectors and the GRID have proven to be a terrific success story in particle physics."

Key ingredients to this success story

1. The accelerator

- World record on instantaneous luminosity on 22. April 2011: 4.7 10³² cm⁻² s⁻¹ (Tevatron record: 4.0 10³² cm⁻² s⁻¹)
- 2012: regularly above 6 10³³ cm⁻²s⁻¹

The key ingredients to this success story

1. The accelerator

2. The detectors

- Working channels > 99%
- Data recording efficiency ~93-94%
- Data quality
- Speed of data analysis
- Had to cope with high luminosity

The key ingredients to this success story

- 1. The accelerator
- 2. The detectors
- 3. Theory, including advances in Monte Carlo simulation

- The overwhelming progress in (N)NLO calculations for signal and background processes
- Improved Monte Carlos simulations ALPGEN, MC@NLO, POWHEG, SHERPA, ...

• The "Higgs cross section group"

A big success story !!

- * Central values for the production processes
- * Theoretical uncertainties
- * Differential distributions
- * Guidance / benchmark scenarios on coupling measuremenus
- * Guidance in spin/CP measurements

Summary of LHC and ATLAS performance

- Peak luminosities > 7 10³³ cm⁻² s⁻¹
- High level of pileup: mean of ~21 interactions / beam crossing in 2012
- Excellent performance of the ATLAS experiment: (Data recording efficiency: ~93.5%, working detector channels >99 % for most sub-detectors, high data quality, speed of the data analysis)

02/07

27/08

07/05

22/10

Date in 2012

16/12

$Z \rightarrow \mu^+ \mu^-$ with 20 reconstructed pp vertices

The ATLAS experiment

Diameter
Barrel toroid length
End-cap end-wall chamber span
Overall weight

26 m 46 m 7000 Tons

25 m

- Solenoidal magnetic field (2T) in the central region (momentum measurement)
- Independent muon spectrometer (supercond. toroid system)
- High resolution silicon detectors:
 - 6 Mio. channels (80 μm x 12 cm)
 - 100 Mio. channels
 (50 μm x 400 μm)
 space resolution: ~ 15 μm
- Liquid argon el. magn. calorimeter (high granularity, long. segmentation); Energy measurement down to 1º to the beam line

Standard Model processes at the LHC

Higgs Boson Production

*) LHC Higgs cross-section working group Large theory effort

12

Higgs Boson Decays

Useful decays at a hadron collider:

- Final states with leptons via WW and ZZ decays
- $\gamma\gamma$ final states (despite small branching ratio)
- $\tau\tau$ final states (more difficult)

- In addition: $H \rightarrow bb$ decays via associated lepton signatures (VBF, VH or ttH production)

SM predictions ($m_H = 125.5 \text{ GeV}$):

BR $(H \rightarrow WW) = 22.3\%$

 \rightarrow at 125 GeV: only ~11% of decays not observable (gg, cc)

$H \rightarrow \gamma \gamma$ VBF candidate event

 $E_T(\gamma_1) = 80.1 \text{ GeV}, \eta = 1.01$ $E_T(\gamma_2) = 36.2 \text{ GeV}, \eta = 0.17$ $m_{\gamma\gamma} = 126.9 \text{ GeV}$

 $E_T(jet_1) = 121.6 \text{ GeV}, \eta = -2.90$ $E_T(jet_2) = 82.8 \text{ GeV}, \eta = 2.72$ $m_{ii} = 1.67 \text{ TeV}$

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

Result of the ATLAS search for H $\rightarrow \gamma\gamma$

116 118 120 122 124 126 128 130 132 134

pile-up-robust mass reconstruction

m,, [GeV]

0

- Two photons (isolated) with large transverse momentum ($P_T > 40$, 30 GeV)
- Mass of the Higgs boson can be reconstructed m_{yy}

Good mass resolution: ~1.7 GeV for m_H ~120 GeV -LAr el. magn. calorimeter (high granularity)

- Direction measurement in fine-segmented calorimeter
- Challenge: signal-to-background ratio
 irreducible γγ background

 reducible backgrounds from γj and jj (several orders of magnitude larger than the irreducible one, before selections / isolation)

15

- Background interpolation in the region of the excess (obtained from sidebands)
- Reducible γ-jet and jet-jet background at the level of 25%

- p_0 value for consistency of data with background-only: ~ 10^{-13} (7.4 σ observed) for the combined 7 TeV and 8 TeV data; (4.3 σ expected) (minimum found at $m_{\gamma\gamma}$ = 126.5 GeV)
- Establishes the discovery of the new particle in the γγ channel alone

ATLAS

Categorisation of H $\rightarrow \gamma\gamma$ candidate events

ATLAS-CONF-2013-012

Preliminary

Categorisation: to increase overall sensitivity and sensitivity to different production modes (VBF, VH)

Mass and signal strength for $H \rightarrow \gamma\gamma$

VBF + VH categories

Mass:

 $m_{H} = 126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (syst)} \text{ GeV}$

Signal strength: $(m_H = 126.8 \text{ GeV})$

$$\mu := \sigma / \sigma_{SM} = 1.57 \pm 0.22(\text{stat})^{+0.24}_{-0.18}$$
 (syst)

$H \rightarrow ZZ \rightarrow e^+e^- \mu^+ \mu^-$ candidate event

Search for the H \rightarrow ZZ^(*) \rightarrow $l^+l^- l^+l^-$ decay

- The "golden mode": 4 isolated leptons e: $P_T > 20$, 15, 10, 7 GeV, $|\eta| < 2.47$ μ : $P_T > 20$, 15, 10, 6 GeV, $|\eta| < 2.7$ One pair consistent with Z mass (m₁₂) Mass of other pair: $m_{min} < m_{34} < 115$ GeV
- Mass of the Higgs boson can be reconstructed m_{4l}

Good mass resolution $m_{4\ell}$; For m_H = 125 GeV: 4e: ~2.7 (2.4) GeV without (with) Z mass constraint 4 μ : ~2.0 (1.6) GeV without (with) Z mass constraint

Low signal rate, but also low background
 Mainly from ZZ continuum

 In addition from tt and Z+jet production: (two prompt leptons from W / Z decays and two leptons from (heavy) quark decays)

4l invariant mass spectra

120 – 130 GeV	signal	, C	
\sqrt{s} = 7 TeV	2.2	2.3	5
\sqrt{s} = 8 TeV	13.7	8.8	27
m _{4ℓ} > 160 GeV: √s = 7 + 8 TeV	376 (348 ± 26 (events observe expected from background (m	ed ainly ZZ)

- maximum deviation at 124.3 GeV
 p₀ value: ~2.7 10⁻¹¹ (6.6σ obs.) (4.4σ exp.)
- Independent discovery-level observation

Time evolution of the $H \rightarrow ZZ \rightarrow 4l$ signal

Time evolution of the $H \rightarrow ZZ \rightarrow 4l$ signal

Mass and signal strength for $H \rightarrow ZZ^*$

ATLAS-CONF-2013-013

Mass: $m_{\rm H} = 124.3^{+0.6}_{-0.5} (\text{stat})^{+0.5}_{-0.3} (\text{syst}) \text{ GeV}$ Signal strength: $(m_{\rm H} = 124.3 \text{ GeV})$ $\mu = 1.7 \pm 0.5$

Determination of the mass, compatibility of channels

ATLAS-CONF-2013-014

 $m_{H} = 125.5 \pm 0.2 (stat)_{-0.6}^{+0.5} (syst) \text{ GeV}$

Consistency between the fitted masses from likelihood value for $\Delta m = 0$ w.r.t. best fit value for Δm .

 $\Delta m = 2.3^{+0.6}_{-0.7}$ (stat) ± 0.6 (syst) GeV

- Probability for disfavoring the $\Delta m = 0$ hypothesis by more than observed: 1.5% (2.4 σ)
- Increases to 8%, by fixing the three principle sources contributing to the e/γ energy scale uncertainty (material, pre-samples energy scale, calibration procedure) to their $\pm 1\sigma$ values

Search for $H \rightarrow WW \rightarrow \ell_V \ell_V$ decay

ATLAS-CONF-2013-030

• Two high p_T leptons (e or μ)

Leptons from Higgs boson decay (spin-0 particle) are expected to have a small angular separation

- Neutrinos: \rightarrow use transverse mass
- Perform analysis in bins of jet multiplicity
 - Different background composition
 - Sensitivity to VBF component

Major backgrounds: (normalization in control regions)

- WW pair production (0 jet)
- tt background (2 jets)
- Z+jets (for ee/μμ pairs)

jet multiplicity distr. after basic selection requirements

Transverse mass distributions

ATLAS-CONF-2013-030

Clear excess above backgrounds in all sub-channels (jet multiplicities)

Results on the search for $H \rightarrow WW \rightarrow \ell_V \ell_V$ decays

ATLAS-CONF-2013-030

Shallow minimum of p_0 value at 140 GeV

 $p_0 (125 \text{ GeV}) = 8 \ 10^{-5}$

 $(3.8\sigma \text{ observed})$ $(3.7\sigma \text{ expected})$

Signal strength: (combination of 7 TeV and 8 TeV data, at 125 GeV) $\mu = 1.01 \pm 0.21$ (stat) ± 0.12 (syst) ± 0.19 (theo) $\mu_{VBF} = 1.66 \pm 0.79$ $\mu_{ggF} = 0.82 \pm 0.36$

Couplings to quarks and leptons ?

- Search for $H \rightarrow \tau\tau$ and $H \rightarrow$ bb decays
- Search for the rare $H \rightarrow \mu\mu$ decay

Search for $H \rightarrow \tau \tau$ decays

- Hadronic τ decays (challenging signature) Use multivariate technique to separate τ decays from jets from QCD production
- 2-4 neutrinos in final state, mass reconstruction difficult; Using "Missing mass calculation" *)
- Major background: Z → ττ decays; Modelled using data: "Embedding technique" replace muons in real Z → μμ events by simulated taus
- Signal-to-background ratio improves for VBF-topology or high-p_T Higgs ("boosted" category)
- Analysis is split into three sub-channels:

 $\begin{array}{cccc} - H \rightarrow \tau\tau \rightarrow \ell \, \nu\nu & \ell \, \nu\nu \\ - H \rightarrow \tau\tau \rightarrow \ell \, \nu\nu & had \, \nu \\ - H \rightarrow \tau\tau \rightarrow had \, \nu & had \, \nu \end{array}$

Reconstructed mass distributions L = 1

L = 13 fb⁻¹ (2012)

ATLAS-CONF-2012-160

lepton-lepton

 e/μ – hadron

hadron – hadron

SM Higgs signal (multiplied by factors)

Results on the search for $H \rightarrow \tau \tau$ decays

- Discovery sensitivity for a signal not yet reached
- → 95% C.L. limits on cross section (normalized to SM cross sections)

m_H = 125 GeV:

Fitted signal strength (all sub-channels):

 μ = 0.7 ± 0.7

Updated analysis, including the full data sample, expected soon

Search for VH production with $H \rightarrow$ bb decays

- Exploit three leptonic vector boson decay modes
 → split analysis in 0, 1, and 2-lepton categories
- Require 2 b-tagged jets (working point for 70% efficiency)
- Major background: W/Z bb, W+jets, tt
- Signal-to-background ratio improves for "boosted Higgs boson", split analysis in bins of p_T(V)

in total: 15 categories (0,1,2 jets $\times p_T$ bins)

ATLAS-CONF-2012-161

Reconstructed mass distributions -8 TeV, L = 13 fb⁻¹ (a selection, high p_T bins)-

Results on the search for $H \rightarrow bb$ decays

Updated analysis, including the full data sample, expected soon

36

Results on the search for $H \rightarrow \mu\mu$

m_H = 125 GeV:

Results on the search for $H \rightarrow Z\gamma$, $Z \rightarrow \ell \ell$

ATLAS-CONF-2013-009

 $H = \frac{1}{2} \int_{0}^{2} \int_$

Expected BR = 1.54 10⁻³, decays via loop diagrams; Measurement / limits can constrain BSM models

m_H = 125 GeV:

Observed 95% CL:	18.2 σ_{SM}
Expected (no Higgs):	13.5 σ_{SM}

Search for invisible Higgs boson decays

- Some extensions of the Standard Model allow a Higgs boson to decay to stable or long-lived particles
- Search for excess in ZH associated production

ATLAS-CONF-2013-011

Assuming the ZH production rate for $m_{\rm H}$ = 125 GeV:

BR (H \rightarrow inv.) > 65% can be excluded

Is the new particle the Higgs Boson ?

• Production rates ?

• Spin, J^P quantum number

Im())

V(\$)

Re())

Signal strength in di-boson decay modes -including full data set-

 Data are consistent with the hypothesis of a Standard Model Higgs boson:

 $\mu = 1.33^{+0.21}_{-0.18}$

- Experimental uncertainties are still too large to get excited about "high" γγ signal strength
- Signal strengths in fermionic decay modes have large uncertainties, but are compatible with SM value of 1;

If preliminary $H \rightarrow \tau\tau$ and $H \rightarrow$ bb results are included:

 $\mu = 1.23 \pm 0.18$

Ratios of production cross sections for the various processes (ggF, VBF,..) fixed to SM values

Gluon fusion versus vector-boson fusion

Sensitivity to (ggF + ttH) and (VBF+VH) production fractions, modulo branching ratio factors $\rm B/B_{SM}$

Evidence for production via vector boson fusion

- Fit for the ratio of μ_{VBF+VH} / $\mu_{ggF+ttH}$ for the individual channels (model independent)
- Results can be combined
- Good agreement with SM expectation for individual channels and the combination)

 $\mu_{\text{VBF}} / \mu_{\text{ggF+ttH}} = 1.4^{+0.4}_{-0.3} \text{ (stat)}^{+0.6}_{-0.4} \text{ (syst)}$ 3.3 σ evidence for VBF production

Higgs boson couplings

Production and decay involve several couplings

Decays: e.g H $\rightarrow \gamma\gamma$ (best example)

(Decay widths depends on W and top-coupling, destructive interference)

- Benchmarks defined by LHC cross section working group (leading-order tree-level framework):
 - Signals observed originate from a single resonance; (mass assumed here is 125.5 GeV)
 - Narrow width approximation: \rightarrow rates for given channels can be decomposed as:

$$\sigma \cdot B \left(i \to H \to f \right) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- = initial, final state i.f $\Gamma_{\rm f}, \Gamma_{\rm H}$ = partial, total width
- Modifications to coupling strength are considered (coupling scale factors κ), tensor structure of Lagrangian assumed as in Standard Model