Physics at the LHC

• Introduction, Detector Aspects

- Search for the Higgs Boson
- -Vector boson fusion mode
- Measurement of Higgs boson parameters
- Standard Model Physics
- W-mass measurement
- Top Quark Physics
- Physics Beyond the Standard Model
- SUSY Signatures
- Search for Signals from Extra Dimensions

Karl Jakobs Institut für Physik Universität Mainz 55099 Mainz

Revised LHC Schedule

Physics run

Dec. 2006 Jan. - Mar. 2007 Spring 2007 Ring closed and cold Machine commissioning First collisions , pilot run L=5x10³² to 2x10³³ , \leq 1 fb⁻¹ Start detector commissioning ~ 10⁵ Z $\rightarrow \ell \ell$, W $\rightarrow \ell \nu$, tt events

Complete detector commissioning,

June - Dec. 2007

→ 2009

L=1-2 x10³⁴, 100 fb⁻¹ per year (high luminosity LHC)

low luminosity: $L = 1x10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$ high luminosity: $L = 1x10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

10 fb⁻¹ / year 100 fb⁻¹ / year

Cross sections and production rates

 ${\cal L} = 1.0 \cdot 10^{33} \ \text{cm}^{-2} \ \text{sec}^{-1}$

Process	σ	Events/s	Events/year
$\begin{array}{c} W \to e\nu \\ Z \to ee \end{array}$	15 nb	15	10 ⁸
	1.5 nb	1.5	10 ⁷
$egin{array}{ccc} tar{t} \ bar{b} \ QCD \ ext{jets} \ (P_T > 200 \ ext{GeV}) \end{array}$	800 pb	0.8	10 ⁷
	500 µb	10 ⁵	10 ¹²
	100 nb	10 ²	10 ⁹
$\widetilde{g}\widetilde{g}$ $(m_{\widetilde{g}} = 1 \text{ TeV})$ Higgs	1 pb	0.001	10 ⁴
$(m_H = 0.2 \text{ TeV})$	10 pb	0.01	10 ⁵
$(m_H = 0.8 \text{ TeV})$	1 pb	0.001	10 ⁴

Large production rates

 \Rightarrow

- <u>Precision measurements</u> at initial low luminosity (W physics, top physics) precision will be limited by systematic uncertainties.
- <u>Discoveries</u> (at low and high luminosity) Mass reach for new particles up to ~ 2 TeV

• Disadvantages:

 $\sigma_{inelastic} \sim 70 \text{ mb} \implies 700 \text{ Mio events / sec}$ at high L

Pile-up:23 minimum bias events/bunch crossing at high L2.3 mimimum bias events/bunch crossing at low L

Detector Requirements

• Good measurement of leptons and photons

momentum range:

~ GeV $(b \rightarrow l \nu c)$ ~ TeV $(W \rightarrow l \nu)$

lepton energy / momentum scale: $0.1 \% \rightarrow 0.02\%$

(large statistics for calibration, $Z \rightarrow \ell \ell$, m_Z is close to m_W and m_H (?)

• Good measurement of missing transverse energy (E_T^{miss}) and Jet energy measurements and jet-tagging in forward region \Rightarrow calorimeter coverage down to $\eta \sim 5$

Jet energy scale: 1% (relevant for m_{top}, SUSY)

- Efficient b-tagging and τ identification (silicon strip and pixel detectors)
- Fast (25 ns bunch crossing) and rad. hard detectors and electronics

The pp experiments

<caption>

CMS detector construction

HCAL assembly

ATLAS detector construction

Liquid Argon Calorimeter

Superconducting solenoid ready

Search for the Higgs boson

K-factors (≡ higher-order corrections) = 1.6 - 1.9 gg → H
Residual uncertainties on NLO cross-sections (PDF, NNLO, etc.) ≤ 20%

Higgs production via Vector Boson Fusion

Motivation:

- •Additional potential for Higgs boson discovery at low mass
- •Important for the measurement of Higgs boson parameters (couplings to bosons, fermions (taus), total width)

proposed by D.Rainwater and D.Zeppenfeld et al.: (hep-ph/9712271, hep-ph/9808468 and hep-ph/9906218)

Destinctive Signature of:

- two high P_T forward jets
- little jet activity in the central region
 ⇒ Jet Veto
- ⇒ <u>Experimental Issues:</u>
 - Forward jet reconstruction
 - Jets from pile-up in the central/forward region

Channels studied:

 $\begin{array}{rcl} qqH & \rightarrow WW^* \rightarrow 1 \nu 1 \nu \\ qqH & \rightarrow \tau \ \tau & \rightarrow 1 \nu \nu \ 1 \nu \nu \\ & \rightarrow 1 \nu \nu & had \nu \end{array}$

Main search channels at the LHC

10 fb⁻¹: Discovery possible over the full mass range, however, needs combination of ATLAS + CMS

$$M_{\rm H} = 115 \, {\rm GeV}$$
: S/ $\sqrt{B} = 4.7$

Number of expected events and signal significance for 5 fb⁻¹:

$\overline{m_H}$	(GeV)	130	140	150	160	170	180
$H \to WW^{(*)} \to e\mu$	+X						
Signal	(5 fb^{-1})	4.7	8.3	13.3	21.6	21.7	18.1
Background	(5 fb^{-1})	3.1	3.8	4.3	5.5	6.2	6.9
Stat. significance	(5 fb^{-1})	2.1	3.3	4.7	6.5	6.3	5.2
$H \to WW^{(*)} \to ee/\mu$	$\mu + X$						
Signal	(5 fb^{-1})	4.4	8.3	14.1	20.4	22.8	18.3
Background	(5 fb^{-1})	4.2	4.7	5.5	6.4	7.3	7.9
Stat. significance	(5 fb^{-1})	1.8	3.0	4.6	6.0	6.2	5.1
	. ,						

$\underline{qq} H \rightarrow qq \tau \tau$

Number of expected events and signal significance for 30 fb⁻¹:

m_H (GeV)	110	120	130	140	150
$H \to \tau \tau \to e \mu P_T^{miss}$					
Signal	7.7	7.0	5.1	3.3	1.5
Background	10.1	3.7	3.3	2.7	2.2
Stat. significance	2.1	2.8	2.2	1.6	-
$H \to \tau \tau \to ee/\mu \mu P_T^{miss}$					
Signal	9.2	7.2	5.7	3.1	1.5
Background	15.4	7.6	5.6	4.6	3.4
Stat. significance	2.1	2.2	2.0	1.2	-
$H \to \tau \tau \to l \ had \ P_T^{miss}$					
Signal	19	15.6	13	10	5
Background	27.0	11.7	10.6	7.4	6.7
Stat. significance	3.3	3.8	3.4	3.0	1.6
combined					
Stat. significance	4.3	5.1	4.4	3.6	2.1

<u>Combined significance of VBF channels</u> <u>for 10 fb</u>⁻¹

- Vector boson fusion channels (in particular WW*) are discovery channels at low luminosity
- For 10 fb⁻¹ in ATLAS: 5σ significance for $120 \le m_H \le 190 \text{ GeV}$ (after combination with the standard channels)

ATLAS Higgs discovery potential for 30 fb⁻¹

- Vector boson fusion channels improve the sensitivity significantly in the low mass region
- Several channels available over the full mass range

LHC discovery potential for MSSM Higgs bosons

- Plane fully covered (no holes) at low L (30 fb⁻¹)
- Main channels : $h \to \gamma \gamma$, $b \overline{b}$, $A/H \to \mu \mu$, $\tau \tau$, $H^{\pm} \to \tau \nu$
- Two or more Higgs can be observed over most of the parameter space \rightarrow disentangle SM / MSSM
- If LEP excess due to hZ production $(\tan\beta > 2, m_A > 115 \text{GeV})$, LHC will observe:

Here only SM-like h observable if SUSY particles neglected.

Higgs decays via SUSY particles

Exclusions depend on MSSM parameters (slepton masses, μ)

Note: present theoretical error $\Delta m_h \sim 3 \text{ GeV}$

Measurement of the Higgs boson mass

Measurements of Higgs boson couplings

i) Ratio between W and Z partial widths

• Direct measurements

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

- QCD corrections cancel
- Indirect measurements (via $H \rightarrow \gamma \gamma$)

ii) Ratio of boson to fermion couplings

• Direct measurement

$$VBF: - \frac{\sigma \times BR(qq \rightarrow qqH(H \rightarrow WW))}{\sigma \times BR(qq \rightarrow qqH(H \rightarrow \tau\tau))} = \frac{\Gamma_W \Gamma_W}{\Gamma_W \Gamma_\tau} = \frac{\Gamma_W}{\Gamma_\tau}$$

• Indirect measurement

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \gamma\gamma))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \gamma\gamma)} = \frac{\Gamma_W \Gamma_\gamma}{\Gamma_g \Gamma_\gamma} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)} = \frac{\Gamma_W \Gamma_W}{\Gamma_g \Gamma_W} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

- $\frac{\sigma \times \mathsf{BR}(\mathsf{ttH}(\mathsf{H} \to \mathsf{bb}))}{\sigma \times \mathsf{BR}(\mathsf{ttH}(\mathsf{H} \to \gamma\gamma))} = \frac{\Gamma_t \Gamma_b}{\Gamma_t \Gamma_\gamma} \sim \frac{\Gamma_b}{\Gamma_W}$
 - * Uncertainties on the ratio arising through different production processes are not included

W-mass measurement

Physics motivation:

Test of the Standard Model: $m_Z, m_W, m_{top} \implies m_H$

Year 2007: $\Delta m_{W} < 30 \text{ MeV}$

(LEP2 + Tevatron)

LHC goal: $\Delta m_{W} \sim 15 \text{ MeV}$

to match the precision on the top quark mass measurement

Experimental numbers:

- 60 Mio. well measured $W \rightarrow \ell \nu$ decays • L dt = 10 fb-1:
- Background conditions from pile-up events at low luminosity (2 events / bunch crossing) similar to Tevatron today
- Standard transverse mass technique can be used:

Estimate of Δm_w

Source of syst.	CDF Run 1b	ATLAS	Comments
Lepton scale	75 MeV	15 MeV	<40MeV at Run II
Lepton resolution	25 MeV	5 MeV	Known to <1.5%
P _T (W)	15 MeV	5 MeV	Constrain with $P_T(Z)$
Recoil model	37 MeV	5 MeV	Constrain with Z data
W width	10 MeV	7 MeV	
PDFs	15 MeV	< 10 MeV	Constraints from the LHC
Radiative decays	20 MeV	< 10 MeV	Theor. calculations
Total	92 MeV	< 25 MeV	per lepton species

- Total error per lepton species and per experiment is estimated to be $\pm 25 \text{ MeV}$
- Main uncertainty: lepton energy scale (goal is an uncertainty of ± 0.02 %)
- Many systematic uncertaincies can be controlled in situ, using the Z $\rightarrow \ell \ell$ sample (P_T(W), recoil model, resolution)

Combining both experiments (ATLAS + CMS), both lepton species and assuming a scale uncertainty of $\pm 0.02\%$

 $\Rightarrow \Delta m_W \sim \pm 15 \text{ MeV}$

Measurement of the Top Quark Mass

Year 2007: $\Delta m_{top} \sim 2-3$ GeV (Tevatron) Best channel for mass measurement:

 $tt \rightarrow Wb \quad Wb \rightarrow \ell \nu b \quad jet jet b$

(mass measurement) (trigger)

Experimental numbers:

- Production cross section: 590 pb
- After exp. cuts: 130.000 tt events in 10 fb⁻¹ S/B ~ 65

Contribution	Δm_{top} (GeV)	
statistics	< 0.07	
u,d,s jet scale	0.3	
b-jet scale	0.7	
b-fragmentation	0.3	
initial state rad.	0.3	
final state rad.	1.2	
background	0.2	Ň
Total	\sim 1.5 GeV	ł
	-	

Syst. uncertainties dominated by final state radation

Additional Methods

• Full reconstruction applying kinematical constraints

 $m_{ii} = m_{\ell v} = m_W$ and $m_{iib} = m_{\ell v b}$

Precision of $\sim \pm 1$ GeV can be reached

• Using ℓ -J/ ψ final states:

- BR = 10^{-5} : low rate, but clean signature
- Statistical error: ±0.9 GeV (for 500 fb⁻¹)
- Different systematic uncertainties (dominated by b-fragmentation: $\sim 0.4 \text{ GeV}$)

combination of various methods:

$$\Delta m_{top} < \sim \pm 1 \text{ GeV}$$

Search for Supersymmetry

- If SUSY exists at the electroweak scale, a discovery at the LHC should be easy
- Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

- 1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations

Squarks and Gluinos

- strongly produced, cross sections comparable to QCD cross sections at same Q²
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{jet} > 4$, $E_T > 100, 50, 50, 50 \text{ GeV}$ $E_T^{miss} > 100 \text{ GeV}$
- Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

example: mSUGRA $m_0 = 100 \text{ GeV}$ $m_{1/2} = 300 \text{ GeV}$ $\tan \beta = 10$ $A_0 = 0, \ \mu > 0$

• LHC reach for Squark- and Gluino masses:

1 fb ⁻¹	\Rightarrow	M ~ 1500 GeV
10 fb ⁻¹	\Rightarrow	M ~ 1900 GeV
100 fb ⁻¹	\Rightarrow	M ~ 2500 GeV

TeV-scale SUSY can be found quickly !

LHC reach in $m_0 - m_{1/2}$ mSUGRA plane:

SUSY mass scale

• define average produced SUSY mass

$$M_{\text{SUSY}} \equiv \frac{\sum_{i} M_{i} \sigma_{i}}{\sum_{i} \sigma_{i}}$$
$$M_{\text{SUSY}}^{\text{eff}} \equiv M_{\text{SUSY}} - \frac{M^{2}(\tilde{\chi}_{1}^{0})}{M_{\text{SUSY}}}$$

- Good correlation with $\mathrm{M}_{\mathrm{eff}}$ for mSUGRA
- Not bad even for MSSM

SUSY cascade decays give rise to many inclusive signatures: leptons, b-jets, τ 's

Expect multiple signatures for TeV-scale SUSY

Determination of model parameters

- Invisible LSP ⇒ no mass peaks, but kinematic endpoints
 ⇒ mass combinations
- Simplest case: $\chi^0_2 \rightarrow \chi^0_1 \ell^+ \ell^$
 - endpoint: $M_{\ell\ell} = M(\chi^0_2) M(\chi^0_1)$
- Significant mode if no $\chi_2^0 \rightarrow \chi_1^0 Z$, $\chi_1^0 h$, $\ell \ell$ decays
- Require: 2 isolated leptons, multiple jets, and large E_{τ}^{miss}

• Modes can be distinguished using shape of $\ell\ell$ -spectrum

 $\ell\ell$ - endpoint can be observed over a significant fraction of the parameter space

(covers part of the SUGRA region favoured by cold dark matter (Ellis et al.))

 $h \rightarrow bb:$

important if $\chi_2^0 \rightarrow \chi_1^0 h$ is open;

bb peak can be reconstructed in many cases

Could be a Higgs discovery mode !

SM background can be reduced by applying a cut on ${\rm E_t}^{\rm miss}$

work backwards the decay chain: example: SUGRA study point 5

 $\begin{array}{ll} pp \rightarrow \tilde{q}_L \tilde{q}_R &: \qquad \tilde{q}_R \rightarrow \tilde{\chi}_1^0 q \\ & \tilde{q}_L \rightarrow \tilde{\chi}_2^0 q \rightarrow \tilde{\chi}_1^0 h q \qquad \rightarrow \tilde{\chi}_1^0 b \overline{b} q \end{array}$

combine $h \rightarrow bb$ with jets to determine other masses

Strategy in SUSY Searches at the LHC:

- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ's , long lived sleptons)
- Look for ℓ^{\pm} , ℓ^{+} ℓ^{-} , ℓ^{\pm} ℓ^{\pm} , b-jets, τ 's
- End point analyses, global fit

Models other than SUGRA

GMSB:

- LSP is light gravitino
- Phenomenology depends on nature and lifetime of the NLSP
- Generally longer decay chains, e.g.

 $\tilde{\chi}^0_2 \to \tilde{\ell}^{\pm} \ell^{\mp} \to \tilde{\chi}^0_1 \ell^+ \ell^- \to \tilde{G} \gamma \ell^+ \ell^-$

- ⇒ models with prompt NLSP decays give add. handles and hence are easier than SUGRA
- NLSP lifetime can be measured:
 - For $\tilde{\chi}_1^0 \rightarrow \tilde{G}\gamma$, use Dalitz decays (short lifetime) or search for non-pointing photons
- Quasi stable sleptons: muon system provides excellent "Time of Flight" system

RPV :

- R-violation via $\chi^0_1 \to \ell \ell \nu$ or $qq\ell$, $qq\nu$ gives additional leptons and/or E_T^{miss}
- R-violation via $\chi^0_1 \rightarrow$ cds is probably the hardest case; (c-tagging, uncertaities on QCD N-jet background)

Beyond SUSY, a few examples

Excited quarks: $q^* \rightarrow q\gamma$, up to:	$m\sim$ 6 TeV
Leptoquarks, up to:	$m\sim$ 1.5 TeV
Monopoles: $pp ightarrow \gamma \gamma pp$, up to:	$m\sim$ 20 TeV
Lepton flavour viol. $ au o \mu \gamma$:	$10^{-6} - 10^{-7}$
Compositeness, up to: from di-jet and Drell-Yan, needs calorimeter linearity better than 2%	$\Lambda \sim 40 \ { m TeV}$
Z' ightarrow ll, jj, up to:	$m\sim$ 5 TeV
W' ightarrow l u, up to:	$m\sim$ 6 TeV

Search for Signals from Extra Dimensions

- Much recent theoretical interest in models with extra dimensions
- New physics can appear at the TeV-mass scale, i.e. accessible at the LHC
- Gravitons propagating in the extra dimensions will appear as massive states

Examples of searches:

- (1) Search for direct graviton production $gg \rightarrow gG, qg \rightarrow qG, q\overline{q} \rightarrow Gg$ $q\overline{q} \rightarrow G\gamma$
 - \Rightarrow Jets or Photons with E_T^{miss}
- (2) Search for graviton resonances (Randall Sundrum models)

Search for Graviton Production

Search for Narrow Graviton Resonances

- use Randall Sundrum model as reference model:
- Kaluza-Klein graviton spectrum with a scale $\Lambda_{\pi} = M_{\text{Planck}} \exp(-k\pi r_{c})$
- Properties of the model are determined by the ratio k/M_{Planck}

Atlas and CMS studies on sensitivity to narrow resonance states decaying into lepton pairs:

For $k / M_{Planck} = 0.01$ (conservative choice)

With 100 fb⁻¹, signal can be seen in the mass range

0.5 < M < 2.08 TeV

Spin determination:

from di-lepton angular distribution

acceptance effects included; use likelihood method to discriminate between spin-1 and spin-2 hypotheses

Spin determination possible up to M \sim 1.7 TeV (100 fb⁻¹, 90%CL)

Conclusions

- 1. The pp experiments at the LHC have a huge discovery potential
 - SM Higgs: full mass range, already at low lumi; Vector boson fusion channels improve the sensitivity significantly
 - MSSM Higgs: parameter space covered; new benchmark scenarios investigated at present
 - SUSY: discovery of TeV-scale SUSY should be easy, determination of model param. is more difficult
 - Exotics: experiments seem robust enough to cope with new scenarios
- 2. Experiments have also a great potential for precision measurements
 - m_W to ~15 MeV
 - m_{top} to ~ 1 GeV
 - $-\Delta \dot{m}_{H} / m_{H}$ to 0.1% (100 600 GeV)
 - + gauge couplings and measurements in the top sector

Triple Gauge Boson Couplings

- Probe non-Abelian structure of $SU(2) \times U(1)$ and sensitive to New Physics
- general assumptions (Lorentz invariance, P,C inv.): $\Rightarrow WW\gamma$ and WWZ couplings specified by five parameters: $g_1^Z, \lambda_{\gamma}, \lambda_Z, \kappa_{\gamma}, \kappa_Z$

 $WW\gamma$ -vertex: related to

- magnetic moment
- $\mu_W = rac{e}{2M_W} \left(g_1^Z \ + \ \kappa_\gamma \ + \ \lambda_\gamma
 ight)$ $Q_W=~-rac{e}{M_W^2}~(\kappa_\gamma~-~\lambda_\gamma)$ - quadrupole moment

Standard Model: $g_1^Z = \kappa_V = 1$ $\lambda_V = 0$

year 2005: known to better than 10^{-2} from LEP2+TeVatron

studied $W\gamma$ $\rightarrow l \nu \gamma$ studied $\rightarrow l\nu ll$ WZ $\rightarrow l\nu l\nu$ large $t\bar{t}$ background WW

- Sensitivity from:
 - cross section measurements: λ -type, increase with s
 - P_T and angular distributions: constrain κ -type

$\int \mathcal{L} dt =$	30 fb^{-1}
Coupling	95% C.L.
Δg_Z^1	0.008
λ_{γ}	0.0025
λ_Z	0.0060
$\Delta \kappa_{\gamma}$	0.035
$\Delta \kappa_Z$	0.070

Systematics under study

Other measurements in top physics

- Cross section measurement, $\sigma_{t\bar{t}} < 10\%$ (limited by uncertainty on luminosity)
- Sensitivity to FCNC top couplings:

			$\int \mathcal{L}dt = 100 \ fb^{-1}$
$BR(t \rightarrow Zq)$	<	10^{-4}	5σ discovery limit
$BR(t ightarrow \gamma q)$	<	10^{-4}	5σ discovery limit
$BR(t \rightarrow gq)$	<	$7 \cdot 10^{-3}$	95% C.L.

• Single Top production: $\sigma \sim 300 \text{ pb} (40\% \text{ of } t\bar{t})$

- probe W tb vertex, \rightarrow sensitive to new physics
- measure V_{tb} to ~ 10% (syst. limited)
- measure W, top polarisation \rightarrow anomalous couplings,