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Outline of the talk 
1.  Introduction  
       (LHC, detector performance)  
 
2.    Test of perturbative QCD     
        (Jet production, W/Z production, tt production)  
 
3.    Electroweak parameters 
       (mW, mt, gauge couplings)   
 
4.    Summary of the search for the Higgs Boson  
  
5.    Search for Physics Beyond the Standard Model  
       (Supersymmetry, a few other selected examples) 
 
 

Disclaimer: I will try to highlight important physics measurements and results on searches for new physics. 
The coverage is not complete, i.e. not all results available are presented; Results from both general 
purpose experiments, ATLAS and CMS, plus a few from LHCb, are shown, but there might still be a bias 
towards the experiment I am working on. This bias is not linked to the scientific quality of the results.  
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The role of the LHC  
1.  Explore the TeV mass scale      
 
    - What is the origin of the electroweak symmetry breaking ? 
       Does the Higgs boson exist?    
 
   -  Search for physics Beyond the Standard Model 
      (Low energy supersymmetry, other scenarios…,) 

 
        Look for the “expected”, but we need to be open for surprises 
      à perform as many searches (inclusive, exclusive…) for as many final states  
            as possible   
      

2.  Precise tests of the Standard Model 
 
   -    There is much sensitivity to physics beyond the Standard Model in the  
        precision area (loop-induced effects, probe energy scales far beyond direct reach) 
        à precise measurements, search for rare processes 
   

à Guidance to theory and Future Experiments  
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Ultimate test of the Standard Model: 
  
Compare indirect prediction of the 
Higgs boson mass with the direct  
observation 
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Two important examples:  
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The LHC  
- a new era in particle physics- 

Steve Meyers at “Phyics at LHC 2012”:  
 
“The first two years of LHC operation have produced sensational performance: well 
beyond our wildest expectations. The combination of the performance of the LHC 
machine, the detectors and the GRID have proven to be a terrific success story in 
particle physics.” 
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Beam energy         3.5 TeV  (2010/11) 

                                  4 TeV  (2012) 

                             à 7 TeV  (2015)  

                               
SC Dipoles              1232, 15 m, 8.33T 
Stored Energy         362 MJ/Beam  
 
Bunch spacing     50 ns (25 ns design)  

The Large Hadron Collider  
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The LHC integrated luminosity   

Very rapid rise in luminosity  + good machine stability       
à   high integrated luminosities  
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•  World record on instantaneous  
     luminosity on 22. April 2011:  
     4.67 1032 cm-2 s-1 

     (Tevatron record: 4.02 1032 cm-2 s-1) 

•  2011: collect per day as much integrated 
     luminosity as in 2010  
 
•  2012: now regularly above 6 1033 cm-2s-1  

The LHC instantaneous luminosity   
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Z à µ+ µ-  with  20 superimposed events 

                       

An event with 20  
reconstructed vertices 
 
(error ellipses are scaled up  
 by a factor of 20 for visibility   
 reasons)  
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Detector performance is impressive:  
 
•  Very high number of working channels   
     (> 99% for many sub-systems) in all  
     experiments; 

•  Data taking efficiency is high (> 94%)  
 
•  Impressive reconstruction capabilities for physics  
     objects (e, γ, µ, τ, jets, b-tagging, ET

miss)  

     Have been optimized to cope with the ever increasing number of pile-up interactions  
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Measurement of the missing transverse energy ET
miss  
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Cross Sections and Production Rates 

LHC is a factory for:  
top-quarks, b-quarks, W, Z, …,Higgs, … 
 
but other more prominent processes  
dominate the production rates:  
 
-  Jet production via QCD scattering 
-  Soft pp collisions 
    (σ  ~ 100 mb)   
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     -  Jet production 
 
     -  W/Z production  
 
     -  Production of top quarks 
 
 
   

Part 2:      Test of perturbative QCD  
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QCD processes at hadron colliders  

 
•  Hard scattering processes are dominated  
  by QCD jet production 
 
•  Originating  from qq, qg and gg scattering 
 
•  Cross sections can be calculated in  
   QCD (perturbation theory) 
 
  
 
  Comparison between experimental data and 
  theoretical predictions constitutes an important 
  test of the theory.  
 
  Deviations?  
  →   Problem in the experiment ?  
         Problem in the theory (QCD) ?  
         New Physics, e.g. quark substructure ?  
 

Leading order 

…some NLO contributions 
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High pT jet events at the LHC 

Event display that shows the highest-mass central dijet event collected during 2010, where the two leading jets 
have an invariant mass of 3.1 TeV. The two leading jets have (pT, y) of (1.3 TeV, -0.68) and (1.2 TeV, 0.64), 
respectively. The missing ET in the event is 46 GeV. From ATLAS-CONF-2011-047.  
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An event with a high jet multiplicity at the LHC 

The highest jet multiplicity event collected in 2010, counting jets with pT greater than 60 GeV: this event has eight. 
1st jet (ordered by pT): pT = 290 GeV, η = -0.9, φ = 2.7; 2nd jet: pT = 220 GeV, η = 0.3, φ = -0.7  
Missing ET = 21 GeV,  φ = -1.9, Sum ET = 890 GeV. 
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Jet reconstruction and energy measurement  

•  A jet is NOT a well defined object 
  (fragmentation, gluon radiation, detector response)  
 
•  The detector response is different for particles 
   interacting electromagnetically (e,γ) and for 
   hadrons 
   → for comparisons with theory, one needs to 
   correct back the calorimeter energies to the  
   „particle level“ (particle jet)  
   Common ground between theory and experiment  
 
•   One needs an algorithm to define a jet and to  
    measure its energy 
    conflicting requirements between experiment and 
    theory (exp. simple, e.g. cone algorithm, vs.  
    theoretically sound (no infrared divergencies)) 

•    Energy corrections for losses of fragmentation products 
     outside jet definition and underlying event or pileup 
     energy inside  
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Jet measurements 

Nevt 

d2σ / dpT dη   =   N  /  (ε · L · Δ pT · Δη)	

•  In principle a simple counting experiment 

•  However, steeply falling pT spectra are  
  sensitive to jet energy scale uncertainties 
  and resolution effects (migration between bins) 
  → corrections (unfolding) to be applied 
 
•  Jet energy scale uncertainty:  
   CMS:    ~1.5 - 3% (after two years)  
                  (similar for ATLAS, impressive achievements)  
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Double differential cross sections, as a function of  
pT and rapidity y  (full 2010 data set)  

-  Data are well described by NLO pert. QCD calculations (NLOJet++)  
-  Experimental systematic uncertainty is dominated by jet energy scale uncertainty 
-  Theoretical uncertainties: renormalization/ factorization scale, pdfs, αs, …, 
     uncertainties from non-perturbative effects  

somewhat larger deviations in the  
forward region 
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Important for:    - Test of QCD  
                         -  Search for new resonances decaying into two jets (à next slide)  

                Invariant di-jet mass spectra 
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      In addition to QCD test:    Sensitivity to New Physics 

•  Di-jet mass spectrum provides large  
     sensitivity to new physics  
 
      e.g. Resonances decaying into qq,  
             excited quarks q*, …. 
 

•     Search for resonant structures in the  
     di-jet invariant mass spectrum 
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      In addition to QCD test:    
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CDF  (Tevatron),  L =1.13 fb-1:               0.26 <  mq* < 0.87 TeV  
 
ATLAS (LHC),     L = 0.000315 fb-1         exclude (95% C.L) q* mass interval  
                                                               0.30 < mq* < 1.26 TeV  
                            L = 0.036  fb-1:            0.60 < mq* < 2.64 TeV  
ATLAS (LHC),     L = 5.8 fb-1, 8 TeV:                 mq* < 3.66 TeV  
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•   Include new data at √s = 8 TeV (2012) 
•   Invariant di-jet masses up to 4.1 TeV  
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2.2  QCD aspects in W/Z  (+ jet)  
       production  

QCD at work  

•   Important test of NNLO Drell-Yan QCD prediction for the total cross section 

•   Test of perturbative QCD in high pT region 
    (jet multiplicities, pT spectra,….)  
 
•   Tuning and „calibration“ of Monte Carlos for background predictions in searches  
    at the LHC 
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Electrons: 
-  Trigger: high pT electron candidate in calorimeter 
-  Isolated el.magn.  cluster in the calorimeter 
-  PT> 25 GeV/c 
-  Shower shape consistent with expectation for electrons  
-     Matched with tracks 

Z → ee 
•  76 GeV/c2 < mee < 106 GeV/c2 

W → eν 
•  Missing transverse momentum > 25 GeV/c 
•  Transverse mass cut MT > 50 GeV  

W/Z selections in the ATLAS / CMS experiments 
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W and Z production cross sections at the LHC 

 )   [nb]ν l→ B( W × WX ) →( pp σ
0 2 4 6 8 10 12

 = 7 TeVs at   -136 pbCMS

 [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction 

 0.52 nb±    10.44 

ν e→W 
 nblumi 0.42±  syst 0.17±  stat 0.03±10.48 

νµ →W 
 nblumi 0.41±  syst 0.16±  stat 0.03±10.18 

(combined) ν l→W 
 nblumi 0.41±  syst 0.13±  stat 0.02±10.31 

 )   [nb]ν l→ B( W × WX ) →( pp σ
0 2 4 6 8 10 12

 ll )   [nb]→ B( Z × ZX ) →( pp σ
0 0.2 0.4 0.6 0.8 1 1.2

 = 7 TeVs at   -136 pbCMS

              [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction, 60-120 GeV 

 0.04 nb±     0.97 

 ee→Z 
 nblumi 0.040±  syst 0.024±  stat 0.011±0.992 

µµ →Z 
 nblumi 0.039±  syst 0.020±  stat 0.008±0.968 

(combined) ll   →Z 
 nblumi 0.039±  syst 0.019±  stat 0.007±0.975 

 ll )   [nb]→ B( Z × ZX ) →( pp σ
0 0.2 0.4 0.6 0.8 1 1.2

Data are well described by NNLO  QCD calculations  
C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343. 
 
Precision is already dominated by systematic uncertainties  
[The error bars represent successively the statistical, the statistical plus systematic and the total 
uncertainties (statistical, systematic and luminosity). All uncertainties are added in quadrature.] 

Measured cross section values in comparison to NNLO QCD predictions: 
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W and Z production cross sections at √s = 8 TeV  

-  No surprise at the new energy, theoretical predictions in good agreement  
    with the measurements 
-   W/Z cross-section ratio remains a bit high, but consistent within uncertainties 

•  CMS has already presented first results at 8 TeV  (the first 18.7 pb-1) 
     About 75.000 W à eν and 4.800 Z à ee candidates  
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Can the parton distribution functions be constrained?  
 

•  Sensitive measurements:  differential W and Z production cross sections 
     as function of lepton or boson rapidity, charge separated for W+ and W- 
 

      LHCb experiment can contribute significantly in the forward region:  
      η coverage from 1.9 – 4.9  
 
•  Derived quantity: charge asymmetry:      σ(W+) – σ(W-)  /  [σ(W+) + σ(W-)]  
 

Leading order (tree level) contributions to W/Z production 
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Differential cross section measurements 
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•  Rough features of the measured differential  
     cross sections are well described;  
     (some tension at intermediate η region)  
 
•  Data start to be discriminating between pdf 
     models;  
 
     These data will have impact on pdf uncertainties 



                         31	

W/Z + jet cross section measurements 

Jet multiplicities in W+jet production 

- LO predictions fail to describe the data;   
- Jet multiplicities and pT spectra in agreement 
  with NLO predictions within errors;  

pT spectrum of  
leading jet 
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Top Quark Physics 
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Why is Top-Quark so important ?  

•    A unique quark: decays before it hadronizes,  lifetime  ~10-25 s   
    no “toponium states” 
    remember:  bb, bd, bs….. cc, cs….. bound states (mesons)  
 
•   We still know little about the properties of the top quark:  
    mass, spin, charge, lifetime, decay properties (rare decays), gauge couplings,  
    Yukawa coupling,… 

The top quark may serve as a window 
to New Physics related to the  
electroweak symmetry breaking;  
 
Why is its Yukawa coupling  ~ 1 ??  
 



                         35	

First results on top production from the LHC 
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•  Lepton trigger 

•  One identified lepton (e,µ) with pT > 20 GeV 

•  Missing transverse energy: ET
miss > 35 GeV 

     (significant rejection against QCD events)  
 
•   Transverse mass: MT (l,ν)  > 25 GeV  
      (lepton from W decay in event) 
 
•  One or more jets with pT > 25 GeV and  
     η < 2.5   



                         36	

Top pair production cross-section measurements 
-likelihood combination of all channels-   

σ = 165.8 ± 2.2 (stat) ± 10.6 (syst) ± 7.8 (lum) pb  σ = 177 ± 3 (stat) ± 7 (syst) ± 7 (lum) pb  

•  Perturbative QCD calculations (approx. NNLO) describe the data well;  
•  The two LHC experiments agree within the systematic uncertainties  
•  Total uncertainty already at the level of ±6% 




