Physics at the LHC

- From the Standard Model to Searches for New Physics-

Karl Jakobs Physikalisches Institut Universität Freiburg

Outline of the talk

- Introduction

 (LHC, detector performance)
- Test of perturbative QCD
 (Jet production, W/Z production, tt production)
- 3. Electroweak parameters (m_W, m_t, gauge couplings)
- 4. Summary of the search for the Higgs Boson
- 5. Search for Physics Beyond the Standard Model (Supersymmetry, a few other selected examples)

Disclaimer: I will try to highlight important physics measurements and results on searches for new physics. The coverage is not complete, i.e. not all results available are presented; Results from both general purpose experiments, ATLAS and CMS, plus a few from LHCb, are shown, but there might still be a bias towards the experiment I am working on. This bias is not linked to the scientific quality of the results.

The role of the LHC

1. Explore the TeV mass scale

- What is the origin of the electroweak symmetry breaking ? Does the Higgs boson exist?
- Search for physics Beyond the Standard Model (Low energy supersymmetry, other scenarios...,)

Look for the "expected", but we need to be open for surprises
 → perform as many searches (inclusive, exclusive...) for as many final states as possible

2. Precise tests of the Standard Model

There is much sensitivity to physics beyond the Standard Model in the precision area (loop-induced effects, probe energy scales far beyond direct reach)
 → precise measurements, search for rare processes

→ Guidance to theory and Future Experiments

Two important examples:

2012

Ultimate test of the Standard Model:

Compare indirect prediction of the Higgs boson mass with the direct observation

- a new era in particle physics-

Steve Meyers at "Phylics at LHC 2012":

"The first two years of LHC operation have produced sensational performance: well beyond our wildest expectations. The combination of the performance of the LHC machine, the detectors and the GRID have proven to be a terrific success story in particle physics."

The LHC integrated luminosity

Very rapid rise in luminosity + good machine stability → high integrated luminosities

The LHC instantaneous luminosity

- World record on instantaneous luminosity on 22. April 2011:
 4.67 10³² cm⁻² s⁻¹ (Tevatron record: 4.02 10³² cm⁻² s⁻¹)
- 2011: collect per day as much integrated luminosity as in 2010
- 2012: now regularly above 6 10³³ cm⁻²s⁻¹

$Z \rightarrow \mu^+ \mu^-$ with 20 superimposed events

An event with 20 reconstructed vertices

(error ellipses are scaled up by a factor of 20 for visibility reasons)

Detector performance is impressive:

- Very high number of working channels (> 99% for many sub-systems) in all experiments;
- Data taking efficiency is high (> 94%)
- Impressive reconstruction capabilities for physics objects (e, γ, μ, τ, jets, b-tagging, E_T^{miss})

Have been optimized to cope with the ever increasing number of pile-up interactions

Measurement of the missing transverse energy E_T^{miss}

Resolution of E_x^{miss} and E_y^{miss} as a function of the total transverse energy in the event calculated by summing the p_T of muons and the total calorimeter energy. The resolution in Z→ee and Z→µµ events is compared with the resolution in minimum bias for data taken at $\sqrt{s} = 7$ TeV. The fit to the resolution in Monte Carlo minimum bias and Z→ee events are superposed.

Cross Sections and Production Rates

LHC is a factory for: top-quarks, b-quarks, W, Z, ..., Higgs, ...

but other more prominent processes dominate the production rates:

- Jet production via QCD scattering
- Soft pp collisions $(\sigma \sim 100 \text{ mb})$

Part 2: Test of perturbative QCD

- Jet production
- W/Z production
- Production of top quarks

QCD processes at hadron colliders

Leading order

- Hard scattering processes are dominated by QCD jet production
- Originating from qq, qg and gg scattering
- Cross sections can be calculated in QCD (perturbation theory)

Comparison between experimental data and theoretical predictions constitutes an important test of the theory.

Deviations?

→ Problem in the experiment ?
 Problem in the theory (QCD) ?
 New Physics, e.g. quark substructure ?

High p_T jet events at the LHC

Event display that shows the highest-mass central dijet event collected during 2010, where the two leading jets have an invariant mass of 3.1 TeV. The two leading jets have (p_T , y) of (1.3 TeV, -0.68) and (1.2 TeV, 0.64), respectively. The missing E_T in the event is 46 GeV. From <u>ATLAS-CONF-2011-047</u>.

An event with a high jet multiplicity at the LHC

The highest jet multiplicity event collected in 2010, counting jets with p_T greater than 60 GeV: this event has eight. 1st jet (ordered by p_T): p_T = 290 GeV, η = -0.9, ϕ = 2.7; 2nd jet: p_T = 220 GeV, η = 0.3, ϕ = -0.7 Missing $E_T = 21$ GeV, $\phi = -1.9$, Sum $E_T = 890$ GeV. 18

Jet reconstruction and energy measurement

- A jet is NOT a well defined object (fragmentation, gluon radiation, detector response)
- The detector response is different for particles interacting electromagnetically (e,γ) and for hadrons

 \rightarrow for comparisons with theory, one needs to correct back the calorimeter energies to the "particle level" (particle jet)

Common ground between theory and experiment

- One needs an algorithm to define a jet and to measure its energy conflicting requirements between experiment and theory (exp. simple, e.g. cone algorithm, vs. theoretically sound (no infrared divergencies))
- Energy corrections for losses of fragmentation products outside jet definition and underlying event or pileup energy inside

Jet measurements

100 200

1000 p_ (GeV)

20

- Data are well described by NLO pert. QCD calculations (NLOJet++)
- Experimental systematic uncertainty is dominated by jet energy scale uncertainty
- Theoretical uncertainties: renormalization/ factorization scale, pdfs, α_s , ..., uncertainties from non-perturbative effects

Invariant di-jet mass spectra

- Test of QCD Important for:

- Search for new resonances decaying into two jets (\rightarrow next slide)

In addition to QCD test: Sensitivity to New Physics

- Di-jet mass spectrum provides large sensitivity to new physics
 - e.g. Resonances decaying into qq, excited quarks q*,
- Search for resonant structures in the di-jet invariant mass spectrum

CDF (Tevatron)	, L =1.13 fb⁻¹:	0.26 < m _{q*} < 0.87 TeV
ATLAS (LHC),	L = 0.000315 fb ⁻¹	exclude (95% C.L) q* mass interval 0.30 < m _{a*} < 1.26 TeV
	L = 0.036 fb ⁻¹ :	0.60 < m _{q*} < 2.64 TeV

2.2 QCD aspects in W/Z (+ jet) production

- Important test of NNLO Drell-Yan QCD prediction for the total cross section
- Test of perturbative QCD in high p_T region (jet multiplicities, p_T spectra,....)
- Tuning and "calibration" of Monte Carlos for background predictions in searches at the LHC

W/Z selections in the ATLAS / CMS experiments

Electrons:

- Trigger: high p_T electron candidate in calorimeter
- Isolated el.magn. cluster in the calorimeter
- P_T> 25 GeV/c
- Shower shape consistent with expectation for electrons
- Matched with tracks

$Z \to ee$

• 76 GeV/ c^2 < m_{ee} < 106 GeV/ c^2

 $W \to e \nu$

- Missing transverse momentum > 25 GeV/c
- Transverse mass cut $M_T > 50 \text{ GeV}$

$M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^v \cdot \left(1 - \cos \Delta \phi^{l,v}\right)}$

Transverse mass (longitudinal component of the neutrino cannot be measured)

W and Z production cross sections at the LHC

Measured cross section values in comparison to NNLO QCD predictions:

Data are well described by NNLO QCD calculations

C.R.Hamberg et al, Nucl. Phys. B359 (1991) 343.

Precision is already dominated by systematic uncertainties

[The error bars represent successively the statistical, the statistical plus systematic and the total uncertainties (statistical, systematic and luminosity). All uncertainties are added in quadrature.]

W and Z production cross sections at $\sqrt{s} = 8 \text{ TeV}$

 CMS has already presented first results at 8 TeV (the first 18.7 pb⁻¹) About 75.000 W → ev and 4.800 Z → ee candidates

- No surprise at the new energy, theoretical predictions in good agreement with the measurements
- W/Z cross-section ratio remains a bit high, but consistent within uncertainties

Can the parton distribution functions be constrained?

Sensitive measurements: differential W and Z production cross sections as function of lepton or boson rapidity, charge separated for W⁺ and W⁻

LHCb experiment can contribute significantly in the forward region: η coverage from 1.9 – 4.9

Derived quantity: charge asymmetry:

 $\sigma(W^{+}) - \sigma(W^{-}) / [\sigma(W^{+}) + \sigma(W^{-})]$

Leading order (tree level) contributions to W/Z production

Differential cross section measurements

- Rough features of the measured differential cross sections are well described; (some tension at intermediate η region)
- Data start to be discriminating between pdf models;

These data will have impact on pdf uncertainties

W/Z + jet cross section measurements

- LO predictions fail to describe the data;

 Jet multiplicities and p_T spectra in agreement with NLO predictions within errors;

Jet multiplicities in W+jet production

Top Quark Physics

Why is Top-Quark so important?

The top quark may serve as a window to **New Physics** related to the electroweak symmetry breaking;

Why is its Yukawa coupling $\sim 1 ??$

$$M_{t} = \frac{1}{\sqrt{2}} \lambda_{t} v$$
$$\Rightarrow \lambda_{t} = \frac{M_{t}}{173.9 \,\text{GeV}/c^{2}}$$

 A unique quark: decays before it hadronizes, lifetime ~10⁻²⁵ s no "toponium states" remember: bb, bd, bs.... cc, cs.... bound states (mesons)

 We still know little about the properties of the top quark: mass, spin, charge, lifetime, decay properties (rare decays), gauge couplings, Yukawa coupling,...

First results on top production from the LHC

Event Selection:

- Lepton trigger
- One identified lepton (e, μ) with $p_T > 20 \text{ GeV}$
- Missing transverse energy: E_T^{miss} > 35 GeV (significant rejection against QCD events)
- Transverse mass: M_T (I,v) > 25 GeV (lepton from W decay in event)
- One or more jets with p_{T} > 25 GeV and η < 2.5

- Perturbative QCD calculations (approx. NNLO) describe the data well;
- The two LHC experiments agree within the systematic uncertainties
- Total uncertainty already at the level of ±6%