

• CMS: new measurement at 8 TeV !

Lepton + jets and di-lepton channels combined:

 σ = 227 ± 3 (stat) ± 11 (syst.) ± 10 (lum.) pb

CMS Preliminary

250

200

150-

100

CMS combined 7 TeV (1.1 fb⁻¹)
 CMS combined 8 TeV (2.8 fb⁻¹)

NLO QCD
 Approx. NNLO QCD
 Scale uncertainty
 Scale © PDF incertainty

genfeld, Moch, Uwer, Phys. TW 2008 (N/NLO PDF, 975

Rev. Dillo (2009) 054009

Top-antitop differential cross sections

- Important test of the Standard Model (perturbative QCD), deviations may indicate new physics
 - e.g. new particles (resonances) decaying into tt, or other new/unexpected effects (→ Tevatron charge asymmetry)
- Important variables studied:
- tt mass distribution

- Rapidity y and p_T of the tt system

ATLAS comparison on detector level shows good agreement in all variables (background partially extracted from data)

 \rightarrow not much room left / no signs yet of Physics beyond the Standard Model

Part 3: Electroweak parameters

- W mass
- Top Quark Mass & Properties
- Gauge Boson pair production (WW, WZ, ZZ production)

All this is highly related to the Higgs boson search / discovery or to a consistency check / ultimate test of the Standard Model

Precision measurements of m_w and m_t

Motivation:

W mass and top quark mass are fundamental parameters of the Standard Model; The standard theory provides well defined relations between m_W, m_t and m_H

Electromagnetic constant

measured in atomic transitions. e⁺e⁻ machines, etc.

W mass measurements

The beginning

State of the art, today

m_w = 80.371 ± 0.013 (stat.) GeV

 $m_W = 80.35 \pm 0.33 \pm 0.17 \,\text{GeV}$

- Precision in a single Tevatron experiment better than the LEP-2 combination
- Still further improvements possible (inclusion of more data, reduction of statistical and systematic uncertainties)
- Further improvements on parton distribution functions expected (LHC)
- Support from theory side on better calculation / simulation of QED radiation and $p_T(W)$ expected

Systematic uncertainties:

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties (MeV)

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total systematic	18	16	15
Total	26	23	

Can the LHC improve on this?

In principle yes, but probably not soon and not with 30 pileup events

- Very challenging (e-scale, hadronic recoil, $p_T(W)$,..)
- However, there is potential for reduction of uncertainties
 - statistics
 - statistically limited systematic uncertainties (marked in green above)
 - pdfs, energy scale,, recoil(?)

First top quark mass measurements at the LHC

- 2011 data already included
- Combined fit of top mass and jet energy scale (in situ) à la Tevatron

Results of best measurements in the I + jets channels:

CMS: $m_t = 172.6 \pm 0.5 \text{ (stat)} \pm 1.5 \text{ (syst)}$ GeV ATLAS: $m_t = 174.5 \pm 0.6 \text{ (stat)} \pm 2.3 \text{ (syst)}$ GeV

Already impressive precision reached at that early stage of the experiment ! 44

Summary of top quark mass measurements

- Tevatron combination 173.00 ± 0.65 ± 1.06 GeV Lepton+jets Run II CDF Lepton+jets Run II DØ 174.94 ± 0.83 ± 1.24 GeV 176.1 ± 5.1 ± 5.3 GeV Lepton+jets Run I CDF Lepton+jets DØ 180.1 ± 3.6 ± 3.9 GeV Run I Alliets Run II CDF 172,47 ± 1.43 ± 1.40 GeV Alliets CDF ± 10.0 ± 5.7 GeV 16.0 Run I Run II CDF 170.28 ± 1.95 ± 3.13 GeV Dileptons Dileptons Run II DØ 174.00 ± 2.36 ± 1.44 GeV 167.4 ± 10.3 ± 4.9 GeV Dileptons CDF Run I 168.4 ± 12.3 ± 3.6 GeV Dileptons Run I DØ 172.32 ± 1.80 ± 1.82 GeV E,+jets Run II CDF 166.90 ± 9.00 ± 2.82 GeV Decay length Run II CDF 173.18 ± 0.56 ± 0.75 GeV Tevatron Combination 2012 χ^2 / dof = 8.3 / 11 Tevatron: 160 170 180 190 $m_t^{ m comb}$ Mass of the Top Quark [GeV] $= 173.18 \pm 0.56 \,(\text{stat}) \pm 0.75 \,(\text{syst}) \,\,\,\text{GeV}$ $= 173.18 \pm 0.94 \text{ GeV}$ - LHC combination and perspectives LHC m_{top} combination - June 2012, $L_{int} = 35 \text{ pb}^{-1} - 4.9 \text{ fb}^{-1}$ ATLAS + CMS Preliminary, $\sqrt{s} = 7$ TeV ATLAS 2010, I+jets $169.3 \pm 4.0 \pm 4.9$ LHC: ATLAS 2011, I+jets $174.5 \pm 0.6 \pm 2.3$ $L_{int} = 1 \text{ fb}^{-1}$ ATLAS 2011, all jets $174.9 \pm 2.1 \pm 3.9$ L_{int} = 2 fb⁻¹, (CR, UE syst.) $m_{\rm top} = 173.3 \pm 0.5 \, (\text{stat}) \pm 1.3 \, (\text{syst}) \, \text{GeV}$ CMS 2010, di-lepton $175.5 \pm 4.6 \pm 4.6$ L_{int} = 36 pb⁻¹, (• CR syst.) CMS 2010, I+jets $173.1 \pm 2.1 \pm 2.7$ = 173.3 ± 1.4 GeV L_{int} = 36 pb⁻¹, (CR syst.) CMS 2011, di-lepton $173.3 \pm 1.2 \pm 2.7$ Lint = 2.3 fb⁻¹, (CR, UE syst.) CMS 2011, µ+jets $172.6 \pm 0.4 \pm 1.5$ L_{int} = 4.9 fb⁻¹, (@ CR, UE syst.) $173.3 \pm 0.5 \pm 1.3$ LHC June 2012 **Tevatron July 2011** $173.2 \pm 0.6 \pm 0.8$ ± (stat.) ± (syst.)

150

160

170

180

190

m_{top} [GeV]

WZ and ZZ production

 Expected contributions within the Standard Model (t-, u, s-channel contributions for WZ)

(t- and u- channel contributions for ZZ)

- Search for di-boson production in three (WZ→ Iv II) and four (ZZ→ II II) lepton final states
- These are important background processes for Higgs boson searches, e.g. H → 4 I

WZ differential production cross sections

ATLAS	317	68 ± 8	$19.0^{+1.4}_{-1.3} \pm 0.8 \pm 0.4$	$17.6^{+1.1}_{-1.0}$
CMS	75 (1.1 fb ⁻¹)	~9.1	$17.0 \pm 2.4 \pm 1.1 \pm 1.0$	17.5 ± 0.6

- No indications for anomalous couplings;
- LHC starts to be surpass sensitivity from the Tevatron and LEP; First interesting constraints expected after inclusion of 2012 data

Final cross section summary

CMS

48

Search for the decays $B_0 \rightarrow \mu^+\mu^-$ and $B_0^{\ s} \rightarrow \mu^+\mu^-$

- Rare decay in the Standard Model: Braching ratio for $B_0^s \rightarrow \mu \mu$ is (3.2 ± 0.2) 10⁻⁹
- Contributions from New Physics can be large (also from non-SUSY models)

 Huge b-production rates at the LHC → all LHC experiments are searching for this decay mode

No signal (above backgrounds) found

\rightarrow Limits on branching fraction

Part 4: Search for the Higgs Boson

$H \rightarrow \gamma \gamma$ candidate event in the CMS experiment

Expected number of decays in data for 12 fb⁻¹: $m_{\rm H} = 125 \text{ GeV}$

- ~ 480 H → γγ
- $\sim 30 \text{ H} \rightarrow \text{ZZ} \rightarrow 4 \text{ I}$
- ~ 4400 H \rightarrow WW \rightarrow Iv Iv

Search for the H $\rightarrow \gamma\gamma$ decay

- 2 photons (isolated) with large transverse momenta
- Mass of the Higgs boson can be reconstructed m_{yy}

Both experiments have a good mass resolution ATLAS: ~1.7 GeV/c² for m_H ~120 GeV/c²

- Both experiments use different γγ categories according to mass resolution
- Challenges:
 - signal-to-background ratio
 (small, but smooth irreducible γγ background)

q

 reducible backgrounds from γj and jj (several orders of magnitude larger than irreducible one)

g

53

Measured yy mass spectra

unweighted events, inclusive spectrum

weighted events, according to S/B

- Background model: exponential / polynomial function, determined directly from data (different models have been used → systematics)
- Experiments see excess of events around m_{yy} ~125-126 GeV/c²
- Use statistical analysis to quantify excess incl. systematic uncertainties on background and signal modelling

Search for the H \rightarrow ZZ^(*) \rightarrow $l^+l^- l^+l^-$ decay

The "golden mode" 4 leptons (isolated) with large transverse momenta

Mass of the Higgs boson can be reconstructed m_{4l}

Both experiments have a good mass resolution ATLAS: ~2.5 GeV (4e) for m_H ~130 GeV ~2.0 GeV (4 μ) for m_H ~130 GeV

Low signal rate, but also low background:
 Mainly from ZZ continuum

- In addition from tt and Zbb events:
 - $tt \rightarrow Wb Wb \rightarrow lv clv lv clv$

 $Z bb \rightarrow \ell c v c v$

however: leptons are non-isolated and do not originate from the primary vertex

rejection possible in excellent LHC tracking detectors_

- Reducible backgrounds from Z+jets, Zbb, tt giving 2 genuine + 2 fake leptons measured using background-enriched, signal-depleted control regions in data
- Irreducible background from non-resonant continuum ZZ production seem slightly underestimated in NLO Monte Carlo simulation; normalized in high-mass region;

Search for $H \rightarrow WW \rightarrow \ell_V \ell_V$ decay

 2 leptons (e or μ) with large transverse momenta

Leptons from Higgs decay (spin-0 particle) are expected to have a small angular separation

- 2 neutrinos
 - \rightarrow large missing transverse energy
 - → Higgs boson mass cannot be reconstructed, use transverse mass m_T
- Highest sensitivity around 160 GeV
 (nearly 100% H → WW branching ratio)

Updated ATLAS analysis (since 4th July) including the 2012 data

new

58

Physics Letters B Volume 716, Issue 1, 17 September 2012, Pages 1-29

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

Universally Available

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ATLAS Collaboration*

G. Aad⁴⁸, T. Abaiyan²¹, B. Abbott¹¹¹, J. Abdallah¹², S. Abdel Khalek¹¹⁵, A.A. Abdelalim⁴⁹, O. Abdinov¹¹, R. Aben¹⁰⁵, B. Abi¹¹², M. Abolins⁸⁸, O.S. AbouZeid¹⁵⁸, H. Abramowicz¹⁵³, H. Abreu¹³⁶, B.S. Acharya^{164a, 164b}, L. Adamczyk³⁸, D.L. Adams²⁵, T.N. Addy⁵⁶, J. Adelman¹⁷⁶, S. Adomeit⁹⁸, P. Adragna⁷⁵, T. Adye¹²⁹, S. Aefsky²³, J.A. Aguilar-Saavedra^{124b, a}, M. Agustoni¹⁷, M. Aharrouche⁸¹, S.P. Ahlen²², F. Ahles⁴⁸, A. Ahmad¹⁴⁸, M. Ahsan⁴¹, G. Aielli^{133a, 133b}, T. Akdogan^{19a}, T.P.A. Åkesson⁷⁹, G. Akimoto¹⁵⁵, A.V. Akimov⁹⁴, M.S. Alam², M.A. Alam⁷⁶, J. Albert¹⁶⁹, S. Albrand⁵⁵, M. Aleksa³⁰, I.N. Aleksandrov⁶⁴, F. Alessandria^{89a}, C. Alexa^{26a}, G. Alexander¹⁵³, G. Alexandre⁴⁹, T. Alexopoulos¹⁰, M. Alhroob^{164a, 164c}, M. Aliev¹⁶, G. Alimonti^{89a}, J. Alison¹²⁰, B.M.M. Allbrooke¹⁸, P.P. Allport⁷³, S.E. Allwood-Spiers⁵³, J. Almond⁸², A. Aloisio^{102a, 102b}, R. Alon¹⁷², A. Alonso⁷⁹, F. Alonso⁷⁰, A. Altheimer³⁵, B. Alvarez Gonzalez⁸⁸, M.G. Alviggi^{102a, 102b}, K. Amako⁶⁵, C. Amelung²³, V.V. Ammosov¹²⁸, S.P. Amor Dos Santos^{124a}, A. Amorim^{124a, b}, N. Amram¹⁵³, C. Anastopoulos³⁰, L.S. Ancu¹⁷, N. Andari¹¹⁵, T. Andeen³⁵, C.F. Anders^{58b}, G. Anders^{58a}, K.J. Anderson³¹, A. Andreazza^{89a}, ^{89b}, V. Andrei^{58a}, M.-L. Andrieux⁵⁵, X.S. Anduaga⁷⁰, S. Angelidakis⁹, P. Anger⁴⁴, A. Angerami³⁵, F. Anghinolfi³⁰, A. Anisenkov¹⁰⁷, N. Anjos^{124a}, A. Annovi⁴⁷, A. Antonaki⁹, M. Antonelli⁴⁷, A. Antonov⁹⁶, J. Antos^{144b}, F. Anulli^{132a}, M. Aoki¹⁰¹, S. Aoun⁸³, L. Aperio Bella⁵, R. Apolle^{118, c}, G. Arabidze⁸⁸, I. Aracena¹⁴³, Y. Arai⁶⁵, A.T.H. Arce⁴⁵, S. Arfaoui¹⁴⁸, J.-F. Arguin⁹³, E. Arik^{19a}, M. Arik^{19a}, A.J. Armbruster⁸⁷, O. Arnaez⁸¹, V. Arnal⁸⁰, C. Arnault¹¹⁵, A. Artamonov⁹⁵, G. Artoni^{132a, 132b}, D. Arutinov²¹, S. Asai¹⁵⁵, S. Ask²⁸, B. Åsman^{146a, 146b}, L. Asquith⁶, K. Assamagan²⁵, A. Astbury¹⁶⁹, M. Atkinson¹⁶⁵, B. Aubert⁵, E. Auge¹¹⁵, K. Augsten¹²⁷, M. Aurousseau^{145a}, G. Avolio¹⁶³, R. Avramidou¹⁰, D. Axen¹⁶⁸, G. Azuelos^{93, d}, Y. Azuma¹⁵⁵, M.A. Baak³⁰, G. Baccaglioni^{89a}, C. Bacci^{134a, 134b}, A.M. Bach¹⁵, H. Bachacou¹³⁶, K. Bachas³⁰, M. Backes⁴⁹, M. Backhaus²¹, J. Backus Mayes¹⁴³, E. Badescu^{26a}, P. Bagnaia^{132a, 132b}, S. Bahinipati³, Y. Bai^{33a}, D.C. Bailey¹⁵⁸, T. Bain¹⁵⁸, J.T. Baines¹²⁹, O.K. Baker¹⁷⁶, M.D. Baker²⁵, S. Baker⁷⁷, P. Balek¹²⁶, E. Banas³⁹, P. Banerjee⁹³, Sw. Banerjee¹⁷³, D. Banfi³⁰, A. Bangert¹⁵⁰, V. Bansal¹⁶⁹, H.S. Bansil¹⁸, L. Barak¹⁷², S.P. Baranov⁹⁴, A. Barbaro Galtieri¹⁵, T. Barber⁴⁸, E.L. Barberio⁸⁶, D. Barberis^{50a, 50b}, M. Barbero²¹, D.Y. Bardin⁶⁴, T. Barillari⁹⁹, M. Barisonzi¹⁷⁵, T. Barklow¹⁴³, N. Barlow²⁸, B.M. Barnett¹²⁹, R.M. Barnett¹⁵, A. Baroncelli^{134a}, G. Barone⁴⁹, A.J. Barr¹¹⁸, F. Barreiro⁸⁰, J. Barreiro Guimarães da 30 Costa⁵⁷, P. Barrillon¹¹⁵, R. Bartoldus¹⁴³, A.E. Barton⁷¹, V. Bartsch¹⁴⁹, A. Basye¹⁶⁵, R.L. Bates⁵³, L.

Is it the Standard Model Higgs boson ?

First indication from the signal strengths in the individual channels, normalized to the Standard Model expectations

- Data are consistent with the hypothesis of a Standard Model Higgs boson !
- Experimental uncertainties are still too large to get excited about "high" $\gamma\gamma$ and "low" fermionic ($\tau\tau$ and bb) signal strength !

Next important steps:

 Updated analyses awaited for the "Hadron Collider Physics" Conference in Kyoto in November

In particular more complete results from ATLAS on $\tau\tau$ and bb channels expected

- Maybe first glimpses at spin of the resonance

Part 5: Searches for Physics Beyond the Standard Model

- A few examples from SUSY searches
- Some Exotics

5.1 Search for Supersymmetry

 qq, qg or gg in the initial state → production of coloured SUSY particles is dominant, via strong interaction

 Drell-Yan production of sleptons, charginos and neutralinos (lower cross sections)

Cross sections for SUSY production processes

NLO corrections in QCD perturbation theory are known

Search for squarks and gluinos

 If R-parity conserved, cascade decays produce distinctive events:

multiple jets, leptons, and E_{T}^{miss}

• Typical selection: $N_{jet} > 4$, $E_T > 100$, 50, 50, 50 GeV, $E_T^{miss} > 100$ GeV

• Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

example: mSUGRA, point SU3 (bulk region) $m_0 = 100 \text{ GeV}, \quad m_{1/2} = 300 \text{ GeV}$ tan $\beta = 6, \quad A_0 = -300 \text{ GeV}, \quad \mu > 0$

What do the data say ?

Drocess			Signal Region		
FIOCESS	> 2 jet	≥ 3-jet	≥ 4-jet,	≥ 4-jet,	High mass
	≥ 2-jei		$m_{\rm eff} > 500 { m GeV}$	$m_{\rm eff} > 1000 { m ~GeV}$	riigii illass
Z/γ +jets	$32.5 \pm 2.6 \pm 6.8$	$25.8\pm2.6\pm4.9$	$208\pm9\pm37$	$16.2 \pm 2.1 \pm 3.6$	$3.3\pm1.0\pm1.3$
W+jets	$26.2 \pm 3.9 \pm 6.7$	$22.7\pm3.5\pm5.8$	$367\pm30\pm126$	$12.7 \pm 2.1 \pm 4.7$	$2.2\pm0.9\pm1.2$
$t\bar{t}$ + Single Top	$3.4\pm1.5\pm1.6$	$5.6\pm2.0\pm2.2$	$375\pm37\pm74$	$3.7\pm1.2\pm2.0$	$5.6\pm1.7\pm2.1$
QCD jets	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.74 \pm 0.14 \pm 0.51$	$2.10 \pm 0.37 \pm 0.83$
Total	$62.3 \pm 4.3 \pm 9.2$	$55\pm3.8\pm7.3$	$984 \pm 39 \pm 145$	$33.4\pm2.9\pm6.3$	$13.2\pm1.9\pm2.6$
Data	58	59	1118	40	18

Observed and expected event numbers (from Standard Model processes)

dominant backgrounds:

- W/Z + jets
- tt production

Normalized in control regions !

Summary on control of backgrounds using data (control regions, very important !!)

- A: Z + jet events, Z \rightarrow ee (to estimate Z $\rightarrow vv$ background, likewise γ + jet events were used)
- B: QCD multijet background (reverse cut on $\Delta \phi$ (jet, E_T^{miss})

- C: W \rightarrow Iv + jet control region (select events with one lepton, 30 < M_T(I,E_T^{miss}) < 100 GeV, no b-jet to suppress top contribution)
- D: top quark control region (same selection as for W events, but require b-tag)

Interpretation of the results in the (m_{gluino}, m_{squark}) -plane as 95% C.L. exclusion limits in a simplified SUSY model:

- $m_{\chi} = 0$
- masses of gluinos and of 1st and 2nd generation squarks as given on plot
- all other SUSY masses are assumed to be decoupled, with masses of 5 TeV

Large area of mass combinations excluded; Limits do not apply to stop / sbottom production

mSUGRA interpretation

 $\tan \beta = 10,$ $A_0 = 0, \ \mu > 0$

mSUGRA interpretation, including 2012 data

MSSM/cMSSM interpretation (for equal squark and gluino masses):

L = 5.8 fb⁻¹ at \sqrt{s} = 8 TeV m(squark), m(gluino) > 1500 GeV

 $\tan \beta = 10$,

 $A_0 = 0, \ \mu > 0$

Looking for "natural" SUSY

- Search for stops and sbottoms in gluino decays
 - If other squarks are very heavy, gluino will decay into sbottoms and stops with high branching ratio
- Search for stop and sbottom pair production
 to close the loophole that the "gluino is too heavy"

Direct Stop searches

Heavy stop > m, : look for hadronic or leptonic top decays with extra E_T^{miss}

Light stop <m_t : look for top-like decay via chargino. Signal events contain lower p_T leptons, and subsystem mass below 2m, $m_t > m_{\overline{t}} > m_{\overline{t}}$

$$\tilde{a} \rightarrow b \, \tilde{\chi}_{1}^{\pm} \rightarrow b W^{(*)} \tilde{\chi}_{2}$$

Combined stop exclusion

Is SUSY dead ?

A. Parker, ICHEP 2012, SUSY summary talk

- Under attack from all sides, but not dead yet.
- The searches leave little room for SUSY inside the reach of existing data; but interpretations within SUSY models rely on many simplifying assumptions, and so care must be taken when making use of limit plots.
- Plausible "natural" scenarios still not ruled out; Light stop and/or RPV scenarios have few constraints.
- There is no reason to give up hope of finding SUSY at the LHC.

5.2 Search for new, high-mass di-lepton resonances

- Additional neutral Gauge Boson Z'

 Randall-Sundrum narrow Graviton resonances decaying to di-lepton

appear in Extra Dim. Scenarios

- Identical final state (two leptons), same analysis, interpretation for different theoretical models
- Main background process: Drell-Yan production of lepton pairs

Search for New Resonances in High Mass Di-leptons

Di-electron invariant mass

Dominant Drell-Yan background has been normalized in the Z peak region, 70-110 GeV

Data are consistent with background from SM processes;

No excess observed.

Di-muon invariant mass

Z' models used in the interpretation

(i) Sequential Standard Model Z'

 - Z' has the same couplings to fermions as the Standard Model Z, width of the Z' increases proportional to its mass

(ii) Models based on the E_6 grand unified symmetry group

 Broken into SU(5) and two additional U(1) groups, leading to two new neutral gauge fields, denoted Ψ and χ.
 The particles associated with the additional fields can mix to form the Z' candidates

 $Z' = Z'_{\psi} \cos \theta_{E6} + Z'_{X} \sin \theta_{E6}$

The pattern of symmetry breaking and the value of θ_{E6} determine the Z' couplings to fermions (several choices are considered)

Interpretation in the SSM and E6 models:

Resulting mass limits: $ee + \mu\mu$ 95% C.L.

 Sequential SM:
 $m_{Z'} > 2.49 \text{ TeV}$
 E_6 models:
 $m_{Z'} > 2.09 - 2.24 \text{ TeV}$

Summary of 95% C.L. SSM exclusion limits from various experiments:

95% C.L. limits	ee	μμ	Ш
(SM couplings)			combined
CDF / D0 5.3 fb^{-1} $\sqrt{s} = 1.96 \text{ TeV}$ ATLAS $5.9 / 6.1 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ CMS 4.1 fb^{-1} $\sqrt{s} = 8 \text{ TeV}$	2.39 TeV	·2.19 TeV	1.07 TeV 2.49 TeV 2.59 TeV

Interpretation in the Randall-Sundrum models: Graviton resonances: $G \rightarrow II$

(Kaluza-Klein modes)

Resulting mass limits: $ee + \mu\mu$ 95% C.L.

Limits as a function of the coupling strength k/M'PI

k : = space-time curvature in the extra dimension $M'_{Pl} = M_{Pl} / \sqrt{8\pi}$ (reduced Planck scale)

Search for W' \rightarrow Iv

- W': additional charged heavy vector boson
- Appears in theories based on the extension of the gauge group e.g. Left-right symmetric models: SU(2)_R W_R
- Assume v from W' decay to be light and stable, and W' to have the same couplings as in the SM ("Sequential Standard Model, SSM")

Signature: high p_T electron + high E_t^{miss}

 \rightarrow peak in transverse mass distribution

Search for New Resonances in High Mass Iv events (W')

Data are consistent with background from SM processes. No excess observed.

95% C.L. I (SM coupl	imits ings)	ll combined
ATLAS	4.7 fb ⁻¹ $\sqrt{s} = 7$ TeV	2.55 TeV
CMS	3.7 fb⁻¹ √s = 8 TeV	2.85 leV

Summary of 95% C.L. SSM exclusion limits from ATLAS and CMS

Summary of results on searches for Physics Beyond the Standard Model in ATLAS in ATLAS

	ATLAS Exotics Searches* - 95% CL Lower Limits (Status: LHCC, Sep 2012)
Large ED (ADD) : monojet + $E_{T,miss}$	10. fb ⁻¹ , 7 TeV [ATLAS-CONF-2011-096] 3.39 TeV M_D (δ =2)
Large ED (ADD) : monophoton + $E_{T,miss}$	44.6 fb ⁻¹ , 7 TeV [1209.4625] 1.93 TeV $M_D(\delta=2)$ ATL AS
Large ED (ADD) : diphoton, $m_{\gamma\gamma}$	4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-087] 3.29 TeV M _S (GRW cut-off, NLO) Preliminary
.0 UED : diphoton + $E_{T,miss}$	44.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072] 1.41 TeV Compact. scale 1/R
RS1 with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	44.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-087] 2.06 TeV Graviton mass
RS1 with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm ll}$	4.9-5.0 (b⁻¹, 7 TeV (1209.2535) 2.16 TeV Graviton mass $Ldt = (1.0 - 6.1)$ fb ⁻¹
RS1 with $k/M_{\rm Pl} = 0.1$: ZZ resonance, $m_{\rm IIII / IIII}$	10.01b ⁻¹ , 7 TeV (1203.0718) 845 GeV Graviton mass
RS1 with $k/M_{\rm Pl} = 0.1$: WW resonance, $m_{T,\rm kvlv}$	44.7 fb ⁻¹ , 7 TeV [1208.2880] 1.23 TeV Graviton mass IS = 7, 8 TeV
RS WITH BR($g \rightarrow tt$)=0.925 : $tt \rightarrow t$ +jets, $m_{tt,boosted}$	44.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136] 1.9 TeV KK gluon mass
$\square \qquad ADD BH (M_{TH}/M_D=3) : SS dimuon, N_{ch. part.}$	1.3 fb⁻¹, 7 TeV [1111.0080] 1.25 TeV $M_D(\delta=6)$
ADD BH $(M_{TH}/M_D=3)$: leptons + jets, $\Sigma \rho_{\tau}$	1.0 fb ⁻¹ , 7 TeV [1204.4646] 1.5 TeV $M_D(\delta=6)$
Quantum black hole : dijet, $F_{\chi}(m_{ij})$	4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038] 4.11 TeV M_D (δ =6)
qqqq contact interaction : $\chi(m)$	4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038] 7.8 TeV A
O qqll CI : ee, $\mu\mu$ combined, m	11.1.1.2 (b ⁻¹ , 7 TeV [1112.4462] 10.2 TeV A (constructive int.)
uutt CI : SS dilepton + jets + $E_{T,miss}$	1.0 fb ⁻¹ , 7 TeV [1202.5520] 1.7 TeV Λ
Z' (SSM) : <i>m</i> _{ee/µµ}	5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129] 2.49 TeV Z' mass
Z' (SSM) : <i>m</i> _{ττ} <i>L</i> =	4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-067] 1.3 TeV Z' mass
W' (SSM) : <i>m</i> _{T,e/µ}	4.7 fb ⁻¹ , 7 TeV [1209.4446] 2.55 TeV W' mass
$W' (\rightarrow tq, g_{B}=1) : m_{tq}$	4.7 fb ⁻¹ , 7 TeV [CONF-2012-096] 350 GeV W' mass
$W'_{R} (\rightarrow tb, SSM) : m_{tb}$	1.0 fb ⁻¹ , 7 TeV [1205.1016] 1.13 TeV W' mass
W* : m _{T.e/u}	4.7 fb ⁻¹ , 7 TeV [1209.4446] 2.42 TeV W* mass
Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	1.0 fb ⁻¹ , 7 TeV [1112.4828] 660 GeV 1 st gen. LQ mass
Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, $\mu\nu$ jj	1.0 fb ⁻¹ , 7 TeV [1203.3172] 685 GeV 2 nd gen. LQ mass
وم 4 th generation : t't'→ WbWb	4.7 fb ⁻¹ , 7 TeV [Preliminary] 656 GeV t' MASS
4 ⁱⁿ generation : b'b'($T_{5/3}T_{5/3}$) \rightarrow WtWt	4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130] 670 GeV b' (T ₅₇₂) mass
New quark b' : b' $\tilde{b}^{\prime} \rightarrow Zb+X, m_{Zb}$	2.0 fb ⁻¹ , 7 TeV [1204.1265] 400 GeV b' mass
Top partner : $TT \rightarrow tt + A_0 A_0$ (dilepton, M_{T_2})	4.7 fb⁻¹, 7 TeV [1209.4186] 483 GeV T mass ($m(A_0) < 100 \text{ GeV}$)
Vector-like quark : CC, m	4.6 fb⁻¹, 7 TeV [ATLAS-CONF-2012-137] 1.12 TeV VLQ mass (charge -1/3, coupling $\kappa_{qQ} = v/m_Q$)
Vector-like quark : NC, m	4.6 fb⁻¹, 7 TeV [ATLAS-CONF-2012-137] 1.08 TeV VLQ mass (charge 2/3, coupling $\kappa_{qQ} = v/m_{Q}$)
$\nabla \varrho$ Excited quarks : γ -jet resonance, m_{vist}	2.1 fb ⁻¹ , 7 TeV [1112.3580] 2.46 TeV q* mass
Excited quarks : dijet resonance, m	5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-088] 3.66 TeV q* mass
Excited electron : $e-\gamma$ resonance, m_{ij}	4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-008] 2.0 TeV e^* mass ($\Lambda = m(e^*)$)
Excited muon : μ - γ resonance, $m_{\mu\nu}^{\gamma}$	4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-008] 1.9 TeV μ^* mass ($\Lambda = m(\mu^*)$)
Techni-hadrons (LSTC) : dilepton,mee/up	4.9-5.0 fb¹ , 7 TeV [1209.2535] 850 GeV $\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}) = M_{\rm u})$
Techni-hadrons (LSTC) : WZ resonance (vIII), m	1.0 fb⁻¹ , 7 TeV [1204.1648] 483 GeV ρ_{τ} mass $(m(\rho_{\tau}) = m(\pi_{\tau}) + m_{W}, m(a_{\tau}) = 1.1 m(\rho_{\tau}))$
Major. neutr. (LRSM, no mixing) : 2-lep + iets	1.5 TeV [1203.5420] 1.5 TeV N mass (<i>m</i> (W ₂) = 2 TeV)
\tilde{E} W_{B} (LRSM, no mixing) : 2-lep + jets	2.1 fb ⁻¹ , 7 TeV [1203.5420] 2.4 TeV W _B mass (m(N) < 1.4 TeV)
$H_{1}^{\pm\pm}$ (DY prod., $BR(H^{\pm\pm}\rightarrow\mu\mu)=1$) : SS dimuon, m	1.6 fb ⁻¹ , 7 TeV [1201.1091] 355 GeV H ^{±±} mass
Color octet scalar : dijet resonance, mu	4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038] 1.94 TeV Scalar resonance mass
	10^{-1} 1 10 10

*Only a selection of the available mass limits on new states or phenomena shown

Mass scale [TeV]

86

Summary of the lectures

- After a long way of design, construction, installation, commissioning of both machine and experiments the LHC had an excellent start in 2010
- The performance of the accelerator and the experiments is superb; (In 2012: an integrated luminosity > 14 fb⁻¹ already)
- The Standard Model has been established, all relevant processes measured; In many areas measurements have reached the precision phase
- A new boson has been discovered with a mass around 126 GeV; Exiting analyses ahead of us to understand the nature of this new particle
- So far: no deviations from the Standard Model seen, but the LHC potential has by far not yet been fully exploited !