Results from analyses of physics and simulated data using different tools -Brief Summary -

K. Jakobs & M. Heldmann Physikalisches Institut Universität Freiburg / Germany

Experimental issues in Charged Higgs Boson Searches

1. Identification of hadronic tau decays

- significant branching ratios over large areas of parameter space

2. b-tagging, E_T^{miss} signatures

- b-tagging is important, since multi-b final states appear
- b-tag important for significant background rejections

3. Triggering on hadronic taus

- in case of no accompanying leptons, dedicated hadronic tau triggers are needed

Identification of hadronic tau decays

Consensus about the general strategy: CDF, D0 \rightarrow ATLAS, CMS

Standard approach:

Start from the calorimeter cluster information

- exploit shower shape variables (reconstruct π⁰ in the calorimeter, depends on longitudinal and lateral calorimeter granularity)
- associate tracks to the calorimeter cluster
- apply calorimeter and track isolation
- additional handles: τ mass (track + π⁰ mass)
 τ lifetime (impact parameter)
 final step: multivariate analysis (likelihood, NN)

cuts may depend on P_T of the τ

Further discrimination (separate various τ decay modes) DØ collaboration

<u>Limitation:</u> efficiency drop for low p_T taus,

 \rightarrow alternative approaches: track based initialization for low p_T taus

Similar results from the DØ experiment

Simulation results from ATLAS and CMS

M.Heldmann

In addition: Methods on how to determine efficiencies from data are being studied

C. Shepherd

Future steps (work to do for the LHC analyses)

- consolidate τ ID algorithms
 (profit from the rich experience from the TeVatron, TeV4LHC very useful,...)
- work towards a complementary track-based τ ID approach to improve the performance at low PT
- discriminate between various decay channels
- refine and consolidate multivariate analyses
- study further ways to measure the τ tag efficiency from data

The trigger problem

S. Amerio P. Casado

All experiments have multi layer trigger system

- dedicated tau triggers at the Tevatron profit from tracking info at L1 (not possible at the LHC)
 - e/μ + track
 - tau + ETMISS
 - di-tau trigger

LHC tau triggers:

- •_Single tau triggers have high thresholds
- Hadronic tau decay channels have to rely on

on *tau* + *ETmiss* and *tau* + *jet* and *jet* + *ETmiss triggers*

• Trigger efficiency seems to be adequate, given rather high PT thresholds in in offline analyses (50-70% trigger eff. even for low H+ masses) _

<u>b-tagging and b-signatures in H+ events</u>

S. Lowette

- Several b-tagging algorithms in place for ATLAS and CMS (good performance expected, with degradation in forward and low-p_T region)
- b-tagging is an important tool in Charged Higgs analyses (in particular in the H+ → tb decay modes)

- b-tagging is essential in any Charged Higgs analyses using tb final states
- difficult S/B conditions
- improvements in b-tagging for soft and forward jets would certainly help however, some backgrounds irreducible (b-contents, gluon splitting,...)
- situation appears to be difficult (tb does not seem to be the "gold plated" charged Higgs boson discovery channel)

ETmiss reconstruction

- ETmiss is an important signature (also for Charged Higgs boson searches)
- resolution is primarily determined by calorimeter resolution and response

- Important issues for future work: calorimeter calibration, response uniformity,
 noise suppression
 - + develop mehtods to determine resolution with data (validation, started already)

N. Kanaya

Conclusions

Search for the Charged Higgs boson at Hadron Colliders is extremely important

The experimental techniques are already well advanced

- ID of hadronic taus: some improvements still desirable
- Hadronic tau triggering seems feasible in combination with ETMISS /jets
- Additional complementary signatures: b-tagging, E_T^{miss}
- Top reconstruction is necessary, but difficult (Ketevi)

New analysis methods have been studied:

- -Tau polarisation should be exploited in 1- and 3-prong-decays (improved signal significance)
- IDM method looks promising, however, real confirmation from Tevatron data still needed (+ consideration of all relevant backgrounds)
- And finally: updated LHC discovery contours as usual: increased background is suppressed by smarter ideas / more sophisticated cuts

Discovery potential with 3-prong selection

R. Kinnunen

Conclusions

Search for the Charged Higgs boson at Hadron Colliders is extremely important

The experimental techniques are already well advanced

- ID of hadronic taus: some improvements still desirable
- Hadronic tau triggering seems feasible in combination with ETMISS /jets
- Additional complementary signatures: b-tagging, E_T^{miss}
- Top reconstruction is necessary, but difficult (Ketevi)

New analysis methods have been studied:

- -Tau polarisation should be exploited in 1- and 3-prong-decays (improved signal significance)
- IDM method looks promising, however, real confirmation from Tevatron data still needed (+ consideration of all relevant backgrounds)
- And finally: updated LHC discovery contours as usual: increased background is suppressed by smarter ideas / more sophisticated cuts

M. Flechl

Conclusions (cont.)

Uppsala is a nice place to be, looking forward to forthcoming workshops

Possible Roadmap:

- \rightarrow 2008: work on tooling (tau, btags, methods to get efficiencies from first data)
- \rightarrow 2010: first results from data
- \rightarrow 2012: I hope that we know whether a Charged Higgs exists or not

regardless of the outcome: we could continue to get lectures on how to drink the Uppsala Schnaps

A big Thanks to the Organizers (Tord, Johan,) for the perfect organization