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Outline of the lectures:  
 

Part I: Introduction to LHC physics and detectors  

Part II: Detection techniques and LHC detectors 
 
-! Interaction of charged particles with matter  
-! Measurement of Charged Particles  
     (Momentum measurements, tracking of charged particles 
-     Energy measurement 
         -  Interaction of neutral particles with matter   
         -  Energy measurements in calorimeters  
-! Muon detection at the LHC     
-    Experimental conditions at the LHC (triggering, data acquisition,…)  



 

-   Measurement of Standard Model Processes at the LHC  

-! Search for the Higgs Boson at the LHC  

-! Search for Physics Beyond the Standard Model  

Part III:  First Physics Results from the LHC  



Exploring the interior of matter    
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New mass states accessible: 



The Methods of Particle Physics 
 

(i)  Investigate the structure of matter   



1869:  J.W. Hittorf  (Germany)  
 
 “Heated cathodes in vacuum tubes emit radiation, which penetrates through  
  space, and can be deflected in magnetic fields” 

 
1897: J.J. Thomson (England)  
Determines the ratio of charge to mass (e/m) using electric and magnetic  
fields 
 
“These particles are a constituent of all matter. They are lighter than the lightest  
known atom (hydrogen) by a factor of more than 1000.” 

The discovery of the first elementary particle:  the electron 



The prototype scattering experiment:     
 
                                  Rutherford’s experiment 1911 

 1871 (Nelson, New Zealand) -  1937 



Rutherford experiment (cont.):  

Clear evidence for a hard scattering in the  
centre of the nucleus 

Transverse momentum of scattering angle 
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High particle momenta (energies) are necessary  to explore the interior 
of matter, the subatomic scale 

Quantum mechanics: the spatial resolution is inversely  
proportional to the particle momentum 

p
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The Rutherford experiment of the second generation: 
 
1967: Stanford Linear Accelerator Centre (SLAC)  
          Scattering of high energy electrons on protons 
          Do protons have a substructure ?   



Results / comparisons of Rutherford experiment and SLAC 

Transverse momentum of scattering angle 



Deep inelastic scattering experiments: 

This triggered a whole series of experiment over the last 50 years 
 
-! From  SLAC  ep, en scattering   (1967)  
     ! HERA experiments (e-p collider)  
          at DESY/Germany (1991 – 2007)  



The proton, as seen in the light of deep inelastic scattering:  

•! The proton is a composite particle made 
     up of so called partons 
 
•! Partons = quarks and gluons  

     valence quarks:   u, u, d 
 
     sea quarks, u-ubar, d-dbar, s-sbar, ….. 

     gluons  

•!  The density of partons in the proton  
      cannot be calculated from first  
      principles, has to be determined from  
      experiments 

•! Proton-proton scattering at high energies 
     is equivalent to parton-parton scattering 
 
     Very relevant for the LHC  



Parton Distribution functions  (pdf) 

x = momentum fraction of the parton  

Results from the extensive measurements at the HERA ep collider  



(ii)  Search for New Particles  / new states of matter   

2mcE =
energy   !   matter 

The methods of particle physics (cont.)   

High energies are needed as well, according to Einstein’s formula:  

4222 cmcpE +=

E = energy,     p = momentum   
m = mass (rest mass)  
 
For p = 0  this leads to:  



Units in particle physics: 
                        unit                   conversion factor to  
                                                 SI units  
                    
Energy:             eV                   1 eV   = 1,6"10-19 J 
Momentum:      eV/c     
Mass:               eV/c2                1 eV/c2 = 1,8"10-36 kg 
    

m(p) = 938.3  MeV/c2                baryons     (heavy hadrons, bound states,  
m(n) = 939.6  MeV/c2   .                                                 three  valence quarks) 
…. 
                            
m(e) =   0.511 MeV/c2                leptons     (light particles, no strong interaction,        
m(µ) =  105.7 MeV/c2                                                   no substructure seen so far)  
m(! ) <    0.3      eV c2 …. 
 
m("± ) = 139.6  MeV/c2               mesons    (hadrons, q-qbar bound states)  
m(K±) =  493.7  MeV/c2  … 

A few examples, particle masses: 

2mcE =



Experimental methods: particle accelerators 

Linear accelerators Storage rings 



Important accelerator laboratories 

Fermi-National-Accelerator- 
Laboratory, Chicago, USA 

European Centre for Particle Physics, CERN, 
Geneva, Switzerland 

Deutsches-Elektronen-Synchrotron,  
DESY, Hamburg, Germany 

KEK 

KEK Tsukuba, Japan  

 

Stanford, USA  
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History on discovery of particles  



Where do we stand today?   



The building blocks of matter:   Quarks und leptons 

m (e)   =     0.000511 GeV/c2 

m(µ)   =     0.1057      GeV/c2  
m (# )  =     1.777       GeV/c2 
 

m (u)  =    0,005   GeV/c2 

m (t )  =    ~173    GeV/c2 

for comparison:   m (p)  = 0,9383   GeV/c2 



 Forces and force carriers 
  
 

 Masses:  

 m$  = 0      (Photon)            

 mg  = 0      (Gluon) 

  
 MW  = 80.399   ±   0.023     GeV/c2  
 MZ   = 91.1875 ±  0.0021    GeV/c2  



The problem of mass 

proposed by  P. Higgs (Scottish pyhsicist) 
[Theorry: 1964, P. Higgs, R. Brout und F. Englert]  
 

•! Theoretical description 
   (Quantum field theories) 
    ! massless particles   
 
•!  A new (scalar) field (Higgs field) 
   is postulated,  penetrates vacuum  
   (non-zero field content)  
 
 
•!  Mass is „created“ via interaction of  
   particles with this field 
 
•!  Prediction: new particle, 
   the Higgs boson  
         



Why do we need the Higgs boson?  

The Higgs boson enters the Standard Model to solve two fundamental  
problems:  
 
•! Masses of the vector bosons W and Z:  

        Experimental results:     MW = 80.399     ±   0.023     GeV / c2    
                                               MZ = 91.1875   ±    0.0021   GeV / c2 

 
        A local gauge invariant theory requires massless gauge fields 

•! Divergences in the theory       (scattering of W bosons)  
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Where do we stand today?  
 
•! The energy range up to ~100 GeV has been explored with incredible precision 
 
•!   The Standard Model is consistent with all experimental data ! 
     (except clear evidence for neutrino masses)  
 
•!    No Higgs boson seen (yet)  

Summer 2010 

Only unambiguous example  
of observed Higgs 
 
(P. Higgs, Univ. Edinburgh) 
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#$had(mZ)#$
(5)

0.02758 ! 0.00035 0.02768

mZ "GeV#mZ "GeV# 91.1875 ! 0.0021 91.1874

%Z "GeV#%Z "GeV# 2.4952 ! 0.0023 2.4959
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0

41.540 ! 0.037 41.479

RlRl 20.767 ! 0.025 20.742
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0.01714 ! 0.00095 0.01645

Al(P&
)Al(P&
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RcRc 0.1721 ! 0.0030 0.1723
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0,b

0.0992 ! 0.0016 0.1038

AfbA
0,c

0.0707 ! 0.0035 0.0742

AbAb 0.923 ! 0.020 0.935

AcAc 0.670 ! 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ! 0.0021 0.1481
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lept
(Qfb) 0.2324 ! 0.0012 0.2314

mW "GeV#mW "GeV# 80.399 ! 0.023 80.379

%W "GeV#%W "GeV# 2.085 ! 0.042 2.092

mt "GeV#mt "GeV# 173.3 ! 1.1 173.4

July 2010



  

•! mH > 114.4 GeV                                 from direct searches at LEP  

•! mH < 156 GeV .or. mH > 177 GeV    from direct searches at the Tevatron        
 
         

Constraints on the Higgs boson mass   
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mH  =   92 +34
-26    GeV/c2  

mH  <   161 GeV/c2      (95 % CL) 

Sensitivity to the Higgs boson and other new particles via quantum corrections:  
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The open questions   



Key questions of particle physics 

1.   Mass        
       What is the origin of mass? 
       Does the Higgs particle exist?  
 

2.   Unification    
      - Can the interactions be unified? 
      -  Are there new types of matter,  
         e.g. supersymmetric particles ? 
         Are they responsible for the Dark Matter in the universe? 
 
 
3.    Flavour 
       - Why are there three generations of particles? 
       - What is the origin of the matter-antimatter asymmetry 
         (Origin of CP violation)   
    
    
               Answers to some of these questions are expected on the  

TeV energy scale, i.e. at the LHC 





Experimental methods: Detectors 

The detectors measure:     -  The energy and momentum of particles   
   
                                           -  The identity of particles                                                
 
The measurements are used to reconstruct the interaction process 
 
!  Answers to physics questions      



Photon 

Electron 

Muon 

Proton 

Neutron 

Detection principle  
•!  Particles are detected via their interaction with matter, i.e. with the detector material;  
      in general: full solid angle (4") is covered;  
      many particles ! high segmentation of detectors  
 
•!  Different particles interact differently with the detector media  
      ! possibility for their identification  
 
•!  Energy is transferred to the sensitive material layers ! electrical or light signal   



Photon 

Electron 

Muon 

Proton 

Neutron 

Detection principle (cont.)   
(i)! Tracking detectors:  
     -  Measure the position (space information) of the particle several times;  
         based on electromagnetic interaction, electric charge required  
          !  track of charged particles  
      -  If a magnetic field in tracking volume ! Lorentz force on charged particle 
         !  curvature of track 
         !  momentum p of charged particles   



negatively charged  
particles 

positively charged  
particles 

magnetic field exits the plane 
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Lorentz force:  

For a homogenous magnetic field B perpendicular to 
the particle direction (velocity v, charge q):  
 
!!circle       (more general: a helix, i.e. no deflection in  
                     the direction of the magnetic field)  
 
 
Radius of curvature:   R =

p
q !B
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Proton 

Neutron 

(ii)!Calorimeters: measure the energy of the particles, particles are stopped,  
       their full energy is deposited, part of it is transferred to a detector medium 
 
       Different particles (e, $, ", K,…) differ in interactions and penetration length;  
 
        Usually two sections of the calorimeters:  
        - Electromagnetic calorimeter:  (e, $) are stopped / absorbed;  
        - Hadronic calorimeter:  hadrons are stopped (", K, p, n, …..)   
        - note: muons and neutrinos are NOT  
          stopped / absorbed 
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Muon 

Proton 
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Detection principle  
(iii)! Muon detectors:  
      - Due to their relatively large mass and their lepton nature, muons have a “small”  
         interaction with the detector material; 
      - They penetrate the calorimeters and give signals in “tracking detectors” behind 
         the calorimeters; these are called muon detectors; 
      -  Signature: track, small signals in calorimeters, track in muon detector 



Detection principle  
(iv) How to detect neutrinos?   
 
      - Neutrinos interact only weakly, i.e. via the weak interaction, with the detector  
         material  
 
      - Detector thickness is far !! too small to stop/absorb them 
 
      - They carry away energy and momentum  
 
      - Their presence can only be inferred via an  
         apparent violation of energy and  
         momentum conservations 
 
         i.e. indirect detection of neutrinos  
               (and other purely weakly interacting 
                particles)   
  
          



A typical particle detector  
-ALEPH at LEP (~1990) as an example-  

1.! Central region:  
     large tracking detector 
 
2. Electromagnetic part of 
    the calorimeter 
 
3. Superconducting coil, 
    high currents 
    ! high solenoidal  
     magnetic field  
 
4. Hadronic part of the  
    calorimeter 
 
5. Muon detector system 



Experimental hall,   
~140 m underground 

Hadronic calorimeter in the  
“barrel” part of the detector  
(iron absober +  
 gas as sensitive medium)  



A few collision events  
 
           recorded with the  
 
                         ALEPH detector at LEP 

Initial state:     e+ e-  collisions 
 
                       centre-of-mass energy  #s = 91 GeV  



What process has occurred here ?  



What process has occurred here ?  

$ / Z  
e- 

e+ 

e- 

e+ 



What process has occurred here ?  



What process has occurred here ?  

$ / Z  
µ- 

µ+ 

e- 

e+ 



What process has occurred here ?  

q 

$ / Z  
e- 

e+ 

q 

•! Production of a quark-antiquark 
     pair in the final state 
 
•! Quarks cannot exist as “free 
     particles” and undergo  
     fragmentation into final state 
     hadrons  
     ("±, "0, K±, K0, p, n, …,B±,B0,….) 
 
  

 

 
•! Depending on their lifetime, 
     these particles decay inside  
     the detector 
     prompt decays: e.g.                     "0 ! $$          # = 8.4 "10-17 s       c#  = 25.1 nm 
     medium lifetime: B-hadrons:        B0 !D0 "+"-   # = 1.55 "10-12 s     c#  = 464  µm 
     “stable” particles:                          "±                            # = 2.6 "10-8 s        c#  =  7.8  m 


