Particle Detection and First Physics Results from the LHC

Karl Jakobs Physikalisches Institut Universität Freiburg / Germany

RC

-

The Large Hadron Collider (LHC)

• Proton-proton accelerator in the LEP tunnel at CERN

3.5 TeV

p(•

3.5 TeV

• Centre-of-mass energy: $\sqrt{s} = 7 \text{ TeV}$ (today), = 14 TeV (> 2015)

Important components of the accelerator

• Superconducting dipole magnets

- Challenge: magnetic field of 8.33 Tesla
- In total 1232 magnets, each 15 m long
- Operation temperature of 1.9 K

LHC is the largest cryogenic system in the world

 Eight superconducting accelerator structures, acceleration gradient of 5 MV/m

Assembling the machine

Lowering of the first dipole into the tunnel (March 2005).

Installation of the LHC in the tunnel

Cryogenic services line

2835 x 2835 Pakete

100 Milliarden Protonen pro Paket

Abstand: 7.5 m (25 ns)

Kreuzungsrate der p-Pakete: 40 Mio. mal / sec.

Proton proton collisions at the LHC

Proton – proton:

2835 x 2835 bunches Separation: 7.5 m (25 ns)

 10^{11} protons / bunch Crossing rate of p-bunches: 40 Mio. / s Luminosity: L = 10^{34} cm⁻² s⁻¹

~10⁹ pp collisions / s (superposition of 23 pp-interactions per bunch crossing: **pile-up**)

~1600 charges particles in the detector

⇒ high particle densities high requirements for the detectors

Why a hadron collider?

e⁺e⁻ colliders are excellent machines for precision physics !!

- e+ e⁻ are point-like particles, no substructure \rightarrow clean events
- complete annihilation, centre-of-mass system, kinematic fixed

Proton proton collision are more complex

Main drawbacks of e⁺e⁻ circular accelerators:

- Energy loss due to synchrotron radiation (basic electrodynamics: accelerated charges radiate, dipole, x-ray production via bremsstrahlung, synchrotron radiation.....)
 - Radiated power (synchrotron radiation): Ring with radius R and energy E
 - Energy loss per turn:
 - Ratio of the energy loss between protons and electrons:

$$P = \frac{2 e^2 c}{3 R^2} \left(\frac{E}{mc^2}\right)^4$$
$$-\Delta E \approx \frac{4 \pi e^2}{3 R} \left(\frac{E}{mc^2}\right)^4$$
$$\frac{\Delta E(e)}{\Delta E(p)} = \left(\frac{m_p}{m_e}\right)^4 \sim 10^{13}$$

Future accelerators:

- pp ring accelerators (LHC, using existing LEP tunnel)
- or e⁺e⁻ linear accelerators, International Linear Collider ILC (under study / planning)

2. Hard kinematic limit for e⁺e⁻ center-of-mass energy from the beam energy: $\sqrt{s} = 2 E_{beam}$

Physics at Hadron Colliders

- Protons are complex objects: Partonic substructure: Quarks and Gluons
- Hard scattering processes: (large momentum transfer)

quark-quark quark-gluon scattering or annihilation gluon-gluon

However: hard scattering (high p_T processes) represent only a tiny fraction of the total inelastic pp cross section
 Total inelastic pp cross section ~ 70 mb (huge)
 Dominated by events with small momentum transfer

Variables used in the analysis of pp collisions

<u>Transverse momentum</u> (in the plane perpendicular to the beam)

 $p_{\rm T} = p \sin \theta$

(Pseudo)-rapidity: $\eta = -\ln \tan \frac{\Theta}{2}$

 $\begin{array}{l} \theta = 90^{\circ} \quad \rightarrow \quad \eta = 0 \\ \\ \theta = 10^{\circ} \quad \rightarrow \quad \eta \cong \ 2.4 \\ \\ \theta = 170^{\circ} \quad \rightarrow \quad \eta \cong \ -2.4 \\ \\ \end{array}$ $\begin{array}{l} \theta = \quad 1^{\circ} \quad \rightarrow \quad \eta \cong 5.0 \end{array}$

Inelastic low - p_T pp collisions

Most interactions are due to <u>interactions at large distance</u> between incoming protons

→ <u>small momentum transfer</u>, particles in the final state have large longitudinal, but small transverse momentum

(of charged particles in the final state)

 $\frac{dN}{d\eta} \approx 7$

- about 7 charged particles per unit of pseudorapidity in the central region of the detector
- uniformly distributed in Φ

These events are called "Minimum-bias events"

More details on the hard scattering process:

Proton beam can be seen as beam of quarks and gluons with a wide band of energies

The proton constituents (partons) carry only a fraction 0 < x < 1 of the proton momentum

The effective centre-of-mass energy $\sqrt{\hat{s}}$ is smaller than \sqrt{s} of the incoming protons

$p_1 = x_1 p_A$		To produce a mass of:
$p_2 = x_2 p_B$	$\sqrt{\hat{s}} = \sqrt{x_1 x_2 s} = x \sqrt{s}$	LHC
	$(\mathrm{if} \ \mathrm{x}_1 = \mathrm{x}_2 = \mathrm{x})$	100 GeV: x ~ 0.007
$p_A = p_B = 7 \text{ TeV}$		5 TeV. X ~ 0.30

From where do we know the x-values?

The structure of the proton is investigated in <u>Deep Inelastic Scattering</u> experiments:

Highest energy machine was the HERA ep collider at DESY/Hamburg

Scattering of 30 GeV electrons on 900 GeV protons:

 \rightarrow Test of proton structure down to 10⁻¹⁸ m

How do the x-values of the proton look like?

Uncertainties in the pdfs, in particular on the gluon distribution at small x

Calculation of cross sections

 $\sigma = \sum_{a,b} \int dx_a \ dx_b \ f_a \ (x_a, Q^2) \ f_b \ (x_b, Q^2) \ \hat{\sigma}_{ab} \ (x_a, x_b, \alpha_s)$

Sum over initial partonic states a,b $\hat{\sigma}_{ab} \equiv$ hard scattering cross section

 $f_i(x, Q^2) =$ parton density function

... + higher order QCD corrections (perturbation theory) meanwhile available for many signal and background processes !

which for some processes turn out to be large (e.g. Higgs production via gg fusion)

usually introduced as K-factors: $K_{[n]} = \sigma_{[n]} / \sigma_{[LO]}$

a few examples:

Drell-Yan production of W/Z: $K_{NLO} \sim 1.2$ Higgs production via gg fusion: $K_{NLO} \sim 1.8$

Example: Drell-Yan production of W/Z bosons

Example: Drell-Yan production of W/Z bosons (cont.)

Rapidity distributions for Z and W[±] production at LO, NLO, and NNLO

Note: LHC data will be used in the future to further constrain the parton densities

Luminosity

The rate of produced events for a given physics process is given by:

$$N = L \cdot \sigma$$

$$L = Luminosity$$

$$\sigma = cross section$$
dimensions: $s^{-1} = cm^{-2} s^{-1} \cdot cm^{2}$

Luminosity depends on the machine:

important parameters: number of protons stored, beam focus at interaction region,....

In order to achieve acceptable production rates for the interesting physics processes, the luminosity must be high !

$L = 2.10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	¹ design value for first year
$L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$	planned for the initial phase of the LHC (now)
$L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	LHC design luminosity, very large !!
	(1000 x larger than LEP-2, 50 x Tevatron Run II design)

One experimental year has ~ $10^7 \text{ s} \rightarrow$

Integrated luminosity at the LHC:	10 fb ⁻¹ per year, with 10^{33} cm ⁻² s ⁻¹
	100 fb ⁻¹ per year, with 10 ³⁴ cm ⁻² s ⁻¹

Cross Sections and Production Rates

Rates for $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$: (LHC)

 Higgs (150 GeV) Gluino, Squarks (1 TeV) 	0.2 /s 0.03 /s
• $W \rightarrow e_V$ • $Z \rightarrow e_e$	150 /s 15 /s
bb pairstt pairs	5 10 ⁶ /s 8 /s
 Inelastic proton-proton reactions: 	10 ⁹ / s

LHC is a factory for: top-quarks, b-quarks, W, Z, Higgs,

The only problem: you have to detect them !

What experimental signatures can be used ?

Quark-quark scattering:

No leptons / photons in the initial and final state

If leptons with large transverse momentum are observed: ⇒ interesting physics !

Example: Higgs boson production and decay

Important signatures:

- Leptons und photons
- Missing transverse energy

Detector requirements from physics

• Good measurement of leptons (e,µ) and photons with large transverse momentum p_T

 Good measurement of missing transverse energy (E_T^{miss}) and energy measurements in the forward regions ⇒ calorimeter coverage down to |η| <5

• Efficient identification of τ leptons and jets from b-quarks

Suppression of background: Reconstruction of objects with large transverse momentum

$\mathsf{H} \to \mathsf{Z}\mathsf{Z}^{(*)} \to \ell\ell\ell\ell$

Signal:

 $P_T(1,2) > 20 \text{ GeV}$ $P_T(3,4) > 7 \text{ GeV}$ $|\eta| < 2.5$ Isolated leptons

 $\begin{array}{l} \mathsf{M}(\ell\ell) \sim & \mathsf{M}_{\mathsf{Z}} \\ \mathsf{M}(\ell'\ell') \sim < \mathsf{M}_{\mathsf{z}} \end{array}$

Background: Top production

tt → Wb Wb → lv clv lv clv σ BR ≈ 1300 fb

Associated production Z bb Z bb $\rightarrow \ell \ell c \ell v c \ell v$

Background rejection:

Leptons from b-quark decays

- \rightarrow non isolated
- → do not originate from primary vertex (B-meson lifetime: ~ 1.5 ps)

Dominant background after isolation cuts: ZZ continuum Discovery potential in mass range from ~130 to ~600 GeV/c²

Decay modes at low mass: $H \rightarrow \gamma \gamma$

MC SIMULATION

Signal expectation x 10, for 1 fb⁻¹

- Main exp. tools for background suppression:
 - photon identification
 - γ / jet separation (calorimeter + tracker)

Sensitivity in the low mass region, however, higher integrated luminosities required

Detector requirements from the experimental environment (pile-up)

 LHC detectors must have fast response, otherwise integrate over many bunch crossings → too large pile-up

Typical response time : 20-50 ns → integrate over 1-2 bunch crossings → pile-up of 25-50 minimum bias events ⇒ very challenging readout electronics

 High granularity to minimize probability that pile-up particles be in the same detector element as interesting object
 → large number of electronic channels, high cost

LHC detectors must be radiation resistant: high flux of particles from pp collisions → high radiation environment
 e.g. in forward calorimeters: up to 10¹⁷ n / cm² in 10 years of LHC operation

How are the interesting events selected?

The ATLAS experiment

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been it again.	n corrupted. Restart your computer, and then open the file again. If the red x still appears, you may hav	• Solenoidal magnetic field (2T) in the central region (momentum measurement)
		 High resolution silicon detectors: 6 Mio. channels (80 μm x 12 cm) 100 Mio. channels (50 μm x 400 μm) space resolution: ~ 15 μm Energy measurement down to 1° to the heart for the heart for
		beam line
Diameter Barrel toroid length End-cap end-wall chamber span	25 m 26 m 46 m	 Independent muon spectrometer (supercond. toroid system)

Muon detection system in the forward region

A historical moment: Closure of the LHC beam pipe ring on 16th June 2008 ATLAS was ready for data taking in August 2008

CMS

The CMS experiment

in the underground cavern in Feb. 2007

CMS Detector closed for 10th Sep. 2008

