Higgs Boson Searches at Hadron Colliders

Karl Jakobs Physikalisches Institut Universität Freiburg / Germany

Outline of the four lectures:

1. Introduction, Higgs Mechanism, Cross sections

- The Higgs boson in the Standard Model
- Properties of the Higgs boson
- Current limits on the Higgs boson mass
- Higgs boson production at Hadron Colliders

2. Search for the Standard Model Higgs Boson

- Experimental aspects of Higgs boson searches at Hadron Colliders
- Searches for the Standard Model Higgs boson at the Tevatron
- The potential for Higgs boson searches at the LHC, part I (14 TeV, 7 TeV)

3. SM Higgs Boson Searches and Higgs Boson Parameters

- The potential for Higgs boson searches at the LHC, part II (14 TeV, 7 TeV)
- How well can Higgs boson parameters be determined at the LHC

4. Non-Standard Higgs Boson scenarios

- MSSM Higgs boson
- Invisibly decaying Higgs bosons
- Strongly coupled scenarios, composite Higgs

Preface / Disclaimer:

- The subject I am talking about is "an old topic"
 - Many talks about this subject, extensively discussed in the literature
 - Many theorists and experimentalists working on it, overwhelming wealth of material
 Selection of material, will not be complete
 - \rightarrow tutorial
- LHC is running at $\sqrt{s} = 7$ TeV
 - Many studies have been performed by the experimental collaborations for $\sqrt{s} = 14$ (10) TeV during the past years
 - → difficult to give a consistent picture for the present LHC energy; main intention is the discussion of methods to detect the Higgs bosons, and not so much to give the precise values of the discovery significance
 - 7 TeV results are quoted wherever available and relevant
 - First results of LHC detector performance relevant for Higgs boson searches are presented as well

Building blocks of the Standard Model

Matter

Made out of fermions (Quarks and Leptons)

Forces

Electromagnetism, weak and strong force + gravity (mediated by bosons)

Higgs field

Needed to break (hide) the electroweak symmetry and to give mass to weak gauge bosons and fermions

 \rightarrow Higgs particle

Where do we stand today?

e⁺e⁻ colliders LEP at CERN and SLC at SLAC + the Tevatron pp collider + HERA at DESY + many other experiments (fixed target.....) have explored the energy range up to ~100 GeV with incredible precision

- The Standard Model is consistent with all experimental data !
- No Physics Beyond the SM observed (except clear evidence for neutrino masses)
- No Higgs seen (yet)

Direct searches: (95% CL limits) $m_H > 114.4 \text{ GeV}$ $m_H < 162 \text{ GeV}$ or $m_H > 166 \text{ GeV}$

Only unambiguous example of observed Higgs

(P. Higgs, Univ. Edinburgh)

Summer 2009

	Measurement	Fit	O ^{meas_} -O ^{fit} /σ ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _Z [GeV]	2.4952 ± 0.0023	2.4959	
σ ⁰ had [nb]	41.540 ± 0.037	41.478	
R _I	20.767 ± 0.025	20.742	
A ^{0,I} fb	0.01714 ± 0.00095	0.01645	
A _I (P ₁)	0.1465 ± 0.0032	0.1481	
Rb	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
Ab	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.023	80.379	
Г _w [GeV]	2.098 ± 0.048	2.092	►
m _t [GeV]	173.1 ± 1.3	173.2	
August 2009			

The Search for the Higgs Boson

- "Revealing the physical mechanism that is responsible for the breaking of electroweak symmetry is one of the key problems in particle physics"
 - "A new collider, such as the LHC must have the potential to detect this particle, should it exist."

•

Why do we need the Higgs Boson?

- How does it enter the Standard Model ?

- What is its role?

The structure of the Standard Model

Fundamental principle: Prototype:

Free Dirac equation:

Lagrangian formalism:

Local gauge invariance Quantum Electrodynamics (QED)

 $i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$ $L = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi$

Local gauge transformation:

$$\psi(x) \to e^{i\alpha(x)}\psi(x)$$

(derivative: $\partial_{\mu}\psi \rightarrow e^{i\alpha(x)}\partial_{\mu}\psi + ie^{i\alpha(x)}\psi\partial_{\mu}\alpha$, $\delta_{\mu}\alpha$ term breaks the invariance of L)

Invariance of L under local gauge transformations can be accomplished by introducing a gauge field A_u , which transforms as:

$$A_{\mu} \rightarrow A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$
 where $e = g_e/4\pi = \text{coupling strength}$

Can be formally achieved by the construction of a "modified" derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ieA_{\mu}$$
 (covariant derivative)

 \rightarrow Lagrangian of QED:

$$L = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi + e\overline{\psi}\gamma^{\mu}A_{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

interaction term

where $F_{\mu\nu}$ is the usual field strength tensor:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Note:

(i) Imposing local gauge invariance leads to the interacting field theory of QED (ii) A mass term ($\frac{1}{2}m^2A_{\mu}A^{\mu}$) for the gauge field A_{μ} would violate gauge invariance

Similar for the Standard Model interactions:

Quantum Chromodynamics (QCD):

SU(3) transformations, 8 gauge fields, 8 massless gluons, Gluon self-coupling - T_a (a = 1,...,8) generators of the SU(3) group (independent traceless 3x3 matrices)

- G_u gluon fields

- g = coupling constant

$$D_{\mu} = \partial_{\mu} + igT_{a}G_{\mu}^{a}$$
$$G_{\mu}^{a} \rightarrow G_{\mu}^{a} - \frac{1}{g}\partial_{\mu}\alpha_{a} - f_{abc}\alpha_{b}G_{\mu}^{c}$$

μ

Electroweak Interaction (Glashow, Salam, Weinberg): $SU(2)_{I} \times U(1)_{Y}$ transformations, 4 gauge fields, $(W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3}, B_{\mu})$

 $W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^1_{\mu} \mp i W^2_{\mu} \right)$ Physical states: $Z_{\mu} = -\sin\theta_{W}B_{\mu} + \cos\theta_{W}W_{\mu}^{3}$ $A_{\mu} = \cos \theta_W B_{\mu} + \sin \theta_W W_{\mu}^3$

Problems at that stage:

Masses of the vector bosons W and Z: ٠

> Experimental results: $M_W = 80.399 \pm 0.023$ GeV / c^2 $M_7 = 91.1875 \pm 0.0021 \text{ GeV}/c^2$

> A local gauge invariant theory requires massless gauge fields

•

Divergences in the theory (scattering of W bosons)

 $-iM(W^+W^- \rightarrow W^+W^-) \sim \frac{S}{M_W^2}$ for $S \rightarrow \infty$

Solution to both problems:

- create mass via spontaneous breaking of electroweak symmetry
- introduce a scalar particle that regulates the WW scattering amplitude

➔ Higgs Mechanism

The Higgs mechanism

Spontaneous breaking of the SU(2) x U(1) gauge symmetry

Scalar fields are introduced

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

 $V(\phi) = \mu^2(\phi^*\phi) + \lambda(\phi^*\phi)^2$

• Lagrangian for the scalar fields: g, g' = SU(2), U(1) gauge couplings

Potential:

$$L_2 = \left| \left(i \partial_{\mu} - g \mathbf{T} \cdot \mathbf{W}_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^2 - V(\phi)$$

• For $\mu^2 < 0$, $\lambda > 0$, minimum of potential:

$$\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2 \qquad v^2 = -\mu^2 / \lambda$$

Perturbation theory around ground state:

$$\phi_0(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \Longrightarrow$$

Particle content and masses

- Mass terms for the W[±] bosons:

$$M_{W^{\pm}} = \frac{1}{2}vg$$

- Remaining terms off-diagonal in W_{μ}^{3} and B_{μ} :

$$\frac{1}{8}v^{2}(W_{\mu}^{3}, B_{\mu})\begin{pmatrix} g^{2} & -gg' \\ -gg' & {g'}^{2} \end{pmatrix}\begin{pmatrix} W^{3\mu} \\ B^{\mu} \end{pmatrix} = \frac{1}{8}v^{2}\left[gW_{\mu}^{3} - g'B_{\mu}\right] + 0\left[g'W_{\mu}^{3} + gB_{\mu}\right]$$

- Massless photon: $A_{\mu} = \frac{g' W_{\mu}^3 + g B_{\mu}}{\sqrt{g^2 + {g'}^2}} \quad with \quad M_A = 0$

- Massive neutral vector boson:
$$Z_{\mu} = \frac{gW_{\mu}^{3} - g'B_{\mu}}{\sqrt{g^{2} + {g'}^{2}}}$$
 with $M_{Z} = \frac{1}{2}v\sqrt{g^{2} + {g'}^{2}}$

Important relations in the Glashow-Salam-Weinberg model:

• Relation between the gauge couplings:

 \rightarrow Important prediction of the GSW with a Higgs doublet:

or expressed in terms of the ρ parameter:

• From the M_w relation the value of the vacuum expectation value of the Higgs field can be calculated:

$$\frac{1}{2v^2} = \frac{g^2}{8M_W^2} = \frac{G_F}{\sqrt{2}} \qquad \Rightarrow \quad v = 246 \; GeV$$

where $G_F = Fermi$ constant, know from low energy experiments (muon decay)

$$\frac{g'}{g} = \tan \theta_W$$

 $\frac{M_W}{M_Z} = \cos\theta_W$

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W}$$

Masses of the Fermions:

 The same Higgs doublet which generates W[±] and Z masses is sufficient to give masses to the fermions (leptons and quarks):
 e.g. for electrons: use an arbitrary coupling G_e

$$L_{3} = -G_{e}\left[\left(\overline{\nu}_{e},\overline{e}\right)_{L} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} e_{R} + \overline{e}_{R}(\phi^{-},\overline{\phi}^{0}) \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L}\right]$$

• Spontaneous symmetry breaking:

$$L_3 = -\frac{G_e v}{\sqrt{2}} (\overline{e}_L e_R + \overline{e}_R e_L) - \frac{G_e}{\sqrt{2}} (\overline{e}_L e_R + \overline{e}_R e_L)h$$

mass term

• Important relation: coupling of the Higgs boson to fermions is proportional to their mass

$$\phi = \sqrt{\frac{1}{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$

and finally..... a massive scalar with self-coupling, the **Higgs boson**:

• Mass:
$$m_h^2 = 2v^2\lambda$$

(since λ is not predicted by theory, the mass of the Higgs boson is unknown)

• Self-coupling:
$$-\lambda v h^3 - \frac{1}{4}\lambda h^4$$

..... and:

• The additional diagram, with Higgs boson exchange, regulates the divergences in the longitudinal WW scattering

The Higgs boson as a UV regulator

Scattering of longitudinally polarized W bosons

$$-iM(W^+W^- \rightarrow W^+W^-) \sim \frac{s}{m_W^2} \quad \text{for} \quad s \rightarrow \infty$$

Higgs boson guarantees unitarity (if its mass is < -1 TeV)

 $-iM(W^+W^- \rightarrow W^+W^-) \sim m_H^2$ for $s \rightarrow \infty$

Higgs boson properties

Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the **mass** is known:

 $\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2\pi}} m_f^2 (M_H^2) M_H$ $\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2\pi}} M_H^3 (1 - 4x + 12x^2) \beta_V$ where: $\delta_Z = 1, \, \delta_W = 2, \, x = M_V^2 / M_V^2, \quad \beta = \text{velocity}$ (+ W-loop contributions) $\Gamma(H \to gg) = \frac{G_F \alpha_a^2 (M_H^2)}{36\sqrt{2\pi^3}} M_H^3 \left[1 + \left(\frac{95}{4} - \frac{7N_f}{6}\right) \frac{\alpha_a}{\pi} \right]$ $\Gamma(H \to \gamma\gamma) = \frac{G_F \alpha_a^2}{128\sqrt{2\pi^3}} M_H^3 \left[\frac{4}{3} N_C e_t^2 - 7 \right]^2$

Total width

Higgs Boson Decays

The decay properties of the Higgs boson are fixed, if the mass is known:

Constraints on the Higgs boson mass

- 1. Constraints from theory
- 2. Indirect limits from electroweak precision data (theory and experiment)
- 3. Limits from Direct Searches (LEP, Tevatron)

(i) Theory Constraints on the Higgs boson mass

• Unitarity limit:

If Higgs boson too heavy, the regulation of the WW cross section is less effective and unitarity is violated again

 \rightarrow m_H < ~1 TeV (as just discussed)

- Stricter limits from the energy dependence of the Higgs boson self coupling λ
 - Stability of the vacuum
 - Diverging coupling $\lambda(Q^2)$
 - → next slides

Tighter Higgs mass constraints:

Stronger bounds on the Higgs-boson mass result from the energy dependence of the Higgs coupling λ (Q²) (if the Standard Model is assumed to be valid up to some scale Λ)

$$\lambda(Q^2) = \lambda_0 \left\{ 1 + \frac{3\lambda_0}{2\pi^2} \log\left(2\frac{Q^2}{v^2}\right) + \dots - \frac{3g_t^4}{32\pi^2} \log\left(2\frac{Q^2}{v^2}\right) + \dots \right\} \quad \text{where} \quad \lambda_0 = \frac{m_h^2}{v^2}$$

Upper bound:	diverging coupling
	(Landau Pole)
Lower bound:	stability of the vacuum
	(negative contribution from
	top quark dominates)

Mass bounds depend on scale Λ up to which the Standard Model should be valid

(ii) Indirect limits from electroweak precision data (m_W and m_t)

Motivation:

W mass and top quark mass are fundamental parameters of the Standard Model; The standard theory provides well defined relations between m_W , m_t and m_H

Electromagnetic constant

measured in atomic transitions, e⁺e⁻ machines, etc.

Relation between m_W , m_t , and m_H

The W and top mass measurements

Ultimate test of the Standard Model: comparison between the direct Higgs boson mass and predictions from radiative corrections....

Results of the precision el.weak measurements: (LEWWG-2009):

$$m_H = 87^{+35}_{-26} \ GeV$$

$$m_H = 108^{+6}_{-6} GeV$$

(iii) Constraints from

direct searches at

LEP and Tevatron

Higgs bosons searches at LEP

Higgs decay branching ratios for $m_H = 115 \text{ GeV/c}^2$: BR (H \rightarrow bb) = 74%, BR (H \rightarrow $\tau\tau$, WW, gg) = 7% each, BR(H \rightarrow cc) = 4%

Decay modes searched for:

- $HZ \rightarrow bb qq$ - Four Jet channel:
- Missing energy channel: $\rightarrow bb vv$
- Leptonic channel: \rightarrow bb ee, bb $\mu\mu$
- Tau channels:

 \rightarrow bb $\tau\tau$, and $\tau\tau$ qq

Results of the final LEP analysis:

Final results have been published: CERN-EP / 2003-011:

Based on final calibrations of the detectors, LEP-beam energies, final Monte Carlo simulations and analysis procedures.

The reconstructed bb mass for two levels of signal purity (loose and tight cuts):

Clear peak in the background prediction in the vicinity of m_Z due to the $e^+e^- \rightarrow ZZ$ background, which is consistent with the data.

Final combined LEP result

	$1 - CL_b$	$\mathrm{CL}_{\mathbf{s}+\mathbf{b}}$
LEP	0.09	0.15
ALEPH	3.3×10^{-3}	0.87
DELPHI	0.79	0.03
L3	0.33	0.30
OPAL	0.50	0.14
Four-jet	0.05	0.44
All but four-jet	0.37	0.10

$$1- CL_B = 0.09 \quad \leftrightarrow$$

Signal significance = 1.7 σ

$$M_{\rm H} > 114.4 \ {\rm GeV/c^2} \quad (95\% \ {\rm CL})$$

expected mass limit: 115.3 GeV/c² (sensitivity)

Likelihood ratio $Q := L_{S+B} / L_B$ Test statistics: - 2 ln Q

Direct limits from searches at the Tevatron

Exclude mass region between 162 and 166 GeV (95% C.L.) (First exclusion since LEP, detailed discussion tomorrow)

Higgs boson production

at Hadron Colliders

Phenomenology of pp collisions

Renormalization

Scale

Order α_{s}^{n}

Factorization

Scale

Dominant hard scattering cross section:

"QCD Jet Production" quark/gluon scattering

Detection of Higgs boson decays into qq (bb) final states (without associated signatures) is hopeless !!

Higgs Boson production processes at Hadron Colliders

Gluon Fusion

Relative importance of the various processes is different at the LHC and at the Tevatron

Vector boson fusion

tt associated production

WH/ZH associated production

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

(for $\int s = 14$ TeV, difference between 14 and 7 TeV to be discussed tomorrow)

Production cross sections at the Tevatron

J. Baglio, A. Djouadi, arXiv:1003.4266

 $qq \rightarrow W/Z + H$ cross sections $gg \rightarrow H$

~10 x larger at the LHC (\sqrt{s} = 14 TeV) ~70-80 x larger at the LHC (\sqrt{s} = 14 TeV)

Gluon fusion:

- Dominant production mode
- Sensitive to heavy particle spectrum ...
 (e.g. 4th generation quarks)
 ...and the corresponding Yukawa couplings
 (important for coupling measurements, top Yukawa coupling)
- Large K-factors (NLO, NNLO corrections)
 - Difficult to calculate, loop already at leading order (calculation with infinite top mass is used as an approximation, however, this seems to be a good approximation)
 - Nicely converging perturbative series

Higher order corrections:

- Spira, Djouadi, Graudenz, Zerwas (1991) - Dawson (1991)
- Harlander, Kilgore (2002)
- Anastasiou, Melnikov (2002)
- Ravindran, Smith, van Neerven (2003)

Independent variation of renormalization and factorization scales (with 0.5 m_H < μ_F , μ_R < 2 m_H)

Effects of the finite top quark mass (Effective theory for $m_t >> m_H$)

- Krämer, Laenen, Spira (1996)

Large m_t approximation works extremely well up to $m_H \sim 300 \text{ GeV}$

Gluon fusion:

- Dominant production mode
- Sensitive to heavy particle spectrum ...

 (e.g. 4th generation quarks)
 ...and the corresponding Yukawa couplings
 (important for coupling measurements)
- Large K-factors (NLO, NNLO corrections)
 - Difficult to calculate, loop already at leading order (calculation with infinite top mass is used as an approximation, however, this seems to be a good approximation)
 - Nicely converging perturbative series
- Effects of soft-gluon resummation at next-to-next-to leading logarithmic (NNLL) accuracy

Results for LHC at 7 TeV:

9-10% increase at 7 TeV

- M. Grazzini, D. de Florian (Higgs cross section working group, Freiburg, April 2010)

- S. Catani, D. de Florian, M. Grazzini, P. Nason (2003)

Independent variation of renormalization and factorization scales (with 0.5 $\mu_H < \mu_F$, $\mu_R < 2 m_H$ and 0.5 < $\mu_F / \mu_R < 2$)

Gluon fusion:

- Dominant production mode
- Sensitive to heavy particle spectrum ...

 (e.g. 4th generation quarks)
 ...and the corresponding Yukawa couplings
 (important for coupling measurements)
- Large K-factors (NLO, NNLO corrections)
 - Difficult to calculate, loop already at leading order (calculation with infinite top mass is used as an approximation, however, this seems to be a good approximation)
 - Nicely converging perturbative series
- Effects of soft-gluon resummation at next-to-next-to leading logarithmic (NNLL) accuracy
- Two-loop el.weak corrections

Electroweak corrections:

normalized to LO

- Actis, Passarino, Sturm, Uccirati (2008)

Partial:

- Aglietti, Bonciani, Degrassi, Vicini (2004) Degrassi, Maltoni (2004)
- Djouadi, Gambino (1994)

Gluon fusion:

• Results of the calculations:

Calculation	LHC, √s = 14 TeV m _H = 160 GeV
NLO	+110% of LO
NNLO	+ 30% of NLO
Soft gluon resummation (NNLO + NNLL)*	+ 11% of LO
Electroweak	+ 6% of LO

- Dependence on parton density functions (gluon distribution, $\alpha_{\rm s}$)

Calculation	LHC, √s = 14 TeV m _H = 160 GeV
MRST 2006 → MSTW2008	-13% of LO

alles

*) Includes full NNLO result plus all-order resummation of logarithmically enhanced terms

Gluon fusion:

- How large are the uncertainties on the cross section?
 - Uncertainties from renormalization and factorization scale

For each order: bands correspond to a variation of the renormalization and factorization scale by factors of 2: $m_R = m_F = m_H/2 \quad \leftarrow \rightarrow m_R = m_F = 2 m_H$

Typical uncertainty: 10 – 15% (depends on scale factor, which is not well defined)

Uncertainties from structure function and α_s
 (→ next slides)

Results from HERA on the proton structure

 Large data sets and combination of the two HERA experiments (H1 and ZEUS) improve the precision on the parton distribution functions

• Important to reduce cross section uncertainties at hadron colliders;

Tevatron jet production vs. p_T and η

- Measurement in 5-6 different rapidity bins, over 9 orders of magnitude, up to p_T ~650 GeV
- Data corresponding to ~ 1 fb⁻¹ (CDF) and 0.7 fb⁻¹ (DØ)

Comparison between data and theory

- CDF and DØ agree within uncertainties
- Experimental uncertainties are smaller than the pdf uncertainties (in particular large for large x, gluon distribution)
- Updated (2009) parametrizations include these data

Structure function parametrizations

R. Thorne, Higgs cross section meeting, Freiburg, April 2010

Different PDF sets

- MSTW08 fit all previous types of data. Most up-to-date Tevatron jet data. Not most recent HERA combination of data. PDFs at LO, NLO and NNLO.
- CTEQ6.6 very similar. Not quite as up-to-date on Tevatron data. PDFs at NLO.
- NNPDF2.0 include all above except HERA jet data (not strongest constraint) and heavy flavour structure functions. Include HERA combined data. PDFs at NLO.
- HERAPDF2.0 based entirely on HERA inclusive structure functions, neutral and charged current. Use combined data. PDFs at LO, NLO.
- ABKM09 fit to DIS and fixed target Drell-Yan data. PDFs at NLO and NNLO.
- GJR08 fit to DIS, fixed target Drell-Yan and Tevatron jet data. PDFs at NLO and NNLO.

Use of HERA combined data instead of original data $\rightarrow 1 - 2.5\%$ increase in quarks at low x (depending on procedure), similar on $\alpha_S(M_Z^2)$ if free (MSTW prelim.), and somewhat less on gluon. More stable at NNLO (MSTW prelim.).

Structure function parametrizations

R. Thorne, Higgs cross section meeting, Freiburg, April 2010

Clearly some distinct variations between the various groups

Higgs gg-cross section for various SF parametrizations

R. Thorne, Higgs cross section meeting, Freiburg, April 2010

Working group in place (theory + expt.) to address these issues and to come up with LHC cross section values and estimates of the uncertainties

Significant effects, resulting from both α_s and parametrizations of parton distributions (correlated)

Vector boson fusion:

- Second largest production mode, Distinctive signature (forward jets, little jet activity in the central region)
- Sensitivity to W/Z couplings
- Moderate K-factors (NLO corrections)

Both NLO QCD and el.weak have been calculated

 Effective K-factor depends on experimental cuts

Example: typical VBF cuts $P_T(jet) > 20 \text{ GeV}$ $\eta < 4.5, \Delta \eta > 4, \eta_1 \cdot \eta_2 < 0$

Ciccolini, Denner, Dittmaier (2008)

WH / ZH associated production:

- Weak at the LHC, Relatively stronger at the Tevatron
- Allows for a Higgs-decay-independent trigger
 W → Iv, Z → II
- Sensitivity to W/Z couplings
- Moderate K-factors (NLO corrections)

Both NLO QCD and el.weak corrections available

Brein, Djouadi, Harlander, (2003) Han, Willenbrock (1990) Ciccolini, Dittmaier, Krämer (2003)

ttH associated production:

- Weak and difficult at the LHC
- Sensitivity to top-Yukawa coupling
- Moderate K-factors (NLO corrections)

NLO QCD corrections available, scale uncertainty drastically reduced

scale: $\mu_0 = m_t + m_H/2$ LHC: K ~ 1.2 Tevatron: K ~ 0.8

Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas (2001) Dawson, Reina, Wackeroth, Orr, Jackson (2001, 2003)

Some important comments:

- Huge theoretical effort !!

 (N)NLO corrections calculated for many signal and background processes during the past years
- New Tools \rightarrow Experimentalists have started to use and validate them:
 - (i) New (N)NLO Monte Carlos (also for backgrounds):
 - MCFM Monte Carlo, J. Campbell and K. Ellis, http://mcfm.fnal.gov
 - MC@NLO Monte Carlo, S.Frixione and B. Webber, www.eb.phy.cam.ar.uk/theory/webber/MCatNLO
 - T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D68, 073005 (2003)
 - E.L.Berger and J. Campbell, Phys. Rev. D70, 073011 (2004)
 - FEHIP, C. Anastasiou, K. Melnikov and F. Petriello, hep-ph/0409088 and hep-ph/0501130 (differential cross sections

through NNLO)

- HNNLO, S. Catani and M. Grazzini (2007, 2008)
- (ii) New approaches to match parton showers and matrix elements:
 (based on algorithm developed by Catani, Krauss, Kuhn and Webber (CKKW)*)
 - ALPGEN Monte Carlo + MLM matching, M. Mangano et al.
 - PYTHIA, adapted by S. Mrenna
 - SHERPA Monte Carlo, F. Krauss et al., www.physik.tu-dresden.de/~krauss/hep/index.html

Data are extremely important for validation, (some examples tomorrow)

*) S. Catani, F. Krauss, R. Kuhn, B. R. Webber, JHEP 0111 (2001) 063.

A. Denner, Workshop on Higgs boson Phenomenology, Zürich, Jan. 2009

Background processes: Les Houches '05 wishlist

Reaction	background for	existing calculations
$\mathrm{pp} ightarrow VVj$	$\mathrm{t\bar{t}H},$ new physics	WWj: Dittmaier, Kallweit, Uwer '07 WWj: Campbell, R.K.Ellis, Zanderighi '07 WWj: Binoth, Guillet, Karg, Kauer, Sanguinetti (in progress)
$pp \to t\bar{t}b\bar{b}$	$t\bar{t}H$	this talk
${ m pp} ightarrow { m t}ar{{ m t}} jj$	$t\bar{t}H$	_
${ m pp} ightarrow VV { m b}ar{ m b}$	$VBF \rightarrow \mathrm{H} \rightarrow VV, \mathrm{t}\bar{\mathrm{t}}, NP$	_
${ m pp} ightarrow VVjj$	$VBF{\to} \operatorname{H}{\to} VV$	VBF: Jäger, Oleari, Zeppenfeld '06 + Bozzi '07
${ m pp} ightarrow Vjjj$	new physics	amplitudes: Berger et al. '08, R.K.Ellis et al. '08
$\mathrm{pp} ightarrow VVV$	SUSY trilepton signal	ZZZ: Lazopoulos, Melnikov, Petriello '07 WWZ: Hankele, Zeppenfeld '07 VVV: Binoth, Ossola, Papadopoulos, Pittau '08

• NLO for $2 \rightarrow 3$ processes established

• very few calculations for $2 \rightarrow 4$, no complete calculation for pp process $e^+e^+ \rightarrow 4f$ (EW) Denner et al. '05, $e^+e^+ \rightarrow HH\nu\bar{\nu}$ (EW) Boudjema et al. '05 $\gamma\gamma \rightarrow t\bar{t}b\bar{b}$ (QCD) Lei et al. '07, $u\bar{u} \rightarrow s\bar{s}b\bar{b}$ (QCD) Binoth et al. '08

Summary on cross section calculations:

- Large progress on the theoretical side: (N)NLO calculations available for all production processes
- Gluon fusion is the dominant production channel; NNLO and NNLO + NNLL calculations available

Current uncertainties: \pm 10-15 % (scale) \pm 5 % (pdfs and α_s)

- Large progress also on Monte Carlo simulation programs
 - NLO and NNLO generators
 - Matrix element + parton shower matching approaches