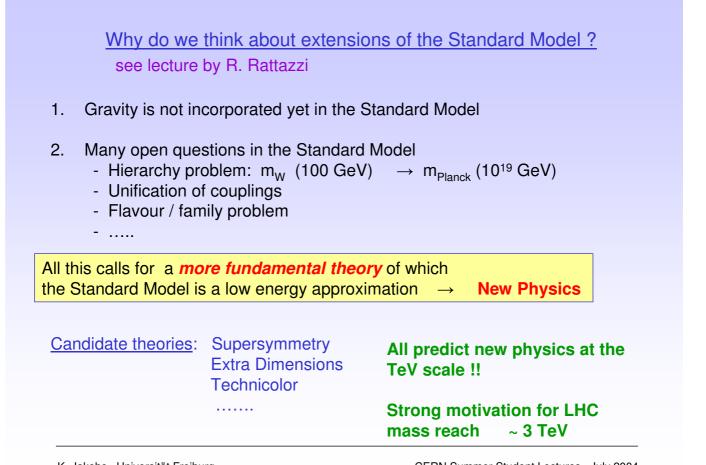
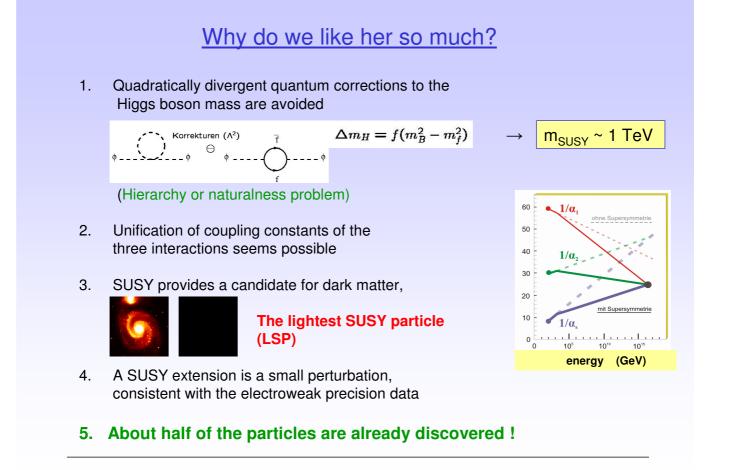
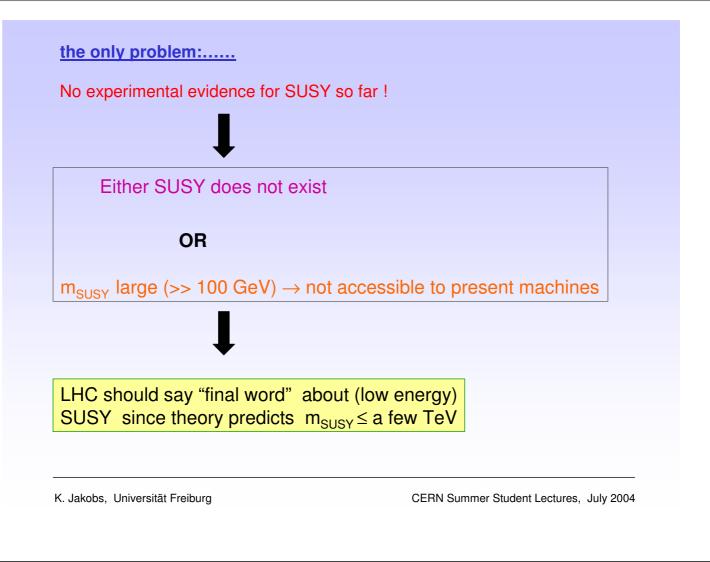

Physics at Hadron Colliders


Lecture 4

Search for Physics Beyond the Standard Model

- Supersymmetry
- Heavy particles decaying into di-leptons
- What if there are extra dimensions?


K. Jakobs, Universität Freiburg



The Search for Supersymmetry

K. Jakobs, Universität Freiburg

The Minimal Supersymmetric Standard Model (MSSM)

Symmetry between fermions (matter) and bosons (forces)

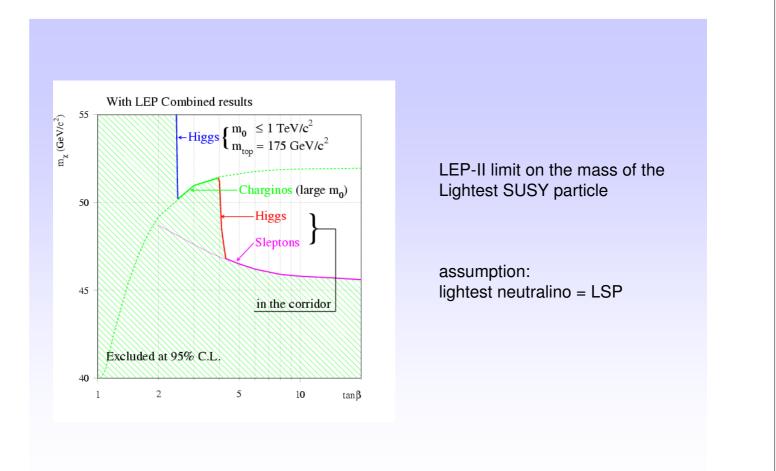
For each particle *p* with spin s, there exists a SUSY partner \tilde{p} with spin s-1/2.

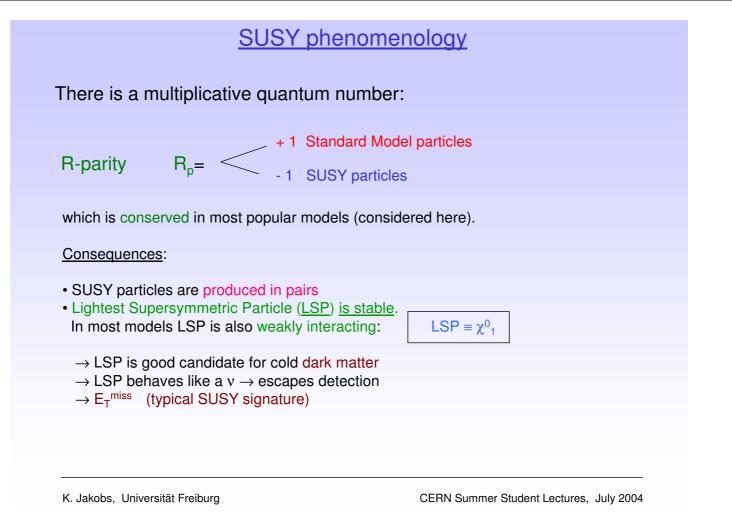
Ex.:
$$q (s=1/2) \rightarrow \qquad \tilde{q} (s=0)$$
 squarks
g (s=1) $\rightarrow \qquad \tilde{g} (s=1/2)$ gluino

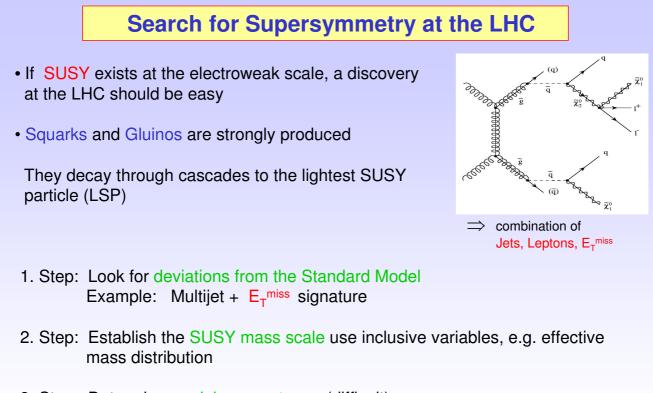
Many new particles predicted !

Here : <u>Minimal</u> Supersymmetric extension of the Standard Model (MSSM) which has minimal particle content

MSSM particle spectrum :

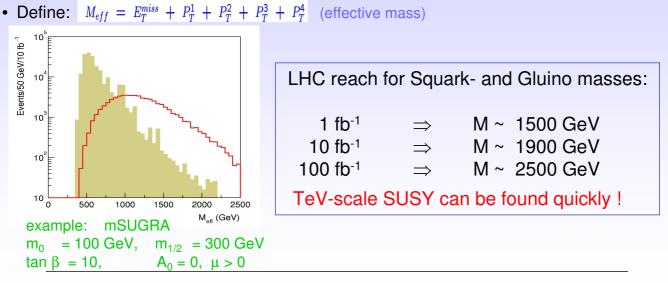

5 Higgs bosons : h, H, A, H^{\pm}


quarks	$s \rightarrow$	squarks	$\widetilde{u}, \widetilde{d},$ etc.
lepton	$s \rightarrow$	sleptons	$\tilde{e}, \tilde{\mu}, \tilde{v},$ etc.
W^{\pm}	\rightarrow	winos	$\int \rightarrow \chi^{\pm_1}, \chi^{\pm_2}$
Η±	\rightarrow	charged higgsino	$ \begin{array}{c} \rightarrow \chi^{\pm_1}, \chi^{\pm_2} \\ 2 \text{ charginos} \end{array} $
γ	\rightarrow	photino	
Ζ	\rightarrow	zino	$\begin{array}{c} \rightarrow \chi^{0}_{1,2,3,4} \\ 4 \text{ neutralinos} \end{array}$
h, H	\rightarrow	neutral higgsino	J
g	\rightarrow	gluino	\widetilde{g}

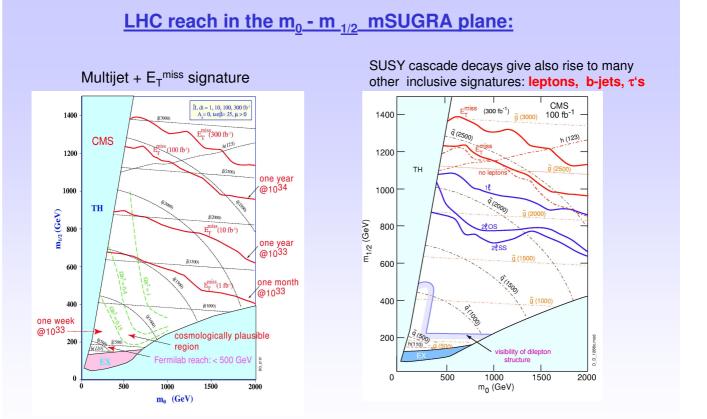

Masses not known. However charginos/neutralinos are usually lighter than squarks/sleptons/gluinos.

Present limits :	m (sleptons, charginos)	>	90-100 GeV	LEP II	
	m (squarks, gluinos)	>	250 GeV	Tevatron Run 1	
	m (LSP, lightest neutralin	10) >	~ 45 GeV	LEP II	

K. Jakobs, Universität Freiburg

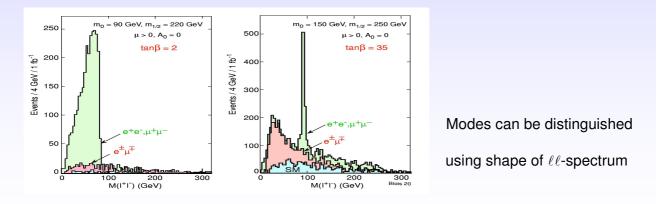


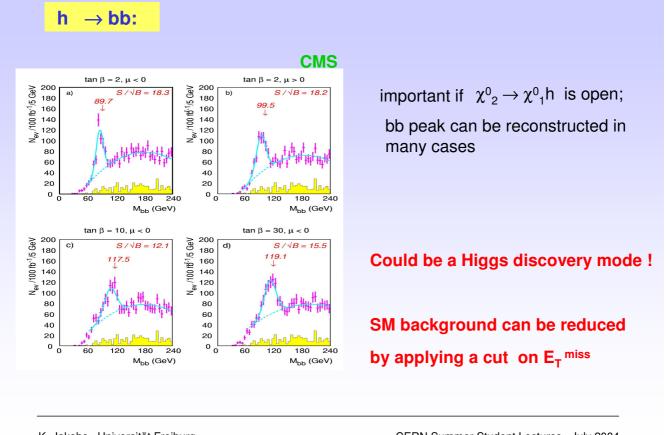
3. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations


Squarks and Gluinos

- Strongly produced, cross sections comparable to QCD cross sections at same Q²
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{jet} > 4$, $E_T > 100, 50, 50, 50 \text{ GeV}$, $E_T^{miss} > 100 \text{ GeV}$

K. Jakobs, Universität Freiburg

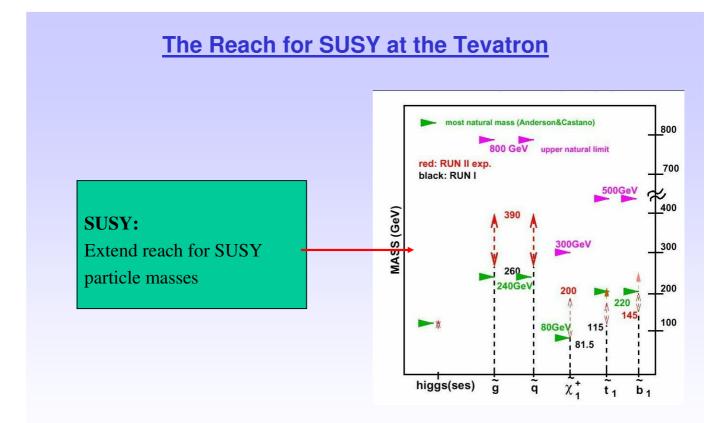

CERN Summer Student Lectures, July 2004


Expect multiple signatures for TeV-scale SUSY

Determination of model parameters

- Invisible LSP ⇒ no mass peaks, but kinematic endpoints
 ⇒ mass combinations
- Simplest case: $\chi_2^0 \rightarrow \chi_1^0 \ell^+ \ell^-$ endpoint: $M_{\ell\ell} = M(\chi_2^0) M(\chi_1^0)$ (significant mode if no $\chi_2^0 \rightarrow \chi_1^0 Z, \chi_1^0 h, \ell \ell$ decays)
- Require: 2 isolated leptons, multiple jets, and large E_T^{miss}

K. Jakobs, Universität Freiburg



Strategy in SUSY Searches at the LHC:

- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ 's , long lived sleptons)
- Look for ℓ^{\pm} , $\ell^+ \ell^-$, $\ell^{\pm} \ell^{\pm}$, b-jets, τ 's
- End point analyses, global fit

K. Jakobs, Universität Freiburg

Can LHC probe extra dimensions ?

- Much recent theoretical interest in models with extra dimensions (Explain the weakness of gravity (or hierarchy problem) by extra dimensions)
- New physics can appear at the TeV-mass scale, i.e. accessible at the LHC
- · Gravitons propagating in the extra dimensions will appear as massive states

 \rightarrow gG , qg \rightarrow qG , q $\overline{q} \rightarrow$ Gg

Example: Search for direct Graviton production

 \Rightarrow Jets or Photons with E_{T}^{miss}

K. Jakobs, Universität Freiburg

gg

 $q \overline{q} \rightarrow G \gamma$

CERN Summer Student Lectures, July 2004

SM wall

G

G

Bulk

Search for escaping gravitons: Jet + E_{T}^{miss} search: $G_N^{-1} = 8\pi R^{\delta} M_D^{2+\delta}$ δ : # extra dimensions √s = 14 TeV M_D = scale of gravitation [W(ev), [W(uv)] 106 R = radius (extension) 🛛 JW(TV) JZ(vv) 105 total background 10 nal 8=2 M. = 8 TeV M_Dmax 9.1, 7.0, 6.0 TeV = 103 for 10 δ = 2, 3, 4 10 **Extension: 10**⁻⁵, 10⁻¹⁰, 10⁻¹² m E_miss (GeV) "LHC experiments are also sensitive to Main backgrounds: this field of physics" \rightarrow robust detectors jet+Z(\rightarrow vv), jet+W \rightarrow jet+(e, μ , τ)v

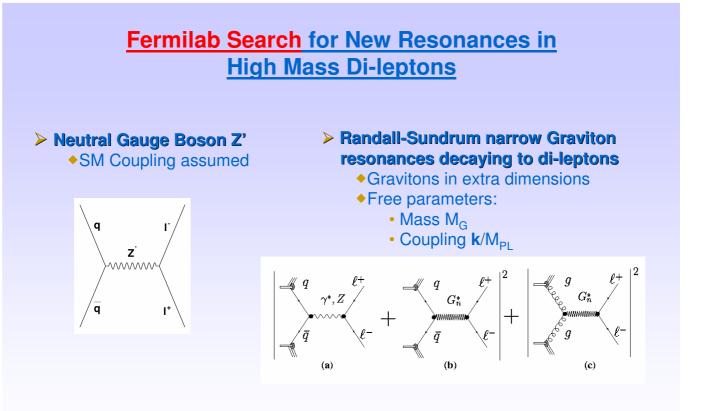
K. Jakobs, Universität Freiburg

More crazy ideas?

- 1. What about heavy new resonances decaying into lepton pairs
 - examples: W ' and Z'

use again leptonic decay mode to search for them: $\begin{array}{cc} W' \to {\ensuremath{\ell}\,} \nu \\ Z' \to {\ensuremath{\ell}\,} {\ensuremath{\ell}\,} \end{array}$

Increased sensitivity in the Tevatron Run II

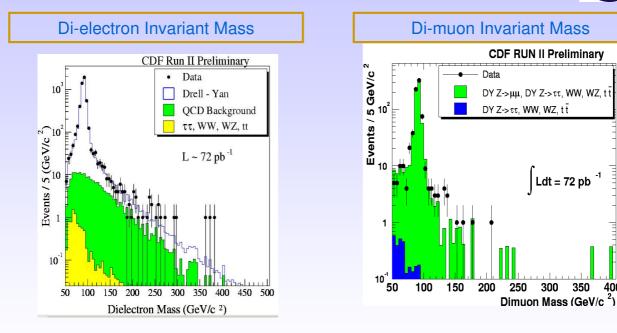

2. What about Leptoquarks ?

Particles that decay into leptons and quarks (violate lepton and baryon number; appear in Grand Unified theories)

here: search for low mass Leptoquarks (TeV scale)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, July 2004



Main background from Drell-Yan pairs

Search for New Resonances in **High Mass Di-leptons**

400

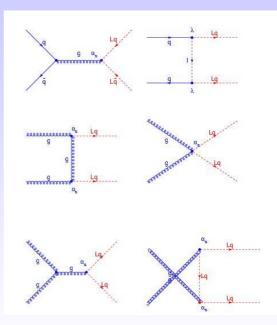
Data are consistent with SM background. No excess observed.

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, July 2004

Search for 1. Generation scalar Leptoquarks

Production


- $qg \rightarrow LQ + LQ$
- $gg \rightarrow LQ + LQ$
- qq \rightarrow LQ + LQ

Decay

- LQLQ \rightarrow l+l-qq,
- LQLQ \rightarrow l[±]vqq,
- LQLQ \rightarrow vvqq

Experimental signature \geq

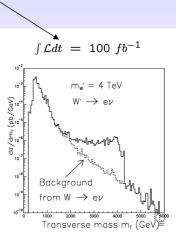
- 2 high pt isolated leptons + jets
- one isolated lepton + MET + jets
- MET + jets

Search for First Generation scalar LQ

Event Selection:

- 2 central electrons with $E_T > 25 \text{ GeV}$
- 2 jets with $E_T(j_1) > 30$ and $E_T(j_2) > 15$ GeV
- Z veto
- Cuts on *sum* of jet and electron E_T's to reject SM backgrounds
- Expected Bkg: 3.4 ± 3.2 events (DY+2 jet events, tt)

0 events observed in 72 pb-1. M(LQ) > 230 GeV/c² @ 95% CL (Run I: 220 GeV/c²)


LHC mass reach: 1.5 – 2 TeV

CERN Summer Student Lectures, July 2004

LHC reach for other BSM Physics(a few examples for 30 and 100 fb⁻¹)30 fb⁻¹100 fb⁻¹

	50 15	100 15
Excited Quarks	M (q*) ~ 3.5 TeV	M (q*) ~ 6 TeV
$Q^* \rightarrow q \gamma$		
Leptoquarks	M (LQ) ~1 TeV	M (LQ) ~ 1.5 TeV
$Z^{\iota} \to \ell \ell, jj$	M (Z') ~ 3 TeV	M (Z') ~ 5 TeV
$W' \rightarrow \ell \nu$	M (W') ~ 4 TeV	M (W') ~ 6 TeV
Compositeness (from Di-jet)	Λ ~ 25 TeV	Λ ~ 40 TeV

K. Jakobs, Universität Freiburg

Conclusions

- 1. Experiments at Hadron Colliders have a huge discovery potential
 - SM Higgs: full mass range, already at low luminosity Vector boson fusion channels improve the sensitivity significantly
 - MSSM Higgs: parameter space covered
 - SUSY: discovery of TeV-scale SUSY should be easy, determination of model parameters is more difficult
 - Exotics: experiments seem robust enough to cope with new scenarios
- 2. Experiments have also a great potential for precision measurements
 - m_w to ~15 MeV
 - $-m_{top}$ to $\sim 1 \text{ GeV}$
 - $\Delta \dot{m_{H}} / m_{H}$ to 0.1% (100 600 GeV)
 - + gauge couplings and measurements in the top sector

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, July 2004

LHC : most difficult and ambitious high-energy physics project ever realized (human and financial resources, technical challenges, complexity,)

It has a crucial role in physics: can say the final word about

- -- SM Higgs mechanism
- -- low-energy SUSY and other TeV-scale predictions

It will most likely modify our understanding of Nature

V	Ve hope that many of you will join us in the discovery enterprise
•	n case you have any questions:
р	lease do not hesitate to contact me: karl.jakobs@uni-freiburg.de
-	
	ransparencies will be made available as .pdf files on the web official summer school pages)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, July 2004

End of lectures

