Physics at Hadron Colliders

Lecture 3

Search for the Higgs boson

- Higgs boson production and decays
- LHC discovery potential
- What can be covered at the Tevatron?

The Search for the Higgs Boson

- "Revealing the physical mechanism that is responsible for the breaking of electroweak symmetry is one of the key problems in particle physics"
- "A new collider, such as the LHC must have the potential to detect this particle, should it exist."

1 U (\$ 1, \$ 2,)

Kreis der Minima

What do we know about the Higgs Boson today

- Needed in the Standard Model to generate particle masses
- Mass not predicted by theory, except that $m_H < \sim 1000 \text{ GeV}$
- m_H > 114.4 GeV from direct searches at LEP
- Indirect limits from electroweak precision measurements (LEP, Tevatron and other experiments....)

Results of the precision el.weak measurements: (all experiments, July 2006):

 $M_{H} = 85 (+39) (-28) GeV/c^{2}$ $M_{H} < 166 GeV/c^{2} (95 \% CL)$

 \rightarrow Higgs boson could be around the corner !

Properties of the Higgs Boson

 The decay properties of the Higgs boson are fixed, if the mass is known:

H
W⁺, Z, t, b, c,
$$\tau^+$$
,...., g, γ
W⁻, Z, t, b, c, τ^- ,..., g, γ

$$\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2}\pi} m_f^2(M_H^2) M_H$$

$$\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2}\pi} M_H^3 (1 - 4x + 12x^2) \beta_V$$

where: $\delta_Z=1, \delta_W=2, \ x=M_V^2/M_V^2, \ eta=$ velocity

$$\Gamma(H \to gg) = \frac{G_F \ \alpha_s^2(M_H^2)}{36\sqrt{2}\pi^3} \ M_H^3 \ \left[1 + \left(\frac{95}{4} - \frac{7N_f}{6}\right) \frac{\alpha_s}{\pi} \right]$$

$$\Gamma(H \to \gamma\gamma) = \frac{G_F \ \alpha^2}{128\sqrt{2}\pi^3} \ M_H^3 \ \left[\frac{4}{3}N_C e_t^2 - 7 \right]^2$$

Higgs boson likes mass:

It couples to particles proportional to their mass

→ decays preferentially in the heaviest particles kinematically allowed

K. Jakobs, Universität Freiburg

Properties of the Higgs Boson

Upper limit on Higgs boson mass: from unitarity of WW scattering $M_{H} < 1 \text{ TeV/c}^2$

Higgs Boson Production at Hadron Colliders

(i) Gluon fusion

(ii) Vector boson fusion

(iii) Associated production (W/Z, tt)

K. Jakobs, Universität Freiburg

Higgs Boson Production cross sections

Higgs Boson Decays at Hadron Colliders

<u>at high mass:</u> Lepton final states are essential (via $H \rightarrow WW$, ZZ)

<u>at low mass:</u> Lepton and Photon final states (via $H \rightarrow WW^*$, ZZ*)

Tau final states

The dominant **bb decay mode** is only useable in the associated production mode (ttH) (due to the huge QCD jet background)

How can one claim a discovery ?

Suppose a new narrow particle $X \rightarrow \gamma \gamma$ is produced:

 $\sqrt{N_B}$ = error on number of background events, for large numbers otherwise: use Poisson statistics

S > 5 : signal is larger than 5 times error on background. Gaussian probability that background fluctuates up by more than 5σ : $10^{-7} \rightarrow$ discovery

K. Jakobs, Universität Freiburg

Two critical parameters to maximize S

1. <u>Detector resolution</u>:

If σ_m increases by e.g. a factor of two, then need to enlarge peak region by a factor of two to keep the same number of signal events

→ N_B increases by ~ 2 (assuming background flat)

⇒ S = N_S/
$$\sqrt{N_B}$$
 decreases by $\sqrt{2}$
⇒ S ~ 1 / $\sqrt{\sigma_m}$

"A detector with better resolution has larger probability to find a signal"

<u>Note</u>: only valid if $\Gamma_{\rm H} \ll \sigma_{\rm m}$. If Higgs is broad detector resolution is not relevant.

2. Integrated luminosity :

Discovery potential in mass range from \sim 130 to \sim 600 GeV/c²

A simulated $H \rightarrow ZZ \rightarrow \boldsymbol{\ell} \boldsymbol{\ell} \boldsymbol{\ell} \boldsymbol{\ell}$ event

K. Jakobs, Universität Freiburg

A simulated $H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$ event at high luminosity (pile-up)

→ most demanding channel for EM calorimeter performance : energy and angle resolution, acceptance, γ /jet and γ / π^0 separation

ATLAS and CMS: complementary performance

K. Jakobs, Universität Freiburg

A simulated H $\rightarrow \gamma\gamma$ event in ATLAS

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2006

$H \rightarrow \gamma \gamma \text{ (cont.)}$

Signal / background ~ 4% (Sensitivity in mass range $100 - 140 \text{ GeV/c}^2$) background (dominated by $\gamma\gamma$ events *) can be determined from side bands important: $\gamma\gamma$ -mass resolution in the calorimeters, γ / jet separation

*) detailed simulations indicate that the γ -jet and jet-jet background can be suppressed to the level of 10-20% of the irreducible $\gamma\gamma$ -background

CMS crystal calorimeter

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2006

"If the Standard Model Higgs particle exists, it will be discovered at the LHC !"

The full allowed mass range

from the LEP limit (~114 GeV) up to theoretical upper bound of ~1000 GeV

can be covered using the two "safe" channels

 $\begin{array}{ll} H \rightarrow ZZ \rightarrow \ell \ell \ \ell \ell & \mbox{and} \\ H \rightarrow \gamma \gamma \end{array}$

 $\frac{\text{More difficult channels can also be used: } \underline{\text{Vector Boson Fusion}}}{\underline{\text{qq H}} \rightarrow \underline{\text{qq WW}} \rightarrow \underline{\text{qq } \ell \nu \ell \nu}}$

Motivation: Increase discovery potential at low mass Improve measurement of Higgs boson parameters (couplings to bosons, fermions)

Distinctive Signature of:

- two forward tag jets
- little jet activity in the central region
 ⇒ central jet Veto

Forward jet tagging

Rapidity distribution of tag jets VBF Higgs events vs. tt-background

Rapidity separation

Transverse mass distributions: clear excess of events above the background from tt-production

Presence of a signal can also be demonstrated in the $\Delta \phi$ distribution (i.e. azimuthal difference between the two leptons)

 $H \rightarrow \tau \tau$ decay modes visible for a SM Higgs boson in vector boson fusion

- large boost (high-P_T Higgs)
 - → collinear approximation: assume neutrinos go in the direction of the visible decay products
 - \rightarrow Higgs mass can be reconstructed
- main background: Z jj, $Z \rightarrow \tau \tau$

ATLAS Higgs discovery potential for 30 fb⁻¹

- Full mass range can already be covered after a few years at low luminosity
- Several channels available over a large range of masses

Comparable situation for the CMS experiment

Can LHC also discover Higgs bosons in a supersymmetric world ?

SUSY:5 Higgs particlesH, h, AH⁺, H⁻

determined by two SUSY model parameters: m_A , tan β

One of the Higgs bosons is light: $m_h < 135 \text{ GeV}$

The others will most likely be heavy !

LHC discovery potential for MSSM Higgs bosons

 m_{SUSY} = 1 TeV, m_{top} = 175 GeV/c²

Two or more Higgs can be observed over most of the parameter space \rightarrow disentangle SM / MSSM

- Plane fully covered (no holes) at low L (30 fb⁻¹)
- Main channels : $h \rightarrow \gamma \gamma$, tth $h \rightarrow bb$,

$$A/H
ightarrow \mu\mu, au au$$
 , $H^{\pm}
ightarrow au$ \

LHC discovery potential for SUSY Higgs bosons

Parameter space is fully covered:

"Also in a SUSY world, Higgs bosons will be discovered at the LHC"

K. Jakobs, Universität Freiburg

 \rightarrow

Determination of Higgs Boson Parameters

- 1. Mass
- 2. Couplings to bosons and fermions

Measurement of the Higgs boson mass

Dominated by ZZ \rightarrow 4ℓ and $\gamma\gamma$ resonances !

well identified, measured with a good resolution

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV / c^2)

Measurement of Higgs Boson Couplings

Global likelihood-fit (at each possible Higgs boson mass) Input: measured rates, separated for the various production modes

Output: Higgs boson couplings, normalized to the WW-coupling

Relative couplings can be measured with a precision of 10-20% (for 300 fb⁻¹)

Can the Higgs boson already

be discovered

at Fermilab

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2006

Impressions from Fermilab

K. Jakobs, Universität Freiburg

Impressions from Fermilab (cont.)

Search channels at the Tevatron

• important production/decay modes: associated WH and ZH + gluon fusion with H \rightarrow WW \rightarrow $\ell_{V} \ell_{V}$

hopeless:	gluon fusion in $H \rightarrow \gamma\gamma$, 4 ℓ	(rate limited)
	σ BR (H \rightarrow ZZ \rightarrow 4 ℓ) = 0.07 fb	(M _H =150 GeV)

Mass range 110 - 130 GeV:	LHC	Triggering:
$* WH \rightarrow Iv bb$	(৺) weak	slightly easier at the Tevatron:
$* ZH \rightarrow I^+I^- bb$	weak	- better P _T ^{miss} -resolution
* ZH $\rightarrow vv$ bb	Ø (trigger)	- track trigger at level-1
$*$ ZH \rightarrow bb bb	Ø (trigger)	(Seems to work)
∗ ttH → lv b jjb bb	¥	

Mass range 150 - 180 GeV:	LHC
$* H \rightarrow WW^{(*)} \rightarrow Iv Iv$	✓
* WH \rightarrow WWW ^(*) \rightarrow Iv Iv Iv	¥
* WH \rightarrow WWW ^(*) \rightarrow I+ ν I+ ν jj	

Background:	
electroweak production: $\sim 10 \text{ x larger}$ at the	ТНС
QCD production (e.g, tt):	LIIC
~ 100 x larger at the	LHC

WH Signals at the LHC and the Tevatron

 $M_{\rm H} = 120 \text{ GeV}, 30 \text{ fb}^{-1}$

most important: control of the background shapes, very difficult!

Tevatron discovery potential for a light Higgs Boson

combination of both experiments and all channels (discovery in a single channel not possible)

Results from the

present

Run II data

typically, data corresponding to $300 - 350 \text{ pb}^{-1}$ analyzed

K. Jakobs, Universität Freiburg

Low Mass: WH \rightarrow ev bb

Data sample: 382 pb-1

<u>Event selection</u>: 1 e, ($|\eta| < 1.1$, $E_T > 20$ GeV), $E_T^{miss} > 20$ GeV, 2 jets ($E_T > 20$ GeV) additional b-tags

Higgs boson searches at the Tevatron

- Many analyses (in many different channels) presented
- No excess above SM background

 \Rightarrow Limits extracted

Combination of current analyses (DØ): for ~325 pb⁻¹

 \rightarrow upper limit about 15 times larger than Standard Model prediction at 115 GeV/c^2

Summary on Higgs Boson Searches

- Electroweak precision data from LEP/SLC/Tevatron suggest a light Higgs boson
- Should a SM Higgs boson or MSSM Higgs bosons exist, they cannot escape detection at the LHC
- Tevatron might have a $3-\sigma$ discovery windows at low mass, however, much depends on the detector and accelerator performance.

Der Higgs Mechanismus, eine Analogie:

Higgs-Hintergrundfeld erfüllt den Raum

Ein Teilchen im Higgs-Feld... Prof. D. Miller UC London

... Widerstand gegen Bewegung ... Trägheit ↔ Masse