Higgs boson searches at hadron colliders

Part 2

- SM Higgs search at the Tevatron
 - Low and high mass channels
 - Statistical combination
 - Prospects for the next years
- Test of Monte Carlo generators

Cross Sections and Production Rates

Rates for $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$: (LHC)

 Inelastic proton-proton reactions: 	10 ⁹ / s
 bb pairs tt pairs	5 10 ⁶ /s 8 /s
• $W \rightarrow e_V$ • $Z \rightarrow e_e$	150 /s 15 /s
 Higgs (150 GeV) Gluino, Squarks (1 TeV) 	0.2 /s 0.03 /s

Large production rates, however, overwhelmed by large backgrounds from:

- jet production via QCD processes

- tt production (for lepton final states)
- W/Z + jet production (lepton final states)

Higgs Boson Production cross sections

 $qq \rightarrow W/Z + H$ cross sections $gg \rightarrow H$

~10 x larger at the LHC ~70-80 x larger at the LHC

Useful Higgs Boson Decays at Hadron Colliders

 $\begin{array}{l} \underline{\text{at high mass:}}\\ \textbf{Lepton} \text{ final states}\\ (\text{via H} \rightarrow \text{WW}, \text{ZZ}) \end{array}$

<u>at low mass:</u> Lepton and Photon final states (via $H \rightarrow WW^*$, ZZ*)

Tau final states

The dominant **bb decay mode** is only useable in the associated production mode (ttH, W/Z H)

(due to the huge QCD jet background, leptons from W/Z or tt decays)

Detector requirements for Higgs physics

- Good measurement of leptons and photons with large transverse momentum ${\rm P}_{\rm T}$
- Good measurement of missing transverse energy (E_T^{miss}) and energy measurements in the forward regions ⇒ calorimeter coverage down to η ~ 5
- Jet tagging in the forward regions (Vector boson fusion process)

• Efficient b-tagging and τ identification (silicon strip and pixel detectors)

The accelerators

K. Jakobs, Universität Freiburg

The Tevatron Collider at Fermilab

- Proton antiproton collider
 - 6.5 km circumference
 - Beam energy 0.98 TeV, $\sqrt{s} = 1.96$ TeV
 - 36 bunches, 396 ns separation (time between crossings)
- <u>2 Experiments</u>: CDF and DØ
- Main challenges:
 - Antiproton production and storage
 - \rightarrow luminosity, stability of operation

Collider is running in so called Run II (since 2001) [Run I from 1990 – 1996, int. luminosity: 0.125 fb⁻¹, Top quark discovery]

- March 2001 Feb 2006: Run II a, ∫ L dt = 1.2 fb⁻¹
- * July 2006 2010 (11 / 12)?: Run II b, $\int L dt = 10 12 \text{ fb}^{-1}$

Tevatron performance

Peak luminosities of the machine as a function of time

- Peak luminosity of 4.02 · 10³² cm⁻² s⁻¹
- Corresponds to ~10 interactions per bunch crossing (superposition of minimum bias events on hard collision)

The integrated Tevatron luminosity (until June 2010)

- After a slow start-up (2001 2003), the Tevatron accelerator has reached an excellent performance
- Today, Tevatron delivers a data set equal to Run I (~100 pb⁻¹) every 2 weeks
- Integrated luminosity delivered to the experiments so far ~ 8.8 fb⁻¹
- Anticipate an int. luminosity of ~10 fb⁻¹ until end of 2010, with a potential increase to 12 - 13 fb⁻¹, if Tevatron will run until end of 2011

Data corresponding to an int. luminosity of up to 5.4 fb⁻¹ analyzed...

Challenges with high luminosity

Min. bias pileup at the Tevatron, at $0.6 \cdot 10^{32} \text{ cm}^2 \text{s}^{-1}$

... and at 2.4 ·10³² cm²s⁻¹

The Large Hadron Collider	A	111/1
E F III	HAM	
		XI
11 TEPASS		
		ti ti
	Beam energy	7 TeV
	(nominal)	
	SC Dipoles Stored Energy	1232, 15 m, 8.33T 362 MJ/Beam
	Bunch spacing Particles/Bunch	25 ns 1.15 ·10 ¹¹
became a reality in 2008		

Comparison of the LHC and Tevatron machine parameters

	LHC (design)	Tevatron (achieved)
Centre-of-mass energy	14 TeV	1.96 TeV
Number of bunches	2808	36
Bunch spacing	25 ns	396 ns
Energy stored in beam	360 MJ	1 MJ
Peak Luminosity	10 ³³ -10 ³⁴ cm ⁻² s ⁻¹	4 x 10 ³² cm ⁻² s ⁻¹
Integrated Luminosity / year	10-100 fb ⁻¹	~ 2 fb ⁻¹

- 7 times more energy (after initial 3.5 TeV phase)
- Factor 3-30 times more luminosity
- Physics cross sections factor 10-100 larger

The Search for

The Higgs boson at the Tevatron

K. Jakobs, Universität Freiburg

Searches for a low mass Higgs boson at the Tevatron

m_H < 135 GeV:

Associated production WH and ZH with $H \rightarrow bb$ decay

Main low mass search channels

 $l + E_T^{miss} + bb: WH \rightarrow l \nu bb$ Largest VH production cross section, however, severe backgrounds

 $\ell\ell$ +bb: $ZH \rightarrow \ell\ell bb$ Less background than WH Smallest Higgs signal

 E_T^{miss} + bb: $ZH \rightarrow \nu\nu bb$ 3x more signal than $ZH \rightarrow \ell\ell bb$ (+ $WH \rightarrow \ell\nu bb$ when lepton non-identified) Large backgrounds which are difficult to handle

K. Jakobs, Universität Freiburg

Number of produced events (incl. decays) per 1 fb⁻¹

<u>WH (H \rightarrow bb) Signal, m_H = 115 GeV:</u> $\sigma \times BR = 14$ fb (per lepton)

Large backgrounds: W+jet production

W+bb: $\sigma \times BR = 4 \times 10^4$ fb W+cc: $\sigma \times BR = 1 \times 10^5$ fb W+qq: $\sigma \times BR = 2 \times 10^6$ fb

Additional backgrounds:WW: $\sigma \times BR = 13 \text{ pb}$ tt: $\sigma \times BR = 7 \text{ pb}$ single top: $\sigma \times BR = 3 \text{ pb}$

+ multijet QCD background

General Search Strategy

Example: $WH \rightarrow \ell_V bb$

- (i) Select events consistent with Z/W + 2 jets (large W+jet and Z+jet backgrounds)
- (ii) Apply b-tagging (most discriminating variable: dijet inv. mass)
 - even after b-tagging S:B ratio remains small, \rightarrow needs advanced (multivariate) analysis tools
- (iii) Optimize separation power by multivariate discrimination (neutral networks, matrix elements,)
 - Major input variables:
 - dijet mass
 - P_T of the dijet system
 - P_T of W/Z
 - Sphericity
 - ΔR_{jj} , $\Delta \phi_{jj}$, $\Delta \eta_{jj}$

b tagging

- Several methods have been established at the Tevatron during the past years:
 - lifetime tags, signed impact parameters
 - reconstructed secondary vertices
- Most powerful methods combine information using neural networks
- Typical performance figures:

D0: Neural net (Impact parameter, sec. vertex) "Tight": 70% b-tag efficiency, 3.5% mistag "Loose": 50% b-tag efficiency, 0.3% mistag

Similar results for CDF

CDF discriminant output:

- (iv) Split data into several sub-samples with different final state topologies
 - maximize sensitivity due to S:B variations
 - different background composition in the different classes (e.g. 1 b-tag, 2 b-tags)
- (v) Final step: Statistical combination of all sub-samples in each experiment and of both experiments

Example: WH $\rightarrow \ell v$ bb

Sensitivity in the low mass region

- Limits for individual channels a factor of 5-10 away from SM cross section at $m_{\rm H} = 115 \text{ GeV}$
- \rightarrow The combination of all contributing channels is crucial

Excluded cross section: (95% C.L., m _H = 115 GeV)		
D0:	$\sigma_{95} = 6.9 \cdot \sigma_{SM}$	
CDF:	$\sigma_{95} = 4.3 \cdot \sigma_{SM}$	

- Main systematic uncertainties for low mass channels:
 - Signal (total 15%): cross section, b-tagging, ID efficiencies
 - Background (total 25-30%): normalization of W/Z+jets heavy flavour samples, modelling of the multijet and W/Z+jet backgrounds, b-tagging

Searches for a high mass Higgs boson at the Tevatron

$$\begin{pmatrix} \mathsf{m}_{\mathsf{H}} > 135 \text{ GeV}: \\ \mathsf{gg} \to \mathsf{H} \to \mathsf{WW} \to \mathsf{ev} \mathsf{ev} \end{pmatrix}$$

K. Jakobs, Universität Freiburg

Number of produced events (incl. decays) per 1 fb⁻¹

 $gg \rightarrow H \rightarrow WW \rightarrow II_{VV}$) Signal, $m_{\underline{H}} = 160 \text{ GeV}$: $\sigma \times BR = 40 \text{ fb}$ Associated WH and qqH production increase signal by ~30%

Significant di-boson backgrounds:

<u>Di-Boson</u> WW: $\sigma \times BR = 13 \text{ pb}$ WZ: $\sigma \times BR = 4.0 \text{ pb}$ ZZ: $\sigma \times BR = 1.5 \text{ pb}$

Additional backgrounds:tt: $\sigma \times BR = 7 \text{ pb}$ single top: $\sigma \times BR = 3 \text{ pb}$

+ multijet QCD background

$H \rightarrow \ell^+ \ell^- \nu \nu$

- Dominant decay for $m_H > 135 \text{ GeV}$: $H \rightarrow W^*W$
- Leptons in final state
 - \rightarrow exploitation of gg \rightarrow H is possible
- Signal contribution also from W/Z+H and qqH production
 - \rightarrow Consider all sources of opposite sign di-lepton + $~E_{T}^{miss}$

Split analysis in ee, $\mu\mu$, and $e\mu$ final states

- Backgrounds: Drell-Yan, dibosons, tt, W+jet, multijet production

 $H \rightarrow \ell^+ \ell^- \nu \nu$

To increase sensitivity:

DØ: Split the samples according to lepton flavour and combines the result

CDF: Split samples into jet multiplicity and lepton ID criteria: different signal and background composition

Veto events with tight b-tagged jet

CERN Academic Training Lectures, June 2010

K. Jakobs, Universität Freiburg

 $H \rightarrow \ell^+ \ell^- \nu \nu$

Excluded cross section per experiment:

Expected limits:CDF: $\sigma_{95} = 1.03 \cdot \sigma_{SM}$ D0: $\sigma_{95} = 1.36 \cdot \sigma_{SM}$ Observed limits:CDF: $\sigma_{95} = 1.13 \cdot \sigma_{SM}$ D0: $\sigma_{95} = 1.55 \cdot \sigma_{SM}$

K. Jakobs, Universität Freiburg

Combination → **limit setting**

Combination of all channels and of the two experiments: (note that exclusion is not possible in a single channel / experiment)

K. Jakobs, Universität Freiburg

List of final states considered

- 90 mutually exclusive final states
- New analyses have been added during 2009
- Acceptance improvements, e.g. loose lepton ID or high p_T tracks

TABLE II: Luminosity, explored mass range and references for the different processes and final state ($\ell = e, \mu$) for analyses

Channel	Luminosity (fb^{-1})	m_H range (GeV/ c^2)	Reference
$WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $3 \times (TDT, LDT, ST, LDTX)$	4.3	100-150	[4]
$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $2 \times (TDT, LDT, ST)$	4.3	100-150	5
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (TDT,LDT,ST)	3.6	105-150	[6]
$ZH \to \ell^+ \ell^- b\bar{b}$ (low,high s/b)×(TDT,LDT,ST)	4.1	100-150	[7]
$H \to W^+W^-$ (low,high s/b)×(0,1 jets)+(2+ jets)+Low- $m_{\ell\ell}$	4.8	110-200	8
$WH \rightarrow WW^+W^- \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$	4.8	110-200	[8]
$H + X \rightarrow \tau^+ \tau^- + 2$ jets	2.0	110-150	[9]
$WH + ZH ightarrow jjbar{b}$	2.0	100-150	[10]

TABLE III: Luminosity, explored mass range and references for the different processes and final state $(\ell = e, \mu)$ for analyses

Channel	Luminosity (fb^{-1})	m_H range (GeV/ c^2)	Reference
$WH \rightarrow \ell \nu b \bar{b} = 2 \times (ST, DT)$	5.0	100-150	[11]
$VH \rightarrow \tau \tau b \bar{b} / q \bar{q} \tau \tau$	4.9	105-145	[12, 13]
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (ST,TLDT)	5.2	100-150	[14]
$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ 2×(ST,DT)	4.2	100-150	[15]
$WH \to WW^+W^- \to \ell^{\pm}\nu\ell^{\pm}\nu$	3.6	120-200	[16, 17]
$H \to W^+ W^- \to \ell^\pm \nu \ell^\mp \nu$	5.4	115-200	[18]
$H \rightarrow \gamma \gamma$	4.2	100-150	[19]
$t\bar{t}H \rightarrow t\bar{t}b\bar{b} = 2 \times (ST, DT, TT)$	2.1	105-155	[20]

"Tevatron exotic" channels

$H \rightarrow \gamma \gamma$

WH $\rightarrow \tau v$ bb

"Tevatron exotic" channels

$W/Z H \rightarrow qq bb$

List of channels that enter the combination (cont.)

Channels difficult to add (for comparison of data vs. expectations)
 → use bins in S/B

Hypothesis testing

The observed data are subjected to a likelihood ratio test of two hypothetical scenarios: Background scenario (no Higgs signal assumed) Signal + Background scenario (Higgs signal with assumed mass added)

Compute likelihood for B and (S+B) hypothesis

Likelihood ratio $Q := L_{S+B} / L_B$

Test statistics: LLR : = - 2 ln Q (log-likelihood ratio (LLR))

Distribution (pdf) of -2 In Q can be calculated in MC experiments for (S+B) and B-hypothesis

Example from LEP: Likelihood ratio distributions for different assumed Higgs boson mass values

Difference between the median values between the S+B and B hypothesis is a measure of the sensitivity

LEP: Observed and expected behavior of -2 In Q

Broad minimum around 115 GeV/c²

Neg. value of -2 ln Q in data indicates that the (S+B) hypothesis is more favored than the B-hypothesis,

however, at low significance

Tevatron 2010: Distribution of the LLR

- Sensitivity is largest around 165 GeV
- Observed LLR is consistent with background hypothesis, although at low mass, S+B is slightly favoured

Systematic uncertainties

Analyses are affected by significant systematic uncertainties; Example: The two most significant DØ analyses:

$WH \rightarrow e\nu b\bar{b}$	Source	$H \rightarrow W^+ W^-$
6.1	Luminosity	6.1
-	Jet Energy Scale	3.0
3.0	Jet ID	1-2
5.0	Tau Energy Scale/ID	-
-	Electron ID/Trigger	3-10
4.0	Muon ID/Trigger	7.7 - 10
-	<i>b</i> -Jet Tagging	-
3_0	Background σ	7-10
5-5 7-20	Signal σ	11
14	Multijet	2-20
2-10	Shape-Dependent Bkgd Modeling	5-20
	$\begin{array}{c} WH \rightarrow e\nu b\bar{b} \\ \hline 6.1 \\ - \\ 3.0 \\ 5.0 \\ - \\ 4.0 \\ - \\ 3-9 \\ 7-20 \\ 14 \\ 2-10 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- Systematic uncertainties for background rates are generally several times larger than the signal expectation itself
- To minimize the degrading effect of systematic uncertainties on the search sensitivity, the individual background contributions are fitted to the data observation by maximizing a likelihood function

Nuisance parameters allow for variations within errors

• Each systematic uncertainty (incl. uncertainty on signal cross section) is folded into the signal and background expectation via Gaussian distributions (correlations preserved)

Combined Tevatron limits

Tevatron experiments set a 95% CL exclusion of a SM Higgs boson in the mass region 162–166 GeV (first direct exclusion since LEP)

At $m_H = 115 \text{ GeV}$ Expected limit: 1.8 x σ_{SM}

Observed limit: 2.7 x σ_{SM}

K. Jakobs, Universität Freiburg

Comments on this combination

- Use best knowledge on signal cross sections
 NNLO + NNLL calculations for the gluon fusion
 NLO cross sections for VBF + W/ZH associated production
- Background cross sections normalized using either experimental data or NLO calculations (e.g. MCFM for W+heavy flavour processes)
 Finally constrained via nuisance parameters in a likelihood fit
- Assessment of systematic uncertainties is difficult !

In particular treatment of signal cross section uncertainties might be considered to be optimistic Tevatron Run II Preliminary, L=2.0-5.4 fb⁻¹

Conclusions on the Tevatron Higgs search

- The Tevatron experiments have reached sensitivity (expected limit) for the SM Higgs boson in the mass range around 160 GeV
- With increased luminosity the sensitivity in this region is expected to reach the 3σ level
 - → Either a large mass region can be excluded with 95% C.L. or first evidence (3σ) for a SM Higgs boson can be found;

However: not a single "evidence channel" available needs the combination of many channels and of the two experiments

 The Higgs search in the mass range below ~130 GeV is difficult (also at the LHC);

Search for the bb final state at the Tevatron will provide important complementary information to the LHC Higgs search in the H $\rightarrow \gamma\gamma$ and qqH \rightarrow qq $\tau\tau$ channels

Expected Tevatron sensitivity

- For 10 fb⁻¹, expect 95% C.L. exclusion for a Higgs boson mass of 115 GeV

- Can be reached faster, if analysis improvements can be achieved

K. Jakobs, Universität Freiburg

Expected Tevatron sensitivity (cont.)

Possible improvements: - improved m_{bb} mass resolution - improved b-tagging, c-tagging, lepton ID,

 With improvements, 95% C.L. exclusion might be reached over mass range up to ~200 GeV What can be learned on Test of Monte Carlo Models ? - W/Z production as an example -

QCD Test in W/Z + jet production

- LO predictions fail to describe the data;
- Jet multiplicities and p_T spectra in agreement with NLO predictions within errors; NLO central value ~10% low

Jet multiplicities in Z+jet production

p_T spectrum of leading jet

comparison to different Monte Carlo predictions

- Comparison of p_T spectra of leading, second and third jet in Z+jet events to
 - PYTHIA and HERWIG (parton shower based Monte Carlos)
- ALPGEN and SHERPA (explicit matrix elements (tree level) matched to parton showers)

