Higgs boson searches at hadron colliders

Part 4

- Higgs Bosons in the MSSM
- Invisibly decaying Higgs bosons
- Composite Higgs boson
- WW scattering

Non-Standard-Model Higgs Scenarios

We really don't know what is going on at the TeV scale....

... be prepared for other scenarios

Hitoshi Murayama, Physics at the LHC, Hamburg, June 2010

Why alternative scenarios?

A. Pomarol, IFAE Barcelona

 "There must be more than a single Higgs. Although the Standard Model is *consistent*, it is *not natural.*"

 In quantum field theories it is difficult to protect scalar masses from large radiative corrections

$$\cdots + \sum_{+} \sum_{+} \sum_{+} \sum_{+} \sum_{+} \sum_{+} \sum_{+} \delta m_{H}^{2} = -\frac{\lambda_{F}^{2}}{8\pi^{2}} [\Lambda^{2} - m_{F}^{2} \ln \frac{\Lambda^{2}}{m_{F}^{2}}] + \dots$$

Extreme "finetuning" needed, if theory valid up to a high scale Λ

Possible solutions

- (i) An additional symmetry
 - Supersymmetry

- The Higgs is not elementary: Composite Higgs
- (ii) Lower the UV scale
 - Large extra dimensions
- (iii) Remove the Higgs
 - Technicolor models

The Higgs Sector

in the MSSM

Why do we like SUSY so much?

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

The Higgs Sector in the MSSM

Two Higgs doublets:

determined by two parameters:

 m_A , tan β

5 Higgs particles

fixed mass relations at tree level: (Higgs self coupling in MSSM fixed by gauge couplings)

 $m_{H,h}^2 = \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)^2 - 4m_Z^2 m_A^2 \cos^2 2\beta} \right)$ $m_h^2 \leq m_Z^2 \cos^2 2\beta \leq m_Z^2$

Important radiative corrections !! (tree level relations are significantly modified) \rightarrow upper mass bound depends on top mass and mixing in the stop sector

 $m_h^2 \leq m_Z^2 + rac{3g^2 m_t^4}{8 \pi^2 m_W^2} \left[\ln \left(rac{M_g^2}{m_t^2}
ight) + x_t^2 \left(1 - rac{x_t^2}{12}
ight)
ight]$ 140 where: $M_{S}^{2} = \frac{1}{2} \left(M_{t_{t}}^{2} + M_{t_{t}}^{2} \right)$ and $x_{t} = (A_{t} - \mu \cot \beta) / M_{S}$ maximal mixing 120 $\rightarrow m_h < 115 \text{ GeV}$ for no mixing (GeV) $\rightarrow m_h < 135 \text{ GeV}$ for maximal mixing g⁴ 100 i.e., no mixing scenario: in LEP reach max. mixing: easier to address at the LHC 2 5 10

H, h, A

H+, H⁺

K. Jakobs, Universität Freiburg

Branching ratios of MSSM Higgs bosons

K. Jakobs, Universität Freiburg

Production of MSSM Higgs bosons

- At large tan β : enhanced couplings of Higgs bosons H and A to down-type fermions
 - → important production processes:

g Joggog	(A)
	H
000000	
g	

(b, t quarks and SUSY-particles in loop)

Cross section calculation *

- associated bbH production becomes dominant process
- NLO calculations are available

two approaches -long discussions among theorists-

- four flavour scheme (bb from gluon splitting) $K \sim 1.3 1.5$ (Tevatron LHC)
- five flavour scheme (use b-quark parton distributions, $bb \rightarrow h$, $gb \rightarrow bh$)
- Finally: reasonable agreement (within respective scale uncertainties) between the NLO four-** and the NNLO five-flavour*** calculation is found for the inclusive (no b-tags) cross section.

***) D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Phys. Rev. D59 (1999) 094016; R. Harlander and W.B. Kilgore Phys. Rev. D68 (2003) 013001.

^{*)} For a review, see: J. Campbell et al. Proc. Les Houches 2003, hep-ph/0405302.

^{**)} S. Dittmaier, M. Krämer and M. Spira, Phys. Rev. D70 (2004) 074010; S. Dawson et al., Phys. Rev. D69 (2004) 0740027.

Production of MSSM Higgs bosons

Agreement between the four and five flavour scheme calculations:

MSSM benchmark scenarios

Masses and couplings of the Higgs bosons depend –in addition to tan β and m_A-on the SUSY parameters through radiative corrections

Most relevant parameters: $A_t = trilinear$ coupling in the stop sector $(X_t = A_t - \mu \cot \beta)$ $\mu = Higgs$ mass parameter $M_2 = gaugino$ mass term $(M_1$ from gauge unification) $m_g = gluino$ mass $m_{SUSY} = common$ scalar mass

 m_h -max:SUSY parameters chosen such that max mass value for h achieved;No mixing:vanishing mixing in the stop sector, $X_t = 0$;

Gluophobic: coupling to gluons strongly suppressed, large stop mixing, cancellation between top-quark and stop loop contributions;

Small α : effective mixing angle between CP-even Higgs bosons is small, reduced BR into bb and $\tau\tau$ for large tan β and intermediate values of m_A.

	$m_{ m SUSY} \ ({ m GeV/c^2})$	$\mu \over ({ m GeV}/{ m c}^2)$	M_2 (GeV/c ²)	X_t (GeV/c ²)	$m_g \ ({ m GeV/c}^2)$
m_h -max	1000	200	200	2000	800
No mixing	1000	200	200	0	800
Gluophobic	350	300	300	-750	500
Small α	800	2000	500	-1100	500

M. Carena, S. Heinemeyer, C.E.Wagner, G. Weiglein, Eur.Phys. J. C26 (2003) 601.

LEP results for the no-mixing scenario:

Search for $e^+e^- \rightarrow h A \rightarrow bb \ bb$ and $e^+e^- \rightarrow h Z$ $\rightarrow bb \tau \tau$ No significant excess found \rightarrow

set limits in MSSM Higgs boson parameter space (M_A -tan β)

K. Jakobs, Universität Freiburg

Results for the m_h-max scenario:

$$\begin{split} M_h &> 91.0 \; \text{GeV/c}^2 \\ m_A &> 91.9 \; \text{GeV/c}^2 \\ \text{Excluded tan } \beta \; \text{range:} \;\; 0.5 < \tan \beta < 2.4 \; (m_t = 175 \; \text{GeV/c}^2) \\ &< 1.9 \; (m_t = 179 \; \text{GeV/c}^2) \end{split}$$

K. Jakobs, Universität Freiburg

MSSM Higgs Boson Searches at the LHC

Important channels in the MSSM Higgs boson search:

- 1. The Standard Model decay channels
 - $h \rightarrow \gamma \gamma$
 - qq h, h $\rightarrow \tau \tau$

evaluation of performance is based on SM results

- 2. Modes strongly enhanced at large tan β :
 - H/A $\rightarrow \tau^+ \tau^-$ H⁺ $\rightarrow \tau \nu$
 - H/A $\rightarrow \mu^+ \mu^-$
- 3. Other interesting channels:
 - $\begin{array}{ccc} & H/A & \rightarrow & Zh \rightarrow & \ell\ell & \gamma\gamma \\ & & \rightarrow & \ell\ell & bb \end{array}$
 - $H \rightarrow hh$

Search for the light CP-even Higgs boson h

- Standard search channels can be used
- Vector boson fusion channels contribute significantly

- Uncovered region at small $m_A \rightarrow look$ for heavier Higgs bosons
- Large integrated luminosities are needed

Search for the heavy Higgs bosons H and A

 $L = 60 \text{ fb}^{-1}$

• Selection requires excellent b and τ identification

 detailed studies → both leptonic and hadronic tau decays can be used
 m_{H/A} < 400 GeV/c² (ℓ -τ_{had}) dominates > 400 GeV/c² (τ_{had}-τ_{had}) contributes significantly

H/A mass can be reconstructed, collinear approx.
Dominant backgrounds: W+jet, tt production

<u>at small tan β </u>: add. modes: search for H/A \rightarrow h decays allows for simultaneous observation for two Higgs bosons examples: H \rightarrow hh, A \rightarrow Zh

K. Jakobs, Universität Freiburg

<u>A/H → μμ</u>

For MSSM Higgs bosons also the $\mu\mu$ decay mode can be used (large tan β)

 5σ discovery contours for 30 and 100 fb⁻¹

Search for the Charged Higgs Boson

Detection of a charged Higgs boson -> Physics Beyond the Standard Model

Production: depends strongly on m_{H±}

- (i) via top decays: $t \rightarrow H^{\pm}b$
- (iii) $gg \rightarrow H^{\pm}tb$ or $gb \rightarrow H^{\pm}t$
- (v) gg, qq \rightarrow H[±] W
- (iv) $qq \rightarrow H^+ H^-$

Decays: depend strongly on m_{H±}

 τv decay mode significant at large tan β

LEP results on m_{H+}:

search for $H^+ \rightarrow cs$ and τv

Search for the charged Higgs bosons H[±] at large mass

- $H^{\pm} \rightarrow tb decays$:
 - promising channel: (i) gb → H[±]t →tb t → ℓvbb qqb
 require three b-tags + top-reconstruction → large background suppression
 - more difficult: (ii) $gg \rightarrow H^{\pm}tb \rightarrow tb tb \rightarrow \ell \nu bb qqbb$ require four b-tags + top-reconstruction (larger comb. background in rec. of H[±])

• $H^{\pm} \rightarrow \tau \nu$ decays:

- promising channel: (i) $gb \rightarrow H^{\pm}t \rightarrow \tau v t \rightarrow hvv qqb$ exploit hadronic decays of the τ and t quark
 - → transverse mass distribution (τ_{had} + E_T^{miss}) can be used to reconstruct the H[±] mass
- additional channel:
- (ii) $gg \rightarrow H^{\pm}tb \rightarrow \tau \nu tb \rightarrow h\nu \nu qqbb$ require two b-tags
- Other decay modes (H[±] → Wh, WH) marginal - hopeless in MSSM

Some examples of updated MSSM studies

60

CDF Run II 55 Excluded 95% CL 50 45 40 35 tanß 30 25 20 30 fb⁻¹ 15 10 fb⁻¹ 10 1 fb⁻¹ m_h max ATLAS 90 110 130 150 170 200 250 400 600 m_µ. [GeV]

95% CL exclusions for 1 to 30 fb⁻¹

ATLAS: Charged Higgs boson searches

 $H^{+} \rightarrow \tau \nu \;\; \text{and tb decay modes}$

K. Jakobs, Universität Freiburg

MSSM Higgs bosons h, H, A, H *

 $m_h < 135 \text{ GeV}$ $m_A \approx m_H \approx m_{H\pm}$ at large m_A

A, H cross-section ~ $tan^2\beta$ (tree level)

- best sensitivity from A/H $\rightarrow \tau \tau$, and H⁺ \rightarrow tb and τv

-A/H $\rightarrow \mu\mu$ experimentally easier

LHC discovery potential for MSSM Higgs bosons

 Region at large m_A and moderate tan β only covered by h; difficult to detect other Higgs bosons

Possible coverage:

- * via SUSY decays (model dependent, see below)
 - * luminosity (only moderate improvement)

K. Jakobs, Universität Freiburg

- Situation can be improved, in particular for $m_A < \sim 400 \text{ GeV}$
- But: (s)LHC can not promise a complete observation of the heavy part of the MSSM Higgs spectrum

.... although the observation of sparticles will clearly indicate that additional Higgs bosons should exist.

Updated MSSM scan for different benchmark scenarios

Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

ATLAS preliminary, 30 fb^{-1,} 5o discovery

K. Jakobs, Universität Freiburg

MHMAX scenario $(M_{SUSY} = 1 \text{ TeV/c}^2)$ maximal theoretically allowed region for m_h

Nomixing scenario $(M_{SUSY} = 2 \text{ TeV/c}^2)$ (1TeV almost excl. by LEP) small $m_h \rightarrow$ difficult for LHC

Gluophobic scenario ($M_{SUSY} = 350 \text{ GeV/c}^2$) coupling to gluons suppressed (cancellation of top + stop loops) small rate for g g \rightarrow H, H $\rightarrow \gamma\gamma$ and Z \rightarrow 4 ℓ

Small α scenario(M_{SUSY} = 800 GeV/c²)coupling to b (and t) suppressed(cancellation of sbottom, gluino loops) forlarge tan β and M_A 100 to 500 GeV/c²

Tevatron exclusions on MSSM Higgs bosons

Excluded cross section (95% C.L. limits)

Combination of the CDF and D0 results on bb Φ , $\Phi \rightarrow \tau \tau$

K. Jakobs, Universität Freiburg

CERN Academic Training Lectures, June 2010

Expectations at the LHC for $\sqrt{s} = 7$ TeV and 1 fb⁻¹

- Seems competitive at low mass
- Higher massesfor later

A light SUSY Higgs or

a light Standard Model Higgs?

Discrimination between a SM or MSSM Higgs

In some regions of MSSM parameter space only one light Higgs boson is visible

⇒ Try to exclude MSSM using a χ^2 analysis of coupling fits M. Dührssen et al., Phys. Rev. D70 (2004) 113009.

Discrimination between a SM or MSSM Higgs (cont.)

Similar analysis based on direct comparison of ratios of rates in different final states, using VBF production M. Schumacher et al., hep-ph/0410112

(only stat. errors considered so far, m_H assumed to be known with high precision)

Can SUSY particles be used to detect Higgs bosons ??

or

the interplay between the Higgs sector and SUSY particles

so far: SUSY particles have been assumed to be too heavy to play a role in Higgs boson decay phenomenology

CMS study: MSSM scenario

 $H/A \rightarrow \chi^0_2 \chi^0_2 \rightarrow \ell \ell \chi^0_1 \ell \ell \chi^0_1$

special choice in MSSM (no scan) $M_1 = 60 \text{ GeV}$ $M_2 = 110 \text{ GeV}$ $\mu = -500 \text{ GeV}$

Exclusions depend on MSSM parameters (slepton masses, μ)

Search for H[±] decays into SUSY particles

$$gb \rightarrow tH^+, H^{\pm} \rightarrow \chi_{2,3}^0 \chi_{1,2}^{\pm} \rightarrow 3\ell + E_T^{miss}$$

special choice in MSSM (no scan) $M_2 = 210 \text{ GeV}$ $\mu = 135 \text{ GeV}$ $m(s-\ell_R) = 110 \text{ GeV}$ $m(s-\tau_R) = 210 \text{ GeV}$ $m_g = 800 \text{ GeV}$ $m_{SUSY} = 1000 \text{ GeV}$

complementary discovery potential

Excursion: Search for Supersymmetry

- If SUSY exists at the electroweak scale, a discovery at the LHC should be easy
- Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

⇒ Heavy Higgs bosons might appear in cascades decays,

e.g. cascade decays of squarks and gluinos via heavy charginos and neutralinos

$$pp \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{g} \rightarrow \chi_{2}^{\pm}, \chi_{3}^{0}, \chi_{4}^{0} + X$$
$$\rightarrow \chi_{1}^{\pm}, \chi_{2}^{0}, \chi_{1}^{0} + h, H, A, H^{\pm} + X$$
$$pp \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{g} \rightarrow \chi_{1}^{\pm}, \chi_{2}^{0} + X$$
$$\rightarrow \chi_{1}^{0} + h, H, A, H^{\pm} + X$$

⇒ combination of Jets, Leptons, E_T^{miss}

Search for Higgs decays in standard channels: bb, $\tau\tau$, $\tau\nu$

K. Jakobs, Universität Freiburg

Search for h →bb in SUSY cascade decays

Applying a cut on $E_T^{miss} \Rightarrow$ suppresses the Standard Model background (QCD-jets), dominant background from SUSY production

important if $\chi_2^0 \rightarrow \chi_1^0 h$ is open;

bb peak can be reconstructed in many cases

Could be a Higgs discovery mode !

K. Jakobs, Universität Freiburg

Can invisibly decaying

Higgs bosons be detected?

Motivation:

 Invisibly decaying Higgs bosons appear in several extensions of the Standard Model

e.g. Higgs bosons can decay into weakly interacting neutralinos, gravitinos, scalar particles,

- To detect invisibly decaying Higgs bosons, the associated production modes must be used; most promising are VBF and ZH associated production

Invisible Higgs decays ?

<u>ATLAS study:</u> Search for invisibly decaying Higgs boson in the VBF mode and in the associated ZH production

Main backgrounds: W jj production $(W \rightarrow \ell_V)$ Z jj production $(Z \rightarrow vv)$ QCD jet production, fake E_T^{miss}

K. Jakobs, Universität Freiburg

Discriminating variable: $\Delta \phi_{jj}$ (separation between tag jets) expect differences due to Higgs coupling structure:

D. Zeppenfeld et al.

Sensitivity: $\xi^2 = Br(H \to Inv.) \frac{\sigma_{qq \to qqH}}{\sigma_{qq \to qqH}|_{SM}}$

- Sensitivity to large invisible branching ratios (SM production) in VBF channel
- Proof that the nature of the invisibly decaying object is a Higgs boson is difficult

Composite Higgs Bosons?

Composite Higgs models

- Composite Higgs models are inspired by QCD where one observes that the (pseudo)scalar mesons are the lightest states
 - pseudo-Nambu-Goldstone bosons, mass protected by global symmetries in QCD

- in analogy, a light Higgs can be obtained as a Goldstone boson of a globally broken symmetry at a scale f
- Energy / mass scales:

Composite Higgs models (cont.)*

Couplings of composite Higgs are altered, deviate from Standard Model couplings

Standard Model: a = b = 1

Composite models: - deviations from 1,

- non perfect cancellation of unitarity problems by light Higgs
- heavier ρ-like states needed

- Giudice, Grojean, Pomarol, Ratazzi

- Contino et al.

*)

-

- Espinosa, Grojean, Mühlleitner

Composite Higgs models (cont.)

• Continuous interpolation between the Standard Model and Technicolour:

$$\xi = \left(\frac{v}{f}\right)^2 = \left(\frac{weak \, scale}{strong \, coupling \, scale}\right)^2$$

$$\xi = 0: \text{ Standard Model} \qquad \qquad \xi = 1: \text{ Technicolour} \\ \text{ Higgs decouples, vector} \\ \text{ resonances like in TC}$$

Modified couplings in composite models
 e.g. Minimal Composite Higgs Models (MCHM):

no change in branching ratios

MCHM4: $g_{HVV} = g_{HVV}^{SM} \sqrt{1-\xi}$ MCHM5: $g_{HVV} = g_{HVV}^{SM} \sqrt{1-\xi}$ $g_{Hff} = g_{Hff}^{SM} \sqrt{1-\xi}$ $g_{Hff} = g_{Hff}^{SM} \frac{1-2\xi}{\sqrt{1-\xi}}$ universal shift of couplings,change in BR, depend on a state

change in BR, depend on ξ , vanishes for $\xi=0.5$

...and: lower production rates !!

Branching ratios in MCHM5 model

M. Mühlleitner, Physics at the LHC, Hamburg June 2010

Espinosa, Grojean, Mühlleitner

200

200 M_h [GeV]

LHC sensitivity to such models: MCHM4

M. Mühlleitner, Physics at the LHC, Hamburg June 2010

Espinosa, Grojean, Mühlleitner

LHC sensitivity to such models: MCHM5

M. Mühlleitner, Physics at the LHC, Hamburg June 2010

Espinosa, Grojean, Mühlleitner

What if the LHC does

not find the

Higgs Boson ?

- Study of longitudinal gauge boson scattering is the key High luminosities, i.e. sLHC, required to make quantitative measurements (strong physics case)
- If no Higgs, expect strong V_LV_L scattering (resonant or non-resonant) at ~ 1TeV
- Also the question of a composite Higgs boson will profit from these measurements

WZ resonances in Vector Boson Scattering

Example: Vector resonance (ρ -like) in W_LZ_L scattering from Chiral Lagrangian model m = 1.5 TeV \Rightarrow 300 fb⁻¹ (LHC) vs. 3000 fb⁻¹ (sLHC)

Lepton cuts: $p_T^1 > 150 \text{ GeV}$, $p_T^2 > 100 \text{ GeV}$, $p_T^3 > 50 \text{ GeV}$; $E_T^{\text{miss}} > 75 \text{ GeV}$

Conclusions

- Should a SM Higgs boson exist, it cannot escape detection at the LHC
- MSSM parameter space can be covered for several benchmark scenarios (incl. LHC-phobic scenarios)
- Tevatron might have a 3- σ evidence window; Information on bb decays important complementary information to LHC
- On the longer term, LHC can perform first, important measurements of Higgs boson parameters, which are needed to probe the underlying theory

"Exiting times ahead of us"

K. Jakobs, Universität Freiburg

Acknowledgements:

I am grateful to:

K. Assamagan, R. Bernhard, S. Dittmaier, A. Djouadi, C. Grojean,R. Harlander, C. Mariotti, M. Mühlleitner, H. Murayama, A. Pomarol,M. Schumacher, M. Spira, R. Thorne, G. Watts, G. Weiglein, C. Weiser,D. Zeppenfeld

for useful discussions on the various Higgs topic....and for their "indirect" contributions to these lectures via their excellent talks at conferences and workshops, from which I profited a lot.